1
|
Olayinka O, Ryu H, Wang X, Malik AB, Jung HM. Compensatory lymphangiogenesis is required for edema resolution in zebrafish. Sci Rep 2025; 15:8177. [PMID: 40065081 PMCID: PMC11893789 DOI: 10.1038/s41598-025-92970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Edema, characterized by the accumulation of interstitial fluid, poses significant challenges in various pathological conditions. Lymphangiogenesis is critical in edema clearance, and delayed or inadequate lymphatic responses significantly hinder healing processes. However, real-time observation of dynamic changes in lymphangiogenesis during tissue repair in animal models has been challenging, leaving the mechanisms behind compensatory lymphatic activation for edema clearance largely unexplored. To address this gap, we subjected zebrafish larvae to osmotic stress using hypertonic (375 mOsm/L) and isotonic (37.5 mOsm/L) solutions to induce osmotic imbalance and subsequent edema formation. Intravital imaging of vascular transgenic larvae revealed significant lymphatic vessel remodeling during tissue edema. The observed increase in lymphatic endothelial progenitor cells, alongside the sustained expansion and remodeling of primary lymphatics, indicates active lymphangiogenesis during the recovery phase. We developed a novel method employing translating ribosome affinity purification to analyze the translatome of lymphatic and venous endothelial cells in vivo, which uncovered the upregulation of key pro-lymphangiogenic genes, particularly vegfr2 and vegfr3, during tissue recovery. Inhibition of compensatory lymphangiogenesis impaired edema fluid clearance and tissue recovery. Our findings establish a new model for in vivo live imaging of compensatory lymphangiogenesis and provide a novel approach in investigating lymphatic activation during edema resolution.
Collapse
Affiliation(s)
- Olamide Olayinka
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hannah Ryu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hyun Min Jung
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Liang W, Wang H, Fu B, Song Y, Zhang Z, Liu X, Lin Y, Zhang J. Inhibition of Lymphangiogenesis: A Protective Role of microRNA 146a-5p in Breast Cancer. Breast J 2024; 2024:7813083. [PMID: 39742358 PMCID: PMC11357816 DOI: 10.1155/2024/7813083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 01/03/2025]
Abstract
Breast cancer is the leading cause of death and morbidity among women. A major challenge for clinical management of breast cancer is the dissemination of breast cancer cells from the primary tumor site via lymphatic drainage, resulting in metastatic tumor spread. Recent studies have found that high expression of the microRNA miR-146a-5p is associated with better survival outcomes for breast cancer patients. However, the mechanisms for this prognostic benefit are not fully elucidated, including whether or not miR-146a-5p plays a role in suppression of lymphatic dissemination. In this study, we investigated the role and uncovered functional mechanisms of miR-146a-5p in breast cancer. We found that high expression of miR-146a-5p is associated with better clinical outcomes, specifically in the patients with N0 breast cancer. In culture, miR-146a-5p overexpression in MCF-7 breast cancer cells suppressed cell migration and lymphangiogenesis in lymphatic endothelial cells. When implanted in the mammary fat pad of mice, we observed that miR-146a-5p overexpressing MCF-7 suppressed lymphatic dissemination but had no effect on tumor progression in the primary site. This suppression was associated with fewer disseminated cancer cells and reduced lymphangiogenesis in the draining and distal lymph nodes. In conclusion, these results suggest that miR-146a-5p can exhibit a protective role against breast cancer metastasis, and it can be a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Wenlong Liang
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiyang Fu
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Song
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Zhang
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujia Lin
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Phng LK, Hogan BM. Endothelial cell transitions in zebrafish vascular development. Dev Growth Differ 2024; 66:357-368. [PMID: 39072708 PMCID: PMC11457512 DOI: 10.1111/dgd.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Benjamin M Hogan
- Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
5
|
Pultar M, Oesterreicher J, Hartmann J, Weigl M, Diendorfer A, Schimek K, Schädl B, Heuser T, Brandstetter M, Grillari J, Sykacek P, Hackl M, Holnthoner W. Analysis of extracellular vesicle microRNA profiles reveals distinct blood and lymphatic endothelial cell origins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e134. [PMID: 38938681 PMCID: PMC11080916 DOI: 10.1002/jex2.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are crucial mediators of cell-to-cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic system is still scarce. In this study, we compared the mRNA and microRNA (miRNA) expression in blood vascular (BEC) and lymphatic (LEC) endothelial cells. After characterization of the EVs by fluorescence-triggered flow cytometry, nanoparticle tracking analysis and cryo-transmission electron microscopy (cryo-TEM) we utilized small RNA-sequencing to characterize miRNA signatures in the EVs and identify cell-type specific miRNAs in BEC and LEC. We found miRNAs specifically enriched in BEC and LEC on the cellular as well as the extracellular vesicle level. Our data provide a solid basis for further functional in vitro and in vivo studies addressing the role of EVs in the blood and lymphatic vasculature.
