1
|
Chung HS. Characterizing heterogeneity in amyloid formation processes. Curr Opin Struct Biol 2024; 89:102951. [PMID: 39566372 PMCID: PMC11602362 DOI: 10.1016/j.sbi.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Protein aggregation is a complex process, consisting of a large number of pathways connecting monomers and mature amyloid fibrils. Recent advances in structure determination techniques, such as solid-state NMR and cryoEM, have allowed the determination of atomic resolution structures of fibril polymorphs, but most of the intermediate stages of the process including oligomer formation remain unknown. Proper characterization of the heterogeneity of the process is critical not only for physical and chemical understanding of the aggregation process but also for elucidation of the disease mechanisms and identification of therapeutic targets. This article reviews recent developments in the characterization of heterogeneity in amyloid formation processes.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
2
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
3
|
Krawczuk D, Groblewska M, Mroczko J, Winkel I, Mroczko B. The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9197. [PMID: 39273146 PMCID: PMC11395629 DOI: 10.3390/ijms25179197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
A presynaptic protein called α-synuclein plays a crucial role in synaptic function and neurotransmitter release. However, its misfolding and aggregation have been implicated in a variety of neurodegenerative diseases, particularly Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Emerging evidence suggests that α-synuclein interacts with various cellular pathways, including mitochondrial dysfunction, oxidative stress, and neuroinflammation, which contributes to neuronal cell death. Moreover, α-synuclein has been involved in the propagation of neurodegenerative processes through prion-like mechanisms, where misfolded proteins induce similar conformational changes in neighboring neurons. Understanding the multifaced roles of α-synuclein in neurodegeneration not only aids in acquiring more knowledge about the pathophysiology of these diseases but also highlights potential biomarkers and therapeutic targets for intervention in alpha-synucleinopathies. In this review, we provide a summary of the mechanisms by which α-synuclein contributes to neurodegenerative processes, focusing on its misfolding, oligomerization, and the formation of insoluble fibrils that form characteristic Lewy bodies. Furthermore, we compare the potential value of α-synuclein species in diagnosing and differentiating selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| |
Collapse
|
4
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
5
|
Pérez-Mora S, Pérez-Ishiwara DG, Salgado-Hernández SV, Medel-Flores MO, Reyes-López CA, Rodríguez MA, Sánchez-Monroy V, Gómez-García MDC. Entamoeba histolytica: In Silico and In Vitro Oligomerization of EhHSTF5 Enhances Its Binding to the HSE of the EhPgp5 Gene Promoter. Int J Mol Sci 2024; 25:4218. [PMID: 38673804 PMCID: PMC11050682 DOI: 10.3390/ijms25084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.
Collapse
Affiliation(s)
- Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - Sandra Viridiana Salgado-Hernández
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - César Augusto Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico;
| | - Virginia Sánchez-Monroy
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| |
Collapse
|
6
|
Voigt B, Bhatia T, Hesselbarth J, Baumann M, Schmidt C, Ott M, Balbach J. The Prenucleation Equilibrium of the Parathyroid Hormone Determines the Critical Aggregation Concentration and Amyloid Fibril Nucleation. Chemphyschem 2023; 24:e202300439. [PMID: 37477386 DOI: 10.1002/cphc.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleation and growth of amyloid fibrils were found to only occur in supersaturated solutions above a critical concentration (ccrit ). The biophysical meaning of ccrit remained mostly obscure, since typical low values of ccrit in the sub-μM range hamper investigations of potential oligomeric states and their structure. Here, we investigate the parathyroid hormone PTH84 as an example of a functional amyloid fibril forming peptide with a comparably high ccrit of 67±21 μM. We describe a complex concentration dependent prenucleation ensemble of oligomers of different sizes and secondary structure compositions and highlight the occurrence of a trimer and tetramer at ccrit as possible precursors for primary fibril nucleation. Furthermore, the soluble state found in equilibrium with fibrils adopts to the prenucleation state present at ccrit . Our study sheds light onto early events of amyloid formation directly related to the critical concentration and underlines oligomer formation as a key feature of fibril nucleation. Our results contribute to a deeper understanding of the determinants of supersaturated peptide solutions. In the current study we present a biophysical approach to investigate ccrit of amyloid fibril formation of PTH84 in terms of secondary structure, cluster size and residue resolved intermolecular interactions during oligomer formation. Throughout the investigated range of concentrations (1 μM to 500 μM) we found different states of oligomerization with varying ability to contribute to primary fibril nucleation and with a concentration dependent equilibrium. In this context, we identified the previously described ccrit of PTH84 to mark a minimum concentration for the formation of homo-trimers/tetramers. These investigations allowed us to characterize molecular interactions of various oligomeric states that are further converted into elongation competent fibril nuclei during the lag phase of a functional amyloid forming peptide.
