1
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova TV, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. RNA (NEW YORK, N.Y.) 2025; 31:781-790. [PMID: 40050069 DOI: 10.1261/rna.080294.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single-nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole-genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
Affiliation(s)
- Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Michelle Zhou
- Irvington High School, Irvington, New York 10533, USA
| | - Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 33607 Pessac, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Madern MF, Yang S, Witteveen O, Segeren HA, Bauer M, Tanenbaum ME. Long-term imaging of individual ribosomes reveals ribosome cooperativity in mRNA translation. Cell 2025; 188:1896-1911.e24. [PMID: 39892379 DOI: 10.1016/j.cell.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The genetic information stored in mRNAs is decoded by ribosomes during mRNA translation. mRNAs are typically translated by multiple ribosomes simultaneously, but it is unclear whether and how the activity of different ribosomes on an mRNA is coordinated. Here, we develop an imaging approach based on stopless-ORF circular RNAs (socRNAs) to monitor translation of individual ribosomes in either monosomes or polysomes with very high resolution. Using experiments and simulations, we find that translating ribosomes frequently undergo transient collisions. However, unlike persistent collisions, such transient collisions escape detection by cellular quality control pathways. Rather, transient ribosome collisions promote productive translation by reducing ribosome pausing on problematic sequences, a process we term ribosome cooperativity. Ribosome cooperativity also reduces recycling of ribosomes by quality control pathways, thus enhancing processive translation. Together, our single-ribosome imaging approach reveals that ribosomes cooperate during translation to ensure fast and efficient translation.
Collapse
Affiliation(s)
- Maximilian F Madern
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sora Yang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Olivier Witteveen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrika A Segeren
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
3
|
Ando Y, Kobo A, Niwa T, Yamakawa A, Konoma S, Kobayashi Y, Nureki O, Taguchi H, Itoh Y, Chadani Y. A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism. Nat Commun 2025; 16:2323. [PMID: 40057501 PMCID: PMC11890864 DOI: 10.1038/s41467-025-57659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
Collapse
Affiliation(s)
- Yushin Ando
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinao Kobo
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Ayako Yamakawa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Suzuna Konoma
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Yuki Kobayashi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan.
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
4
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
5
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
6
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
7
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
8
|
Tomuro K, Mito M, Toh H, Kawamoto N, Miyake T, Chow SYA, Doi M, Ikeuchi Y, Shichino Y, Iwasaki S. Calibrated ribosome profiling assesses the dynamics of ribosomal flux on transcripts. Nat Commun 2024; 15:7061. [PMID: 39187487 PMCID: PMC11347596 DOI: 10.1038/s41467-024-51258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Ribosome profiling, which is based on deep sequencing of ribosome footprints, has served as a powerful tool for elucidating the regulatory mechanism of protein synthesis. However, the current method has substantial issues: contamination by rRNAs and the lack of appropriate methods to measure ribosome numbers in transcripts. Here, we overcome these hurdles through the development of "Ribo-FilterOut", which is based on the separation of footprints from ribosome subunits by ultrafiltration, and "Ribo-Calibration", which relies on external spike-ins of stoichiometrically defined mRNA-ribosome complexes. A combination of these approaches estimates the number of ribosomes on a transcript, the translation initiation rate, and the overall number of translation events before its decay, all in a genome-wide manner. Moreover, our method reveals the allocation of ribosomes under heat shock stress, during aging, and across cell types. Our strategy of modified ribosome profiling measures kinetic and stoichiometric parameters of cellular translation across the transcriptome.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05782 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02306 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108570 Japan Agency for Medical Research and Development (AMED)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23H00095 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP22K20765 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K14173 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2178 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- Pioneering Project MEXT | RIKEN
- RIKEN TRIP initiative "TRIP-AGIS" MEXT | RIKEN
- Pioneering Project MEXT | RIKEN
- JPMJBS2418 MEXT | Japan Science and Technology Agency (JST)
- JPMJFR226F MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hirotaka Toh
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
9
|
Pardo-Avila F, Kudva R, Levitt M, von Heijne G. Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608737. [PMID: 39229094 PMCID: PMC11370347 DOI: 10.1101/2024.08.20.608737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nascent polypeptide chains (NCs) are extruded from the ribosome through an exit tunnel (ET) traversing the large ribosomal subunit. The ET's irregular and chemically complex wall allows for various NC-ET interactions. Translational arrest peptides (APs) bind in the ET to induce translational arrest, a property that can be exploited to study NC-ET interactions by Force Profile Analysis (FPA). We employed FPA and molecular dynamics (MD) simulations to investigate how individual residues placed in a glycine-serine repeat segment within an AP-stalled NC interact with the ET to exert a pulling force on the AP and release stalling. Our results indicate that large and hydrophobic residues generate a pulling force on the NC when placed ≳10 residues away from the peptidyl transfer center (PTC). Moreover, an asparagine placed 12 residues from the PTC makes a specific stabilizing interaction with the tip of ribosomal protein uL22 that reduces the pulling force on the NC, while a lysine or leucine residue in the same position increases the pulling force. Finally, the MD simulations suggest how the Mannheimia succiniproducens SecM AP interacts with the ET to promote translational stalling.
