1
|
Kofler M, Venugopal S, Gill G, Di Ciano-Oliveira C, Kapus A. M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import. iScience 2025; 28:112105. [PMID: 40224012 PMCID: PMC11986988 DOI: 10.1016/j.isci.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple mechanisms were proposed to mediate the nuclear import of TAZ/YAP, transcriptional co-activators regulating organ growth and regeneration. Our earlier observations showed that TAZ/YAP harbor a C-terminal, unconventional nuclear localization signal (NLS). Here, we show that this sequence, necessary and sufficient for basal, ATP-independent nuclear import, contains an indispensable central methionine flanked by negatively charged residues. Based on these features, we define the M-motif and propose that it is a new class of NLS, also present and import-competent in other cellular (STAT1 and cyclin B1) and viral (ORF6 of SARS-CoV2, VSV-M) proteins. Accordingly, ORF6 SARS-Cov2 competitively inhibits TAZ/YAP uptake, while TAZ abrogates STAT1 import. Similar to viral M-motif proteins, TAZ binds RAE1 and inhibits classic nuclear protein import, including that of antiviral factors (IRF3 and NF-κB). However, RAE1 is dispensable for TAZ import itself. Thus, the TAZ/YAP NLS has a dual function: it mediates unconventional nuclear import and inhibits classic import, contributing to the suppression of antiviral responses.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Gary Gill
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | | | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Department Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
3
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
4
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533124. [PMID: 39131356 PMCID: PMC11312450 DOI: 10.1101/2023.03.17.533124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
6
|
Qian H, Ding CH, Liu F, Chen SJ, Huang CK, Xiao MC, Hong XL, Wang MC, Yan FZ, Ding K, Cui YL, Zheng BN, Ding J, Luo C, Zhang X, Xie WF. SRY-Box transcription factor 9 triggers YAP nuclear entry via direct interaction in tumors. Signal Transduct Target Ther 2024; 9:96. [PMID: 38653754 PMCID: PMC11039692 DOI: 10.1038/s41392-024-01805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.
Collapse
Affiliation(s)
- Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chen-Kai Huang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ming-Chen Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ya-Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bai-Nan Zheng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
8
|
Shaukat A, Bakhtiari MH, Chaudhry DS, Khan MHF, Akhtar J, Abro AH, Haseeb MA, Sarwar A, Mazhar K, Umer Z, Tariq M. Mask exhibits trxG-like behavior and associates with H3K27ac marked chromatin. Dev Biol 2024; 505:130-140. [PMID: 37981061 DOI: 10.1016/j.ydbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.
Collapse
Affiliation(s)
- Ammad Shaukat
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mahnoor Hussain Bakhtiari
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Daim Shiraz Chaudhry
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Ahmed Hassan Abro
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aaminah Sarwar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
9
|
Feng M, Wang J, Li K, Nakamura F. UBE2A/B is the trans-acting factor mediating mechanotransduction and contact inhibition. Biochem J 2023; 480:1659-1674. [PMID: 37818922 DOI: 10.1042/bcj20230208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Mechanotransduction and contact inhibition (CI) control gene expression to regulate proliferation, differentiation, and even tumorigenesis of cells. However, their downstream trans-acting factors (TAFs) are not well known due to a lack of a high-throughput method to quantitatively detect them. Here, we developed a method to identify TAFs on the cis-acting sequences that reside in open chromatin or DNaseI-hypersensitive sites (DHSs) and to detect nucleocytoplasmic shuttling TAFs using computational and experimental screening. The DHS-proteomics revealed over 1000 potential mechanosensing TAFs and UBE2A/B (Ubiquitin-conjugating enzyme E2 A) was experimentally identified as a force- and CI-dependent nucleocytoplasmic shuttling TAF. We found that translocation of YAP/TAZ and UBE2A/B are distinctively regulated by inhibition of myosin contraction, actin-polymerization, and CI depending on cell types. Next-generation sequence analysis revealed many downstream genes including YAP are transcriptionally regulated by ubiquitination of histone by UBE2A/B. Our results suggested a YAP-independent mechanotransduction and CI pathway mediated by UBE2A/B.