Collapse
Affiliation(s)
- Bruno Voigt
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| | - Twinkle Bhatia
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3, 06120, Halle, Germany
| | - Julia Hesselbarth
- present address: Johannes Gutenberg University Mainz, Institute of Chemistry - Biochemistry, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Martin Luther University Halle-Wittenberg, Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle, Germany
| | - Monika Baumann
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| | - Carla Schmidt
- present address: Johannes Gutenberg University Mainz, Institute of Chemistry - Biochemistry, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Martin Luther University Halle-Wittenberg, Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle, Germany
| | - Maria Ott
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3, 06120, Halle, Germany
| | - Jochen Balbach
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| |
Collapse
|
7
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
8
|
Fagerberg E, Skepö M. Comparative Performance of Computer Simulation Models of Intrinsically Disordered Proteins at Different Levels of Coarse-Graining. J Chem Inf Model 2023; 63:4079-4087. [PMID: 37339604 PMCID: PMC10336962 DOI: 10.1021/acs.jcim.3c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 06/22/2023]
Abstract
Coarse-graining is commonly used to decrease the computational cost of simulations. However, coarse-grained models are also considered to have lower transferability, with lower accuracy for systems outside the original scope of parametrization. Here, we benchmark a bead-necklace model and a modified Martini 2 model, both coarse-grained models, for a set of intrinsically disordered proteins, with the different models having different degrees of coarse-graining. The SOP-IDP model has earlier been used for this set of proteins; thus, those results are included in this study to compare how models with different levels of coarse-graining compare. The sometimes naive expectation of the least coarse-grained model performing best does not hold true for the experimental pool of proteins used here. Instead, it showed the least good agreement, indicating that one should not necessarily trust the otherwise intuitive notion of a more advanced model inherently being better in model choice.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical
Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Marie Skepö
- Theoretical
Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS
- Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
9
|
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes Dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophys J 2023; 122:2475-2488. [PMID: 37138517 PMCID: PMC10323027 DOI: 10.1016/j.bpj.2023.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
Collapse
Affiliation(s)
- Eva Přáda Brichtová
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | - Viv Lindo
- AstraZeneca, Cambridge, United Kingdom
| | | | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, Bradley DA. A review: Exploring the metabolic and structural characterisation of beta pleated amyloid fibril in human tissue using Raman spectrometry and SAXS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00059-7. [PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
Collapse
Affiliation(s)
- N S Mohd Nor Ihsan
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - L M Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P L Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Chiew
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, Sunway University, 46150 PJ, Malaysia; Department of Physics, School of Mathematics & Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
11
|
Sun X, Dyson HJ, Wright PE. Role of conformational dynamics in pathogenic protein aggregation. Curr Opin Chem Biol 2023; 73:102280. [PMID: 36878172 PMCID: PMC10033434 DOI: 10.1016/j.cbpa.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Muschol M, Hoyer W. Amyloid oligomers as on-pathway precursors or off-pathway competitors of fibrils. Front Mol Biosci 2023; 10:1120416. [PMID: 36845541 PMCID: PMC9947291 DOI: 10.3389/fmolb.2023.1120416] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Amyloid Diseases involve the growth of disease specific proteins into amyloid fibrils and their deposition in protein plaques. Amyloid fibril formation is typically preceded by oligomeric intermediates. Despite significant efforts, the specific role fibrils or oligomers play in the etiology of any given amyloid disease remains controversial. In neurodegenerative disease, though, amyloid oligomers are widely considered critical contributors to disease symptoms. Aside from oligomers as inevitable on-pathway precursors of fibril formation, there is significant evidence for off-pathway oligomer formation competing with fibril growth. The distinct mechanisms and pathways of oligomer formation directly affect our understanding under which conditions oligomers emerge in vivo, and whether their formation is directly coupled to, or distinct from, amyloid fibril formation. In this review, we will discuss the basic energy landscapes underlying the formation of on-pathway vs. off-pathway oligomers, their relation to the related amyloid aggregation kinetics, and their resulting implications for disease etiology. We will review evidence on how differences in the local environment of amyloid assembly can dramatically shift the relative preponderance of oligomers vs. fibrils. Finally, we will comment on gaps in our knowledge of oligomer assembly, of their structure, and on how to assess their relevance to disease etiology.