Collapse
Affiliation(s)
- Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
10
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. Nucleic Acids Res 2024; 52:7171-7187. [PMID: 38647082 PMCID: PMC11229359 DOI: 10.1093/nar/gkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Loveland AB, Koh CS, Ganesan R, Jacobson A, Korostelev AA. Structural mechanism of angiogenin activation by the ribosome. Nature 2024; 630:769-776. [PMID: 38718836 PMCID: PMC11912008 DOI: 10.1038/s41586-024-07508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/02/2024] [Indexed: 05/15/2024]
Abstract
Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
| | - Cha San Koh
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
12
|
Imamichi T, Kusumoto N, Aoyama H, Takamatsu S, Honda Y, Muraoka S, Hagiwara-Komoda Y, Chiba Y, Onouchi H, Yamashita Y, Naito S. Phylogeny-linked occurrence of ribosome stalling on the mRNAs of Arabidopsis unfolded protein response factor bZIP60 orthologs in divergent plant species. Nucleic Acids Res 2024; 52:4276-4294. [PMID: 38366760 PMCID: PMC11077094 DOI: 10.1093/nar/gkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.
Collapse
Affiliation(s)
- Tomoya Imamichi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nao Kusumoto
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haruka Aoyama
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seidai Takamatsu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yugo Honda
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shiori Muraoka
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Yukako Chiba
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Yamashita
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
13
|
Bothe A, Ban N. A highly optimized human in vitro translation system. CELL REPORTS METHODS 2024; 4:100755. [PMID: 38608690 PMCID: PMC11046033 DOI: 10.1016/j.crmeth.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.
Collapse
Affiliation(s)
- Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
14
|
Fujiwara K, Tsuji N, Yoshida M, Takada H, Chiba S. Patchy and widespread distribution of bacterial translation arrest peptides associated with the protein localization machinery. Nat Commun 2024; 15:2711. [PMID: 38565864 PMCID: PMC10987492 DOI: 10.1038/s41467-024-46993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024] Open
Abstract
Regulatory arrest peptides interact with specific residues on bacterial ribosomes and arrest their own translation. Here, we analyse over 30,000 bacterial genome sequences to identify additional Sec/YidC-related arrest peptides, followed by in vivo and in vitro analyses. We find that Sec/YidC-related arrest peptides show patchy, but widespread, phylogenetic distribution throughout the bacterial domain. Several of the identified peptides contain distinct conserved sequences near the C-termini, but are still able to efficiently stall bacterial ribosomes in vitro and in vivo. In addition, we identify many arrest peptides that share an R-A-P-P-like sequence, suggesting that this sequence might serve as a common evolutionary seed to overcome ribosomal structural differences across species.
Collapse
Affiliation(s)
- Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan.
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| | - Naoko Tsuji
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Mayu Yoshida
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan.
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
15
|
Anadolu MN, Sun J, Li JTY, Graber TE, Ortega J, Sossin WS. Puromycin reveals a distinct conformation of neuronal ribosomes. Proc Natl Acad Sci U S A 2024; 121:e2306993121. [PMID: 38315848 PMCID: PMC10873636 DOI: 10.1073/pnas.2306993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.