Collapse
Affiliation(s)
- Marianne Pultar
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- TAmiRNA GmbHViennaAustria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | | | - Moritz Weigl
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- TAmiRNA GmbHViennaAustria
| | | | - Katharina Schimek
- Technische Universität Berlin, Medical BiotechnologyBerlinGermany
- TissUse GmbHBerlinGermany
| | - Barbara Schädl
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Thomas Heuser
- Vienna Biocenter Core Facilities GmbH, EM FacilityViennaAustria
| | | | - Johannes Grillari
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Department of Biotechnology, Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Peter Sykacek
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
6
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Yu SR, Cui YX, Song ZQ, Li SF, Zhang CY, Song JX, Chen H. Endothelial Microparticle-Mediated Transfer of microRNA-19b Inhibits the Function and Distribution of Lymphatic Vessels in Atherosclerotic Mice. Front Physiol 2022; 13:850298. [PMID: 35615671 PMCID: PMC9124754 DOI: 10.3389/fphys.2022.850298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022] Open
Abstract
In recent years, the function of the lymphatic system in atherosclerosis has attracted attention due to its role in immune cell trafficking, cholesterol removal from the periphery, and regulation of the inflammatory response. However, knowledge of the mechanisms regulating lymphangiogenesis and lymphatic function in the pathogenesis of atherosclerosis is limited. Endothelial microparticles carrying circulating microRNA (miRNA)s are known to mediate cell–cell communication, and our previous research showed that miRNA-19b in EMPs (EMPmiR-19b) was significantly increased in circulation and atherosclerotic vessels, and this increase in EMPmiR-19b promoted atherosclerosis. The present study investigated whether atherogenic EMPmiR-19b influences pathological changes of the lymphatic system in atherosclerosis. We first verified increased miR-19b levels and loss of lymphatic system function in atherosclerotic mice. Atherogenic western diet-fed ApoE-/- mice were injected with phosphate-buffered saline, EMPs carrying control miRNA (EMPcontrol), or EMPmiR-19b intravenously. The function and distribution of the lymphatic system was assessed via confocal microscopy, Evans blue staining, and pathological analysis. The results showed that lymphatic system dysfunction existed in the early stage of atherosclerosis, and the observed pathological changes persisted at the later stage, companied by an increased microRNA-19b level. In ApoE-/- mice systemically treated with EMPmiR-19b, the distribution, transport function, and permeability of the lymphatic system were significantly inhibited. In vitro experiments showed that miRNA-19b may damage the lymphatic system by inhibiting lymphatic endothelial cell migration and tube formation, and a possible mechanism is the inhibition of transforming growth factor beta receptor type II (TGF-βRII) expression in lymphatic endothelial cells by miRNA-19b. Together, our findings demonstrate that atherogenic EMPmiR-19b may destroy lymphatic system function in atherosclerotic mice by downregulating TGF-βRII expression.