Collapse
Affiliation(s)
- Martin Muschol
- Department of Physics, University of South Florida, Tampa, FL, United States,*Correspondence: Martin Muschol, ; Wolfgang Hoyer,
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany,Institute of Biological Information Processing (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,*Correspondence: Martin Muschol, ; Wolfgang Hoyer,
| |
Collapse
|
14
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
15
|
Abstract
The ability to detect and characterize multiple secondary structures or polymorphs within peptide and protein aggregates is crucial to treatment and prevention of amyloidogenic diseases, production of novel biomaterials, and many other applications. Here we report a label-free method to distinguish multiple β-sheet configurations within a single peptide aggregate using two-dimensional infrared spectroscopy. By calculating the transition dipole strength (TDS) spectrum from the ratio of linear and two-dimensional signals, we can extract maximum TDS values which provide higher sensitivity to vibrational coupling, and thus specifics of protein structure, than vibrational frequency alone. TDS spectra of AcKFE8 aggregates reveal two distinct β-sheet structures within fibers that appear homogeneous by other techniques. Furthermore, TDS spectra taken during early stages of aggregation show additional peaks that may indicate the presence of more weakly coupled β-sheet structures. These results demonstrate a unique and powerful spectroscopic method capable of distinguishing multiple oligomeric and polymorphic motifs throughout the aggregation using only native vibrational modes.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lauren E Buchanan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. Proc Natl Acad Sci U S A 2022; 119:e2205591119. [PMID: 36206368 PMCID: PMC9573094 DOI: 10.1073/pnas.2205591119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-β aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-β or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions.
Collapse
|
17
|
Yoo JM, Lin Y, Heo Y, Lee YH. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front Mol Biosci 2022; 9:959425. [PMID: 36032665 PMCID: PMC9412080 DOI: 10.3389/fmolb.2022.959425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
The major hallmark of Parkinson’s disease (PD) is represented by the formation of pathological protein plaques largely consisting of α-synuclein (αSN) amyloid fibrils. Nevertheless, the implications of αSN oligomers in neuronal impairments and disease progression are more importantly highlighted than mature fibrils, as they provoke more detrimental damages in neuronal cells and thereby exacerbate α-synucleinopathy. Interestingly, although generation of oligomeric species under disease conditions is likely correlated to cytotoxicity and different cellular damages, αSN oligomers manifest varying toxicity profiles dependent on the specific environments as well as the shapes and conformations the oligomers adopt. As such, this minireview discusses polymorphism in αSN oligomers and the association of the underlying heterogeneity in regard to toxicity under pathological conditions.
Collapse
Affiliation(s)
- Je Min Yoo
- BioGraphene Inc, Los Angeles, CA, United States
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Young-Ho Lee,
| |
Collapse
|
18
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
19
|
Guthertz N, van der Kant R, Martinez RM, Xu Y, Trinh C, Iorga BI, Rousseau F, Schymkowitz J, Brockwell DJ, Radford SE. The effect of mutation on an aggregation-prone protein: An in vivo, in vitro, and in silico analysis. Proc Natl Acad Sci U S A 2022; 119:e2200468119. [PMID: 35613051 PMCID: PMC9295795 DOI: 10.1073/pnas.2200468119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Aggregation of initially stably structured proteins is involved in more than 20 human amyloid diseases. Despite intense research, however, how this class of proteins assembles into amyloid fibrils remains poorly understood, principally because of the complex effects of amino acid substitutions on protein stability, solubility, and aggregation propensity. We address this question using β2-microglobulin (β2m) as a model system, focusing on D76N-β2m that is involved in hereditary amyloidosis. This amino acid substitution causes the aggregation-resilient wild-type protein to become highly aggregation prone in vitro, although the mechanism by which this occurs remained elusive. Here, we identify the residues key to protecting β2m from aggregation by coupling aggregation with antibiotic resistance in E. coli using a tripartite β-lactamase assay (TPBLA). By performing saturation mutagenesis at three different sites (D53X-, D76X-, and D98X-β2m) we show that residue 76 has a unique ability to drive β2m aggregation in vivo and in vitro. Using a randomly mutated D76N-β2m variant library, we show that all of the mutations found to improve protein behavior involve residues in a single aggregation-prone region (APR) (residues 60 to 66). Surprisingly, no correlation was found between protein stability and protein aggregation rate or yield, with several mutations in the APR decreasing aggregation without affecting stability. Together, the results demonstrate the power of the TPBLA to develop proteins that are resilient to aggregation and suggest a model for D76N-β2m aggregation involving the formation of long-range couplings between the APR and Asn76 in a nonnative state.