Collapse
Affiliation(s)
- Mina N. Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Jewel T.-Y. Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Tyson E. Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
| |
Collapse
|
16
|
Samatova E, Komar AA, Rodnina MV. How the ribosome shapes cotranslational protein folding. Curr Opin Struct Biol 2024; 84:102740. [PMID: 38071940 DOI: 10.1016/j.sbi.2023.102740] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/09/2024]
Abstract
During protein synthesis, the growing nascent peptide chain moves inside the polypeptide exit tunnel of the ribosome from the peptidyl transferase center towards the exit port where it emerges into the cytoplasm. The ribosome defines the unique energy landscape of the pioneering round of protein folding. The spatial confinement and the interactions of the nascent peptide with the tunnel walls facilitate formation of secondary structures, such as α-helices. The vectorial nature of protein folding inside the tunnel favors local intra- and inter-molecular interactions, thereby inducing cotranslational folding intermediates that do not form upon protein refolding in solution. Tertiary structures start to fold in the lower part of the tunnel, where interactions with the ribosome destabilize native protein folds. The present review summarizes the recent progress in understanding the driving forces of nascent protein folding inside the tunnel and at the surface of the ribosome.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Goettingen 37077, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Goettingen 37077, Germany.
| |
Collapse
|
17
|
Li X, Mariappan M. Nascent Chain Ubiquitination is Uncoupled from Degradation to Enable Protein Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561585. [PMID: 37873109 PMCID: PMC10592752 DOI: 10.1101/2023.10.09.561585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A significant proportion of nascent proteins undergo polyubiquitination on ribosomes in mammalian cells, yet the fate of these proteins remains elusive. The ribosome-associated quality control (RQC) is a mechanism that mediates the ubiquitination of nascent chains on stalled ribosomes. Here, we find that nascent proteins ubiquitinated on stalled ribosomes by the RQC E3 ligase LTN1 are insufficient for proteasomal degradation. Our biochemical reconstitution studies reveal that ubiquitinated nascent chains are promptly deubiquitinated in the cytosol upon release from stalled ribosomes, as they are no longer associated with LTN1 E3 ligase for continuous ubiquitination to compete with cytosolic deubiquitinases. These deubiquitinated nascent chains can mature into stable proteins. However, if they misfold and expose a degradation signal, the cytosolic quality control recognizes them for re-ubiquitination and subsequent proteasomal degradation. Thus, our findings suggest that cycles of ubiquitination and deubiquitination spare foldable nascent proteins while ensuring the degradation of terminally misfolded proteins.
Collapse
Affiliation(s)
- Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale University West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale University West Campus, West Haven, CT 06516, USA
| |
Collapse
|
18
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559793. [PMID: 37808677 PMCID: PMC10557687 DOI: 10.1101/2023.09.27.559793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y. Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
19
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
20
|
Shiota N, Shimokawa-Chiba N, Fujiwara K, Chiba S. Identification of Bacillus subtilis YidC substrates using a MifM-instructed translation arrest-based reporter. J Mol Biol 2023:168172. [PMID: 37290739 DOI: 10.1016/j.jmb.2023.168172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.
Collapse
Affiliation(s)
- Narumi Shiota
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan.
| |
Collapse
|
21
|
Ito Y, Chadani Y, Niwa T, Yamakawa A, Machida K, Imataka H, Taguchi H. Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes. Nat Commun 2022; 13:7451. [PMID: 36460666 PMCID: PMC9718836 DOI: 10.1038/s41467-022-35156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.