Collapse
|
8
|
Siddaiah R, Emery L, Stephens H, Donnelly A, Erkinger J, Wisecup K, Hicks SD, Kawasawa YI, Oji-Mmuo C, Amatya S, Silveyra P. Early Salivary miRNA Expression in Extreme Low Gestational Age Newborns. Life (Basel) 2022; 12:506. [PMID: 35454997 PMCID: PMC9029747 DOI: 10.3390/life12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression playing a key role in organogenesis. MiRNAs are studied in tracheal aspirates (TA) of preterm infants. However; this is difficult to obtain in infants who are not intubated. This study examines early salivary miRNA expression as non-invasive early biomarkers in extremely low gestational age newborns (ELGANs). Methods: Saliva was collected using DNA-genotek swabs, miRNAs were analyzed using RNA seq and RT PCR arrays. Salivary miRNA expression was compared to TA using RNA seq at 3 days of age, and longitudinal changes at 28 days of age were analyzed using RT PCR arrays in ELGANs. Results: Approximately 822 ng of RNA was extracted from saliva of 7 ELGANs; Of the 757 miRNAs isolated, 161 miRNAs had significant correlation in saliva and TA at 3 days of age (r = 0.97). Longitudinal miRNA analysis showed 29 miRNAs downregulated and 394 miRNAs upregulated at 28 days compared to 3 days of age (adjusted p < 0.1). Bioinformatic analysis (Ingenuity Pathway Analysis) of differentially expressed miRNAs identified organismal injury and abnormalities and cellular development as the top physiological system development and cellular function. Conclusion: Salivary miRNA expression are source for early biomarkers of underlying pathophysiology in ELGANs.
Collapse
Affiliation(s)
- Roopa Siddaiah
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Lucy Emery
- Penn State Health College of Medicine, Hershey, PA 17036, USA;
| | - Heather Stephens
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Ann Donnelly
- Department of Respiratory Therapy Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (A.D.); (J.E.)
| | - Jennifer Erkinger
- Department of Respiratory Therapy Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (A.D.); (J.E.)
| | - Kimberly Wisecup
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Steven D. Hicks
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology, Biochemistry and Molecular Biology, Penn State Health College of Medicine, Hershey, PA 17036, USA;
| | - Christiana Oji-Mmuo
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Shaili Amatya
- Department of Pediatrics, Penn State Health Children’s Hospital, Hershey, PA 17036, USA; (H.S.); (K.W.); (S.D.H.); (C.O.-M.); (S.A.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
9
|
Michelson M, Lidzbarsky G, Nishri D, Israel-Elgali I, Berger R, Gafner M, Shomron N, Lev D, Goldberg Y. Microdeletion of 16q24.1-q24.2-A unique etiology of Lymphedema-Distichiasis syndrome and neurodevelopmental disorder. Am J Med Genet A 2022; 188:1990-1996. [PMID: 35312147 PMCID: PMC9314700 DOI: 10.1002/ajmg.a.62730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Interstitial deletions of 16q24.1–q24.2 are associated with alveolar capillary dysplasia, congenital renal malformations, neurodevelopmental disorders, and congenital abnormalities. Lymphedema–Distichiasis syndrome (LDS; OMIM # 153400) is a dominant condition caused by heterozygous pathogenic variants in FOXC2. Usually, lymphedema and distichiasis occur in puberty or later on, and affected individuals typically achieve normal developmental milestones. Here, we describe a boy with congenital lymphedema, distichiasis, bilateral hydronephrosis, and global developmental delay, with a de novo microdeletion of 894 kb at 16q24.1–q24.2. This report extends the phenotype of both 16q24.1–q24.2 microdeletion syndrome and of LDS. Interestingly, the deletion involves only the 3′‐UTR part of FOXC2.