Collapse
Affiliation(s)
- N. Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - R. van der Kant
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - R. M. Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Y. Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C. Trinh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B. I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - F. Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - J. Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - D. J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - S. E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
20
|
Awasthi K, Bhattacharya S, Bhattacharya A. Tissue-specific isoform expression of GNE gene in human tissues. J Muscle Res Cell Motil 2022; 43:49-61. [PMID: 35524895 DOI: 10.1007/s10974-022-09618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Mutations in the sialic acid biosynthesis enzyme GNE lead to a late-onset, debilitating neuromuscular disorder, GNE myopathy, characterized by progressive skeletal muscle weakness. The mechanisms responsible for skeletal muscle specificity, late-onset, and disease progression are unknown. Our main aim is to understand the reason for skeletal muscle-specific phenotype. To answer this question, we have analyzed the expression profile of the GNE gene and its multiple mRNA variants in different human tissues. A combinatorial approach encompassing bioinformatics tools and molecular biology techniques was used. NCBI, Ensembl, and GTEx were used for data mining. The expression analysis of GNE and its variants was performed with cDNA tissue panel using PCR and targeted RNA-seq. Among nine different GNE isoforms reported in this study, transcript variants 1, X1, and X2 were not tissue specific. Transcript variants 1, 6, X1, and X2, were found in skeletal muscles suggesting their possible role in GNE myopathy. In the current study, we present new data about GNE expression patterns in human tissues. Our results suggest that there may be a link between tissue-specific pathology and isoform pattern in skeletal muscles, which could provide clues for the development of new treatment strategies for GNE myopathy.
Collapse
Affiliation(s)
- Kapila Awasthi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudha Bhattacharya
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O.Rai, Sonepat, Haryana, 131029, India
| | - Alok Bhattacharya
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O.Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
21
|
Karamanos TK, Kalverda AP, Radford SE. Generating Ensembles of Dynamic Misfolding Proteins. Front Neurosci 2022; 16:881534. [PMID: 35431773 PMCID: PMC9008329 DOI: 10.3389/fnins.2022.881534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
The early stages of protein misfolding and aggregation involve disordered and partially folded protein conformers that contain a high degree of dynamic disorder. These dynamic species may undergo large-scale intra-molecular motions of intrinsically disordered protein (IDP) precursors, or flexible, low affinity inter-molecular binding in oligomeric assemblies. In both cases, generating atomic level visualization of the interconverting species that captures the conformations explored and their physico-chemical properties remains hugely challenging. How specific sub-ensembles of conformers that are on-pathway to aggregation into amyloid can be identified from their aggregation-resilient counterparts within these large heterogenous pools of rapidly moving molecules represents an additional level of complexity. Here, we describe current experimental and computational approaches designed to capture the dynamic nature of the early stages of protein misfolding and aggregation, and discuss potential challenges in describing these species because of the ensemble averaging of experimental restraints that arise from motions on the millisecond timescale. We give a perspective of how machine learning methods can be used to extract aggregation-relevant sub-ensembles and provide two examples of such an approach in which specific interactions of defined species within the dynamic ensembles of α-synuclein (αSyn) and β2-microgloblulin (β2m) can be captured and investigated.