Collapse
Affiliation(s)
- Yosuke Ito
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Yuhei Chadani
- grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Tatsuya Niwa
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Ayako Yamakawa
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Kodai Machida
- grid.266453.00000 0001 0724 9317Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 Japan
| | - Hiroaki Imataka
- grid.266453.00000 0001 0724 9317Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 Japan
| | - Hideki Taguchi
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| |
Collapse
|
22
|
Song D, Peng K, Palmer BE, Lee FS. The ribosomal chaperone NACA recruits PHD2 to cotranslationally modify HIF-α. EMBO J 2022; 41:e112059. [PMID: 36219563 PMCID: PMC9670199 DOI: 10.15252/embj.2022112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2)-catalyzed modification of hypoxia-inducible factor (HIF)-α is a key event in oxygen sensing. We previously showed that the zinc finger of PHD2 binds to a Pro-Xaa-Leu-Glu (PXLE) motif. Here, we show that the zinc finger binds to this motif in the ribosomal chaperone nascent polypeptide complex-α (NACA). This recruits PHD2 to the translation machinery to cotranslationally modify HIF-α. Importantly, this cotranslational modification is enhanced by a translational pause sequence in HIF-α. Mice with a knock-in Naca gene mutation that abolishes the PXLE motif display erythrocytosis, a reflection of HIF pathway dysregulation. In addition, human erythrocytosis-associated mutations in the zinc finger of PHD2 ablate interaction with NACA. Tibetans, who have adapted to the hypoxia of high altitude, harbor a PHD2 variant that we previously showed displays a defect in zinc finger binding to p23, a PXLE-containing HSP90 cochaperone. We show here that Tibetan PHD2 maintains interaction with NACA, thereby showing differential interactions with PXLE-containing proteins and providing an explanation for why Tibetans are not predisposed to erythrocytosis.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kai Peng
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Chime BiologicsWuhanChina
| | - Bradleigh E Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of BiologyJohns Hopkins UniversityBaltimoreMDUSA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
23
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
24
|
A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nat Commun 2022; 13:6411. [PMID: 36302773 PMCID: PMC9613687 DOI: 10.1038/s41467-022-34097-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.
Collapse
|
25
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Loveland AB, Svidritskiy E, Susorov D, Lee S, Park A, Zvornicanin S, Demo G, Gao FB, Korostelev AA. Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat Commun 2022; 13:2776. [PMID: 35589706 PMCID: PMC9120013 DOI: 10.1038/s41467-022-30418-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Denis Susorov
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Soojin Lee
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Alexander Park
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Sarah Zvornicanin
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
27
|
Di Palma F, Decherchi S, Pardo-Avila F, Succi S, Levitt M, von Heijne G, Cavalli A. Probing Interplays between Human XBP1u Translational Arrest Peptide and 80S Ribosome. J Chem Theory Comput 2022; 18:1905-1914. [PMID: 34881571 PMCID: PMC8908735 DOI: 10.1021/acs.jctc.1c00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 02/08/2023]
Abstract
The ribosome stalling mechanism is a crucial biological process, yet its atomistic underpinning is still elusive. In this framework, the human XBP1u translational arrest peptide (AP) plays a central role in regulating the unfolded protein response (UPR) in eukaryotic cells. Here, we report multimicrosecond all-atom molecular dynamics simulations designed to probe the interactions between the XBP1u AP and the mammalian ribosome exit tunnel, both for the wild type AP and for four mutant variants of different arrest potencies. Enhanced sampling simulations allow investigating the AP release process of the different variants, shedding light on this complex mechanism. The present outcomes are in qualitative/quantitative agreement with available experimental data. In conclusion, we provide an unprecedented atomistic picture of this biological process and clear-cut insights into the key AP-ribosome interactions.
Collapse
Affiliation(s)
- Francesco Di Palma
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Sergio Decherchi
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Fátima Pardo-Avila
- Department
of Structural Biology, Stanford University, Palo Alto, California 94305, United States
| | - Sauro Succi
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Center for
Life Nano & Neurosciences at La Sapienza, Fondazione Istituto Italiano di Tecnologia, via Regina Elena, 295, I-00161 Roma, Italy
- Physics
Department, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Michael Levitt
- Department
of Structural Biology, Stanford University, Palo Alto, California 94305, United States
| | - Gunnar von Heijne
- Department
of Biochemistry and Biophysics, Stockholm
University, SE-106 91 Stockholm, Sweden
- Science
for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Andrea Cavalli
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
28
|
Kišonaitė M, Wild K, Lapouge K, Ruppert T, Sinning I. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Nat Commun 2022; 13:476. [PMID: 35079002 PMCID: PMC8789840 DOI: 10.1038/s41467-022-27967-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRibosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved ‘nested base-triple knot’ in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.