Collapse
Affiliation(s)
- Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Daniella Nishri
- Child Developmental Center of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Michal Gafner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
10
|
Yang Y, Li XB, Li Y, Li TX, Li P, Deng GM, Guo Q, Zhou X, Chen XH. Extracellular Vesicles Derived From Hypoxia-Conditioned Adipose-Derived Mesenchymal Stem Cells Enhance Lymphangiogenesis. Cell Transplant 2022; 31:9636897221107536. [PMID: 35861534 PMCID: PMC9310282 DOI: 10.1177/09636897221107536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles from adipose-derived mesenchymal stem cells (ADSCs) play an important role in lymphangiogenesis; however, the underlying mechanisms are not fully understood. In this study, we aimed to investigate the function of extracellular vesicles secreted by hypoxia-conditioned ADSCs in lymphangiogenesis and explore the potential molecular mechanisms. Extracellular vesicles were extracted from ADSCs cultured under hypoxia or normoxia conditions. The uptake of extracellular vesicles by lymphatic endothelial cells (LECs) was detected by immunofluorescence staining. The effects of extracellular vesicles on the viability, migration, and tube formation of LECs were determined by CCK-8 assay, migration assay, and tube formation assay, respectively. Molecules and pathway involved in lymphangiogenesis mediated by ADSC-derived extracellular vesicles were analyzed by luciferase reporter assay, qRT-polymerase chain reaction (PCR), and Western blot. Hypoxia ADSC-derived extracellular vesicles (H-ADSC/evs) significantly enhanced the proliferation, migration, and tube formation of LECs. Hypoxia decreased the expression of miR-129 in ADSC-derived extracellular vesicles. Overexpression of miR-129 counteracted the promoting effect of H-ADSC/evs on lymphangiogenesis. In addition, decreased exosomal miR-129 expression resulted in upregulation of HMGB1 in LECs, which led to AKT activation and lymphangiogenesis enhancement. Our data reveal that extracellular vesicles derived from hypoxia-conditioned ADSCs induce lymphangiogenesis, and this effect is mediated by miR-129/HMGB1/AKT signaling. Our findings imply that hypoxia ADSC-isolated extracellular vesicles may represent as a valuable target for the treatment of diseases associated with lymphatic remodeling.
Collapse
Affiliation(s)
- Yi Yang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xu-Bo Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tian-Xiao Li
- Department of Pharmacy, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ping Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guang-Mao Deng
- Department of Orthopedic, Huiya Hospital, The First Affiliated Hospital of Sun Yat-sen University, Huizhou, China
| | - Qiang Guo
- Department of Orthopedic, Huiya Hospital, The First Affiliated Hospital of Sun Yat-sen University, Huizhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Hu Chen
- Department of Orthopedic, Huiya Hospital, The First Affiliated Hospital of Sun Yat-sen University, Huizhou, China
| |
Collapse
|
11
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
13
|
Sarti S, De Paolo R, Ippolito C, Pucci A, Pitto L, Poliseno L. Inducible modulation of miR-204 levels in a zebrafish melanoma model. Biol Open 2020; 9:bio053785. [PMID: 33037013 PMCID: PMC7657466 DOI: 10.1242/bio.053785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we present miniCoopR-I, an inducible upgrade of the constitutive miniCoopR vector. We developed miniCoopR-I-sponge-204 and miniCoopR-I-pre-miR-204 vectors and we successfully tested them for their ability to achieve time- (embryo/juvenile/adult) and space- (melanocytic lineage) restricted inhibition/overexpression of miR-204, a positive modulator of pigmentation previously discovered by us. Furthermore, melanoma-free survival curves performed on induced fish at the adult stage indicate that miR-204 overexpression accelerates the development of BRAFV600E-driven melanoma. miniCoopR-I allows study of the impact that coding and non-coding modulators of pigmentation exert on melanomagenesis in adult zebrafish, uncoupling it from the impact that they exert on melanogenesis during embryonic development.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Samanta Sarti
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| | - Raffaella De Paolo
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
- University of Siena, Siena 53100, Italy
| | - Chiara Ippolito
- Unit of Histology and Human Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Angela Pucci
- Histopathology Department, Pisa University Hospital, Pisa 56126, Italy
| | - Letizia Pitto
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| | - Laura Poliseno
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| |
Collapse
|
14
|
LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p. Mol Cell Biochem 2020; 475:161-169. [DOI: 10.1007/s11010-020-03868-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
|