Collapse
Affiliation(s)
- Theodoros K. Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Dang H, Chen Z, Chen W, Luo X, Liu P, Wang L, Chen J, Tang X, Wang Z, Liang Y. The residues 4 to 6 at the N-terminus in particular modulate fibril propagation of β-microglobulin. Acta Biochim Biophys Sin (Shanghai) 2021; 54:187-198. [PMID: 35130623 PMCID: PMC9909321 DOI: 10.3724/abbs.2021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ΔN6 truncation is the main posttranslational modification of β-microglobulin (βM) found in dialysis-related amyloid. Investigation of the interaction of wild-type (WT) βM with N-terminally truncated variants is therefore of medical relevance. However, it is unclear which residues among the six residues at the N-terminus are crucial to the interactions and the modulation of amyloid fibril propagation of βM. We herein analyzed homo- and heterotypic seeding of amyloid fibrils of WT human βM and its N-terminally-truncated variants ΔN1 to ΔN6, lacking up to six residues at the N-terminus. At acidic pH 2.5, we produced amyloid fibrils from recombinant, WT βM and its six truncated variants, and found that ΔN6 βM fibrils exhibit a significantly lower conformational stability than WT βM fibrils. Importantly, under more physiological conditions (pH 6.2), we assembled amyloid fibrils only from recombinant, ΔN4, ΔN5, and ΔN6 βM but not from WT βM and its three truncated variants ΔN1 to ΔN3. Notably, the removal of the six, five or four residues at the N-terminus leads to enhanced fibril formation, and homo- and heterotypic seeding of ΔN6 fibrils strongly promotes amyloid fibril formation of WT βM and its six truncated variants, including at more physiological pH 6.2. Collectively, these results demonstrated that the residues 4 to 6 at the N-terminus particularly modulate amyloid fibril propagation of βM and the interactions of WT βM with N-terminally truncated variants, potentially indicating the direct relevance to the involvement of the protein's aggregation in dialysis-related amyloidosis.
Collapse
Affiliation(s)
- Haibin Dang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Zhixian Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Wang Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Xudong Luo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | | | - Liqiang Wang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Jie Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | | | | | - Yi Liang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China,Correspondence address. Tel: +86-27-68754902; E-mail:
| |
Collapse
|
23
|
Trainor K, Doyle CM, Metcalfe-Roach A, Steckner J, Lipovšek D, Malakian H, Langley D, Krystek SR, Meiering EM. Design for Solubility May Reveal Induction of Amide Hydrogen/Deuterium Exchange by Protein Self-Association. J Mol Biol 2021; 434:167398. [PMID: 34902431 DOI: 10.1016/j.jmb.2021.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal β-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Avril Metcalfe-Roach
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Daša Lipovšek
- Bristol Myers Squibb, Cambridge, MA 02140, United States.
| | | | - David Langley
- Bristol Myers Squibb, Cambridge, MA 02140, United States
| | | | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
24
|
Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cell Mol Life Sci 2021; 78:7185-7198. [PMID: 34643743 PMCID: PMC11072899 DOI: 10.1007/s00018-021-03954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
A review of the multidisciplinary scientific literature reveals a large variety of amyloid-β (Aβ) oligomeric species, differing in molecular weight, conformation and morphology. These species, which may assemble via either on- or off-aggregation pathways, exhibit differences in stability, function and neurotoxicity, according to different experimental settings. The conformations of the different Aβ species are stabilized by intra- and inter-molecular hydrogen bonds and by electrostatic and hydrophobic interactions, all depending on the chemical and physical environment (e.g., solvent, ions, pH) and interactions with other molecules, such as lipids and proteins. This complexity and the lack of a complete understanding of the relationship between the different Aβ species and their toxicity is currently dictating the nature of the inhibitor (or inducer)-based approaches that are under development for interfering with (or inducing) the formation of specific species and Aβ oligomerization, and for interfering with the associated downstream neurotoxic effects. Here, we review the principles that underlie the involvement of different Aβ oligomeric species in neurodegeneration, both in vitro and in preclinical studies. In addition, we provide an overview of the existing inhibitors (or inducers) of Aβ oligomerization that serve as potential therapeutics for neurodegenerative diseases. The review, which covers the exciting studies that have been published in the past few years, comprises three main parts: 1) on- and off-fibrillar assembly mechanisms and Aβ structural polymorphism; 2) interactions of Aβ with other molecules and cell components that dictate the Aβ aggregation pathway; and 3) targeting the on-fibrillar Aβ assembly pathway as a therapeutic approach.