Collapse
|
29
|
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, Taguchi H. Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J 2021; 40:e108299. [PMID: 34672004 PMCID: PMC8634131 DOI: 10.15252/embj.2021108299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/26/2023] Open
Abstract
Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Nobuyuki Sugata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tatsuya Niwa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yosuke Ito
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hideki Taguchi
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
30
|
Rollins MG, Shasmal M, Meade N, Astar H, Shen PS, Walsh D. Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Cell Rep 2021; 36:109663. [PMID: 34496247 PMCID: PMC8451006 DOI: 10.1016/j.celrep.2021.109663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Although the roles of initiation factors, RNA binding proteins, and RNA elements in regulating translation are well defined, how the ribosome functionally diversifies remains poorly understood. In their human hosts, poxviruses phosphorylate serine 278 (S278) at the tip of a loop domain in the small subunit ribosomal protein RACK1, thereby mimicking negatively charged residues in the RACK1 loops of dicot plants and protists to stimulate translation of transcripts with 5′ poly(A) leaders. However, how a negatively charged RACK1 loop affects ribosome structure and its broader translational output is not known. Here, we show that although ribotoxin-induced stress signaling and stalling on poly(A) sequences are unaffected, negative charge in the RACK1 loop alters the swivel motion of the 40S head domain in a manner similar to several internal ribosome entry sites (IRESs), confers resistance to various protein synthesis inhibitors, and broadly supports noncanonical modes of translation. How ribosomes functionally diversify to selectively control translation is only beginning to be understood. Rollins et al. show that negative charge in a loop domain of the small subunit ribosomal protein RACK1 increases the swiveling motion of the 40S head and broadens the translational capacity of the human ribosome.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manidip Shasmal
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Cancer associated mutations in Sec61γ alter the permeability of the ER translocase. PLoS Genet 2021; 17:e1009780. [PMID: 34460824 PMCID: PMC8439465 DOI: 10.1371/journal.pgen.1009780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/14/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the Sec61 complex, a heterotrimeric protein complex possessing two essential sub-units, Sec61p/Sec61α and Sss1p/Sec61γ and the non-essential Sbh1p/Sec61β subunit. In addition to forming a protein conducting channel, the Sec61 complex maintains the ER permeability barrier, preventing flow of molecules and ions. Loss of Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C-terminus is juxtaposed to the key gating module of Sec61p/Sec61α and is important for gating the translocon. Inspection of the cancer genome database identifies six mutations in highly conserved amino acids of Sec61γ/Sss1p. We identify that five out of the six mutations identified affect gating of the ER translocon, albeit with varying strength. Together, we find that mutations in Sec61γ that arise in malignant cells result in altered translocon gating dynamics, this offers the potential for the translocon to represent a target in co-therapy for cancer treatment.
Collapse
|
32
|
Davis MM, Lamichhane R, Bruce BD. Elucidating Protein Translocon Dynamics with Single-Molecule Precision. Trends Cell Biol 2021; 31:569-583. [PMID: 33865650 DOI: 10.1016/j.tcb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Translocons are protein assemblies that facilitate the targeting and transport of proteins into and across biological membranes. Our understanding of these systems has been advanced using genetics, biochemistry, and structural biology. Despite these classic advances, until recently we have still largely lacked a detailed understanding of how translocons recognize and facilitate protein translocation. With the advent and improvements of cryogenic electron microscopy (cryo-EM) single-particle analysis and single-molecule fluorescence microscopy, the details of how translocons function are finally emerging. Here, we introduce these methods and evaluate their importance in understanding translocon structure, function, and dynamics.
Collapse
Affiliation(s)
- Madeline M Davis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Graduate Program in Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
33
|
Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Yoshida M, Mishima Y, Inada T, Iwasaki S. Genome-wide Survey of Ribosome Collision. Cell Rep 2021; 31:107610. [PMID: 32375038 DOI: 10.1016/j.celrep.2020.107610] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Ribosome movement is not always smooth and is rather often impeded. For ribosome pauses, fundamental issues remain to be addressed, including where ribosomes pause on mRNAs, what kind of RNA/amino acid sequence causes this pause, and the physiological significance of this attenuation of protein synthesis. Here, we survey the positions of ribosome collisions caused by ribosome pauses in humans and zebrafish using modified ribosome profiling. Collided ribosomes, i.e., disomes, emerge at various sites: Pro-Pro/Gly/Asp motifs; Arg-X-Lys motifs; stop codons; and 3' untranslated regions. The electrostatic interaction between the charged nascent chain and the ribosome exit tunnel determines the eIF5A-mediated disome rescue at the Pro-Pro sites. In particular, XBP1u, a precursor of endoplasmic reticulum (ER)-stress-responsive transcription factor, shows striking queues of collided ribosomes and thus acts as a degradation substrate by ribosome-associated quality control. Our results provide insight into the causes and consequences of ribosome pause by dissecting collided ribosomes.