Collapse
Affiliation(s)
- Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
25
|
Das A, Korn A, Carroll A, Carver JA, Maiti S. Application of the Double-Mutant Cycle Strategy to Protein Aggregation Reveals Transient Interactions in Amyloid-β Oligomers. J Phys Chem B 2021; 125:12426-12435. [PMID: 34748334 DOI: 10.1021/acs.jpcb.1c05829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient oligomeric intermediates in the peptide or protein aggregation pathway are suspected to be the key toxic species in many amyloid diseases, but deciphering their molecular nature has remained a challenge. Here we show that the strategy of "double-mutant cycles", used effectively in probing protein-folding intermediates, can reveal transient interactions during protein aggregation. It does so by comparing the changes in thermodynamic parameters between the wild type, and single and double mutants. We demonstrate the strategy by probing the possible transient salt bridge partner of lysine 28 (K28) in the oligomeric states of amyloid β-40 (Aβ40), the putative toxic species in Alzheimer's disease. In mature fibrils, the binding partner is aspartate 23. This interaction differentiates Aβ40 from the more toxic Aβ42, where K28's binding partner is the C-terminal carboxylate. We selectively acetylated K28 and amidated the C-terminus of Aβ40, creating four distinct variants. Spectroscopic measurements of the kinetics and thermodynamics of aggregation show that K28 and the C-terminus interact transiently in the early phases of the Aβ40 aggregation pathway. Hydrogen-deuterium exchange mass spectrometry (using a simple analysis method that we introduce here that takes into account the isotopic mass distribution) supports this interpretation. It is also supported by cellular toxicity measurements, suggesting possible similarities in the mechanisms of toxicity of Aβ40 oligomers (which are more toxic than Aβ40 fibrils) and Aβ42. Our results show that double-mutant cycles can be a powerful tool for probing transient interactions during protein aggregation.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Adam Carroll
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
26
|
Dissection of the amyloid formation pathway in AL amyloidosis. Nat Commun 2021; 12:6516. [PMID: 34764275 PMCID: PMC8585945 DOI: 10.1038/s41467-021-26845-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention. AL amyloidosis is caused by the accumulation of overproduced light chain (LC) fragments as fibrils in patient organs and it is the most prevalent systemic amyloidosis. Here, the authors combine biochemical and biophysical experiments to characterise the lag phase of a patient-derived truncated LC and they identify structural transitions that precede fibril formation.
Collapse
|
27
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
28
|
An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Sci Rep 2021; 11:11570. [PMID: 34078941 PMCID: PMC8172837 DOI: 10.1038/s41598-021-90680-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
A key hallmark of Alzheimer’s disease is the extracellular deposition of amyloid plaques composed primarily of the amyloidogenic amyloid-β (Aβ) peptide. The Aβ peptide is a product of sequential cleavage of the Amyloid Precursor Protein, the first step of which gives rise to a C-terminal Fragment (C99). Cleavage of C99 by γ-secretase activity releases Aβ of several lengths and the Aβ42 isoform in particular has been identified as being neurotoxic. The misfolding of Aβ leads to subsequent amyloid fibril formation by nucleated polymerisation. This requires an initial and critical nucleus for self-assembly. Here, we identify and characterise the composition and self-assembly properties of cell-derived hexameric Aβ42 and show its assembly enhancing properties which are dependent on the Aβ monomer availability. Identification of nucleating assemblies that contribute to self-assembly in this way may serve as therapeutic targets to prevent the formation of toxic oligomers.