Collapse
Affiliation(s)
- Peixun Han
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuichiro Mishima
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
34
|
Abstract
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| |
Collapse
|
35
|
A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Rep 2021; 35:109217. [PMID: 34107246 DOI: 10.1016/j.celrep.2021.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
Collapse
|
36
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
37
|
Yip MCJ, Shao S. Detecting and Rescuing Stalled Ribosomes. Trends Biochem Sci 2021; 46:731-743. [PMID: 33966939 DOI: 10.1016/j.tibs.2021.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.
Collapse
Affiliation(s)
- Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Sakiyama K, Shimokawa-Chiba N, Fujiwara K, Chiba S. Search for translation arrest peptides encoded upstream of genes for components of protein localization pathways. Nucleic Acids Res 2021; 49:1550-1566. [PMID: 33503266 PMCID: PMC7897499 DOI: 10.1093/nar/gkab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Regulatory nascent peptides participate in the regulation of cellular functions by the mechanisms involving regulated translation arrest. A class of them in bacteria, called monitoring substrates, feedback-regulates the expression of a specific component of protein localization machinery. Three monitoring substrates, SecM, MifM and VemP have previously been identified. Here, we attempt at identifying additional arrest peptides in bacteria. Our bioinformatic searches over more than 400 bacterial genomic sequences for proteins that have the common characteristic features shared by the known monitoring substrates and subsequent in vitro and in vivo characterization of the highlighted sequences allowed the identification of three arrest peptides termed ApcA, ApdA and ApdP. ApcA and ApdA homologs are conserved among a subset of actinobacteria, whereas ApdP has homologs in a subset of α-proteobacteria. We demonstrate that these arrest peptides, in their ribosome-tethered nascent states, inhibit peptidyl transfer. The elongation arrest occurs at a specific codon near the 3′ end of the coding region, in a manner depending on the amino acid sequence of the nascent chain. Interestingly, the arrest sequences of ApcA, ApdA and ApdP share a sequence R-A-P-G/P that is essential for the elongation arrest.
Collapse
Affiliation(s)
- Karen Sakiyama
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| |
Collapse
|
39
|
Crowe-McAuliffe C, Takada H, Murina V, Polte C, Kasvandik S, Tenson T, Ignatova Z, Atkinson GC, Wilson DN, Hauryliuk V. Structural Basis for Bacterial Ribosome-Associated Quality Control by RqcH and RqcP. Mol Cell 2020; 81:115-126.e7. [PMID: 33259810 DOI: 10.1016/j.molcel.2020.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022]
Abstract
In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.
Collapse
Affiliation(s)
- Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Sergo Kasvandik
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Gemma C Atkinson
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany.
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia.
| |
Collapse
|
40
|
A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat Commun 2020; 11:5840. [PMID: 33203865 PMCID: PMC7673040 DOI: 10.1038/s41467-020-19548-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.
Collapse
|
41
|
Kriegler T, Kiburg G, Hessa T. Translocon-Associated Protein Complex (TRAP) is Crucial for Co-Translational Translocation of Pre-Proinsulin. J Mol Biol 2020; 432:166694. [PMID: 33137310 DOI: 10.1016/j.jmb.2020.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 01/23/2023]
Abstract
Many unanswered questions remain in understanding the biosynthesis of the peptide hormone insulin. Here we elucidate new aspects in the mechanism of co-translational translocation initiation of pre-proinsulin in the endoplasmic reticulum. We utilize a translational arrest peptide derived from the x-box-binding protein (Xbp1) to induce ribosomal stalling and generate translocation intermediates. We find that the insulin signal sequence is rather weakly gating and requires the assistance of auxiliary translocon components to initiate translocation. Probing the translational intermediates with chemical crosslinking, we identified an early interaction with the translocon-associated protein (TRAP) complex. The TRAPβ subunit interacts with pre-proinsulin before the peptide enters the Sec61 translocon channel in a signal sequence-dependent manner. We describe the substrate sequence determinants that are recognized by TRAP on the cytosolic site of the membrane to facilitate substrate-specific opening of the Sec61 translocon channel. Our findings support the hypothesis that the TRAP-dependence is in part determined by the content of glycine and proline residues mainly within the signal sequence.