Collapse
|
29
|
Jantz-Naeem N, Springer S. Venus flytrap or pas de trois? The dynamics of MHC class I molecules. Curr Opin Immunol 2021; 70:82-89. [PMID: 33993034 DOI: 10.1016/j.coi.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| |
Collapse
|
30
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
31
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
32
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
33
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer's disease [Tau, Amyloid β (Aβ)], Parkinson's disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered "fuzzy coat" around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
35
|
Cawood EE, Guthertz N, Ebo JS, Karamanos TK, Radford SE, Wilson AJ. Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules. J Am Chem Soc 2020; 142:20845-20854. [PMID: 33253560 PMCID: PMC7729939 DOI: 10.1021/jacs.0c10629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Protein–protein
interactions (PPIs) are involved in many
of life’s essential biological functions yet are also an underlying
cause of several human diseases, including amyloidosis. The modulation
of PPIs presents opportunities to gain mechanistic insights into amyloid
assembly, particularly through the use of methods which can trap specific
intermediates for detailed study. Such information can also provide
a starting point for drug discovery. Here, we demonstrate that covalently
tethered small molecule fragments can be used to stabilize specific
oligomers during amyloid fibril formation, facilitating the structural
characterization of these assembly intermediates. We exemplify the
power of covalent tethering using the naturally occurring truncated
variant (ΔN6) of the human protein β2-microglobulin
(β2m), which assembles into amyloid fibrils associated
with dialysis-related amyloidosis. Using this approach, we have trapped
tetramers formed by ΔN6 under conditions which would normally
lead to fibril formation and found that the degree of tetramer stabilization
depends on the site of the covalent tether and the nature of the protein–fragment
interaction. The covalent protein–ligand linkage enabled structural
characterization of these trapped, off-pathway oligomers using X-ray
crystallography and NMR, providing insight into why tetramer stabilization
inhibits amyloid assembly. Our findings highlight the power of “post-translational
chemical modification” as a tool to study biological molecular
mechanisms.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
36
|
Kim AK, Porter LL. Functional and Regulatory Roles of Fold-Switching Proteins. Structure 2020; 29:6-14. [PMID: 33176159 DOI: 10.1016/j.str.2020.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Fold-switching proteins respond to cellular stimuli by remodeling their secondary structures and changing their functions. Whereas several previous reviews have focused on various structural, physical-chemical, and evolutionary aspects of this newly emerging class of proteins, this minireview focuses on how fold switching modulates protein function and regulates biological processes. It first compares and contrasts fold switchers with other known types of proteins. Second, it presents examples of how various proteins can change their functions through fold switching. Third, it demonstrates that fold switchers can regulate biological processes by discussing two proteins, RfaH and KaiB, whose dramatic secondary structure remodeling events directly affect gene expression and a circadian clock, respectively. Finally, this minireview discusses how the field of protein fold switching might advance.
Collapse
Affiliation(s)
- Allen K Kim
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren L Porter
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
39
|
Altamirano-Bustamante NF, Garrido-Magaña E, Morán E, Calderón A, Pasten-Hidalgo K, Castillo-Rodríguez RA, Rojas G, Lara-Martínez R, Leyva-García E, Larralde-Laborde M, Domíguez G, Murata C, Margarita-Vazquez Y, Payro R, Barbosa M, Valderrama A, Montesinos H, Domínguez-Camacho A, García-Olmos VH, Ferrer R, Medina-Bravo PG, Santoscoy F, Revilla-Monsalve C, Jiménez-García LF, Morán J, Villalobos-Alva J, Villalobos MJ, Calzada-León R, Altamirano P, Altamirano-Bustamante MM. Protein-conformational diseases in childhood: Naturally-occurring hIAPP amyloid-oligomers and early β-cell damage in obesity and diabetes. PLoS One 2020; 15:e0237667. [PMID: 32833960 PMCID: PMC7446879 DOI: 10.1371/journal.pone.0237667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when β-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early β-cell damage. MATERIALS AND METHODS We performed a multicentric collaborative, cross-sectional, analytical, ambispective and blinded study; the RIAO from pretreated samples (PTS) of sera of 146 pediatric patients with obesity or DM and 16 healthy children, were isolated, measured by sound indirect ELISA with novel anti-hIAPP cytotoxic oligomers polyclonal antibody (MEX1). We carried out morphological and functional studied and cluster-clinical data driven analysis. RESULTS We demonstrated by western blot, Transmission Electron Microscopy and cell viability experiments that RIAO circulate in the blood and can be measured by ELISA; are elevated in serum of childhood obesity and diabetes; are neurotoxics and works as biomarkers of early β-cell failure. We explored the range of evidence-based medicine clusters that included the RIAO level, which allowed us to classify and stratify the obesity patients with high cardiometabolic risk. CONCLUSIONS RIAO level increases as the number of complications rises; RIAOs > 3.35 μg/ml is a predictor of changes in the current indicators of β-cell damage. We proposed a novel physio-pathological pathway and shows that PCD affect not only elderly patients but also children. Here we reduced the gap between basic biomedical research, clinical practice and health decision making.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Line
- Cell Survival
- Cells, Cultured
- Child
- Child, Preschool
- Cross-Sectional Studies
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Humans
- Insulin-Secreting Cells/pathology
- Islet Amyloid Polypeptide/blood
- Islet Amyloid Polypeptide/metabolism
- Islet Amyloid Polypeptide/toxicity
- Islet Amyloid Polypeptide/ultrastructure
- Microscopy, Electron, Transmission
- Neurons/drug effects
- Obesity/blood
- Obesity/complications
- Obesity/pathology
- Pilot Projects
- Primary Cell Culture
- Protein Multimerization
- Protein Structure, Quaternary
- Rats
- Toxicity Tests, Acute
Collapse
Affiliation(s)
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Morán
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Calderón
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | - Rafael Payro
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manuel Barbosa
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | - Regina Ferrer
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Fernanda Santoscoy
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Julio Morán
- Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Jalil Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mario Javier Villalobos
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
40
|
Altamirano-Bustamante MM, Altamirano-Bustamante NF, Larralde-Laborde M, Lara-Martínez R, Leyva-García E, Garrido-Magaña E, Rojas G, Jiménez-García LF, Revilla-Monsalve C, Altamirano P, Calzada-León R. Unpacking the aggregation-oligomerization-fibrillization process of naturally-occurring hIAPP amyloid oligomers isolated directly from sera of children with obesity or diabetes mellitus. Sci Rep 2019; 9:18465. [PMID: 31804529 PMCID: PMC6895187 DOI: 10.1038/s41598-019-54570-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with β- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place. We found that the aggregation/oligomerization process is active in the sera and showed that it happens very fast. The RIAO can form fibers and react with anti-hIAPP and anti-amyloid oligomers antibodies. Our results opens the epistemic horizon and reveal real differences between the four groups (Controls vs obesity, T1DM or T2DM) accelerating the process of understanding and discovering novel and more efficient prevention, diagnostic, transmission and therapeutic pathways.
Collapse
Affiliation(s)
- Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
| | | | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | |
Collapse
|
41
|
Fagerberg E, Lenton S, Skepö M. Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions Against SAXS. J Chem Theory Comput 2019; 15:6968-6983. [DOI: 10.1021/acs.jctc.9b00723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| |
Collapse
|
42
|
The growth of amyloid fibrils: rates and mechanisms. Biochem J 2019; 476:2677-2703. [DOI: 10.1042/bcj20160868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
AbstractAmyloid fibrils are β-sheet-rich linear protein polymers that can be formed by a large variety of different proteins. These assemblies have received much interest in recent decades, due to their role in a range of human disorders. However, amyloid fibrils are also found in a functional context, whereby their structural, mechanical and thermodynamic properties are exploited by biological systems. Amyloid fibrils form through a nucleated polymerisation mechanism with secondary processes acting in many cases to amplify the number of fibrils. The filamentous nature of amyloid fibrils implies that the fibril growth rate is, by several orders of magnitude, the fastest step of the overall aggregation reaction. This article focusses specifically on in vitro experimental studies of the process of amyloid fibril growth, or elongation, and summarises the state of knowledge of its kinetics and mechanisms. This work attempts to provide the most comprehensive summary, to date, of the available experimental data on amyloid fibril elongation rate constants and the temperature and concentration dependence of amyloid fibril elongation rates. These data are compared with those from other types of protein polymers. This comparison with data from other polymerising proteins is interesting and relevant because many of the basic ideas and concepts discussed here were first introduced for non-amyloid protein polymers, most notably by the Japanese school of Oosawa and co-workers for cytoskeletal filaments.
Collapse
|
43
|
Karamanos TK, Jackson MP, Calabrese AN, Goodchild SC, Cawood EE, Thompson GS, Kalverda AP, Hewitt EW, Radford SE. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. eLife 2019; 8:e46574. [PMID: 31552823 PMCID: PMC6783270 DOI: 10.7554/elife.46574] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human β2-microglobulin (β2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-β structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Matthew P Jackson
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Antonio N Calabrese
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Sophia C Goodchild
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Emma E Cawood
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Gary S Thompson
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Arnout P Kalverda
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Eric W Hewitt
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Sheena E Radford
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| |
Collapse
|