Collapse
Affiliation(s)
- T Kriegler
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - G Kiburg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - T Hessa
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| |
Collapse
|
42
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
43
|
Fujiwara K, Katagi Y, Ito K, Chiba S. Proteome-wide Capture of Co-translational Protein Dynamics in Bacillus subtilis Using TnDR, a Transposable Protein-Dynamics Reporter. Cell Rep 2020; 33:108250. [DOI: 10.1016/j.celrep.2020.108250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
|
44
|
Poitevin F, Kushner A, Li X, Dao Duc K. Structural Heterogeneities of the Ribosome: New Frontiers and Opportunities for Cryo-EM. Molecules 2020; 25:E4262. [PMID: 32957592 PMCID: PMC7570653 DOI: 10.3390/molecules25184262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The extent of ribosomal heterogeneity has caught increasing interest over the past few years, as recent studies have highlighted the presence of structural variations of the ribosome. More precisely, the heterogeneity of the ribosome covers multiple scales, including the dynamical aspects of ribosomal motion at the single particle level, specialization at the cellular and subcellular scale, or evolutionary differences across species. Upon solving the ribosome atomic structure at medium to high resolution, cryogenic electron microscopy (cryo-EM) has enabled investigating all these forms of heterogeneity. In this review, we present some recent advances in quantifying ribosome heterogeneity, with a focus on the conformational and evolutionary variations of the ribosome and their functional implications. These efforts highlight the need for new computational methods and comparative tools, to comprehensively model the continuous conformational transition pathways of the ribosome, as well as its evolution. While developing these methods presents some important challenges, it also provides an opportunity to extend our interpretation and usage of cryo-EM data, which would more generally benefit the study of molecular dynamics and evolution of proteins and other complexes.
Collapse
Affiliation(s)
- Frédéric Poitevin
- Department of LCLS Data Analytics, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
| | - Artem Kushner
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xinpei Li
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
45
|
Sinha NK, Ordureau A, Best K, Saba JA, Zinshteyn B, Sundaramoorthy E, Fulzele A, Garshott DM, Denk T, Thoms M, Paulo JA, Harper JW, Bennett EJ, Beckmann R, Green R. EDF1 coordinates cellular responses to ribosome collisions. eLife 2020; 9:e58828. [PMID: 32744497 PMCID: PMC7486125 DOI: 10.7554/elife.58828] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Katharina Best
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Timo Denk
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Matthias Thoms
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
46
|
Supporting data on prion protein translocation mechanism revealed by pulling force studies. Data Brief 2020; 31:105931. [PMID: 32642528 PMCID: PMC7334574 DOI: 10.1016/j.dib.2020.105931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The Prion protein (PrP) is a highly conserved cell surface glycoprotein. To enter the secretory pathway, the PrP precursor relies on the Sec61 complex and multiple accessory factors all gathering at the membrane of the Endoplasmic reticulum (ER). PrP topogenesis results in the formation of different PrP isoforms. Aside from the typical secretory variant (SecPrP) different pathognomonic, membrane-embedded variants (NtmPrP and CtmPrP) that are associated with neurodegenerative diseases can be found [1]. In this article, we provide supportive data related to "Prion Protein Translocation Mechanism Revealed by Pulling Force Studies" (Kriegler et al., May 2020)[2], where we utilize Xbp1 arrest peptide (AP)-mediated ribosomal stalling to study the co-translational folding experienced by PrP during its insertion into the ER. We measure translocation efficiency and characterize the force exerted on PrP nascent chain so called "pulling force profile". Here, we describe the method of AP-mediated ribosomal stalling assay together with additional experimental data to the main article. Furthermore, we describe the combination of AP-mediated ribosomal stalling and semi-permeabilized Hela cells (SPCs) as ER membrane source. Using this experimental set-up one can directly determine the contribution of a specific membrane component, e.g. subunits of the ER protein translocase, as pulling factor exerting force on the PrP nascent chain. The data presented here covers (a) the SDS-PAGE gel images visualized by autoradiography, (b) quantification of the different populations of PrP species observed in the AP-mediated ribosomal stalling method, and (c) calculation formulas of the pulling force profiles measured in SPCs in comparison to dog pancreas microsomes as ER membrane donor. Finally, Western Blot analysis and quantification of siRNA knockdown levels compared to control conditions of various translocation components are shown.
Collapse
|
47
|
Černý J, Božíková P, Svoboda J, Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res 2020; 48:6367-6381. [PMID: 32406923 PMCID: PMC7293047 DOI: 10.1093/nar/gkaa383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
By analyzing almost 120 000 dinucleotides in over 2000 nonredundant nucleic acid crystal structures, we define 96+1 diNucleotide Conformers, NtCs, which describe the geometry of RNA and DNA dinucleotides. NtC classes are grouped into 15 codes of the structural alphabet CANA (Conformational Alphabet of Nucleic Acids) to simplify symbolic annotation of the prominent structural features of NAs and their intuitive graphical display. The search for nontrivial patterns of NtCs resulted in the identification of several types of RNA loops, some of them observed for the first time. Over 30% of the nearly six million dinucleotides in the PDB cannot be assigned to any NtC class but we demonstrate that up to a half of them can be re-refined with the help of proper refinement targets. A statistical analysis of the preferences of NtCs and CANA codes for the 16 dinucleotide sequences showed that neither the NtC class AA00, which forms the scaffold of RNA structures, nor BB00, the DNA most populated class, are sequence neutral but their distributions are significantly biased. The reported automated assignment of the NtC classes and CANA codes available at dnatco.org provides a powerful tool for unbiased analysis of nucleic acid structures by structural and molecular biologists.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Jakub Svoboda
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| |
Collapse
|
48
|
Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proc Natl Acad Sci U S A 2020; 117:14119-14126. [PMID: 32513720 DOI: 10.1073/pnas.1909683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
Collapse
|
49
|
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21:421-438. [PMID: 32457508 DOI: 10.1038/s41580-020-0250-z] [Citation(s) in RCA: 1529] [Impact Index Per Article: 305.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,FONDAP Center for Geroscience Brain Health and Metabolism (GERO), Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
50
|
Application of a New Multiplexed Array for Rapid, Sensitive, Simultaneous and Quantitative Assessment of Spliced and Unspliced XBP1. Biol Proced Online 2019; 21:22. [PMID: 31807121 PMCID: PMC6857227 DOI: 10.1186/s12575-019-0111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background IRE1α-mediated unconventional splicing of XBP1 is emerging as a biomarker in several disease states and is indicative of activation of the unfolded protein response sensor IRE1. Splicing of XBP1 mRNA results in the translation of two distinct XBP1 protein isoforms (XBP1s and XBP1u) which, due to post-translational regulation, do not correlate with mRNA levels. As both XBP1 isoforms are implicated in pathogenic or disease progression mechanisms there is a need for a reliable, clinically applicable method to detect them. Methods A multiplexed isoform-specific XBP1 array utilising Biochip array technology (BAT™) was assessed for specificity and suitability when using cell protein lysates. The array was applied to RIPA protein lysates from several relevant pre-clinical models with an aim to quantify XBP1 isoforms in comparison with RT-PCR or immunoblot reference methods. Results A novel reliable, specific and sensitive XBP1 biochip was successfully utilised in pre-clinical research. Application of this biochip to detect XBP1 splicing at the protein level in relevant breast cancer models, under basal conditions as well as pharmacological inhibition and paclitaxel induction, confirmed the findings of previous studies. The biochip was also applied to non-adherent cells and used to quantify changes in the XBP1 isoforms upon activation of the NLRP3 inflammasome. Conclusions The XBP1 biochip enables isoform specific quantification of protein level changes upon activation and inhibition of IRE1α RNase activity, using a routine clinical methodology. As such it provides a research tool and potential clinical tool with a quantified, simultaneous, rapid output that is not available from any other published method.
Collapse
|