Collapse
Affiliation(s)
- Mingwei Feng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiale Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
10
|
Chang HA, Ou Yang RZ, Su JM, Nguyen TMH, Sung JM, Tang MJ, Chiu WT. YAP nuclear translocation induced by HIF-1α prevents DNA damage under hypoxic conditions. Cell Death Discov 2023; 9:385. [PMID: 37863897 PMCID: PMC10589224 DOI: 10.1038/s41420-023-01687-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Maladaptive repair of acute kidney injury (AKI) is associated with a high risk of developing chronic kidney disease deemed irremediable even in present days. When AKI arises from ischemia-reperfusion injury, hypoxia usually plays a major role. Although both hypoxia-inducible factor-1α (HIF-1α) and yes-associated protein (YAP) have been proven to promote renal cell survival under hypoxia, there is a lack of research that studies the crosstalk of the two and its effect on kidney repair. In studying the crosstalk, CoCl2 was used to create a mimetic hypoxic environment. Immunoprecipitation and proximity ligation assays were performed to verify protein interactions. The results show that HIF-1α interacts with YAP and promotes nuclear translocation of YAP at a high cell density under hypoxic conditions, suggesting HIF-1α serves as a direct carrier that enables YAP nuclear translocation. This is the first study to identify HIF-1α as a crucial pathway for YAP nuclear translocation under hypoxic conditions. Once translocated into a nucleus, YAP protects cells from DNA damage and apoptosis under hypoxic conditions. Since it is unlikely for YAP to translocate into a nucleus without HIF-1α, any treatment that fosters the crosstalk between the two holds the potential to improve cell recovery from hypoxic insults.
Collapse
Affiliation(s)
- Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Rui-Zhi Ou Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Jing-Ming Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Junne-Ming Sung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 701, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Wen-Tai Chiu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
11
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
12
|
Mullenger JL, Zeidler MP, Fragiadaki M. Evaluating the Molecular Properties and Function of ANKHD1, and Its Role in Cancer. Int J Mol Sci 2023; 24:12834. [PMID: 37629022 PMCID: PMC10454556 DOI: 10.3390/ijms241612834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ankyrin repeat and single KH domain-containing protein 1 (ANKHD1) is a large, scaffolding protein composed of two stretches of ankyrin repeat domains that mediate protein-protein interactions and a KH domain that mediates RNA or single-stranded DNA binding. ANKHD1 interacts with proteins in several crucial signalling pathways, including receptor tyrosine kinase, JAK/STAT, mechanosensitive Hippo (YAP/TAZ), and p21. Studies into the role of ANKHD1 in cancer cell lines demonstrate a crucial role in driving uncontrolled cellular proliferation and growth, enhanced tumorigenicity, cell cycle progression through the S phase, and increased epithelial-to-mesenchymal transition. Furthermore, at a clinical level, the increased expression of ANKHD1 has been associated with greater tumour infiltration, increased metastasis, and larger tumours. Elevated ANKHD1 resulted in poorer prognosis, more aggressive growth, and a decrease in patient survival in numerous cancer types. This review aims to gather the current knowledge about ANKHD1 and explore its molecular properties and functions, focusing on the protein's role in cancer at both a cellular and clinical level.
Collapse
Affiliation(s)
- Jordan L. Mullenger
- Department of Infection, Immunity, and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK;
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| | - Martin P. Zeidler
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Maria Fragiadaki
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| |
Collapse
|
13
|
de Almeida BO, de Almeida LC, Costa-Lotufo LV, Machado-Neto JA. ANKHD1 contributes to the malignant phenotype of triple-negative breast cancer cells. Cell Biol Int 2022; 46:1433-1446. [PMID: 35842770 DOI: 10.1002/cbin.11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
Ankyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context. Gene and protein expressions were assessed in the cell lines by quantitative reverse transcription PCR and Western blot analysis, respectively, and ANKHD1 silencing through siRNA transfection was conducted for further in vitro functional assays. The expression of ANKHD1 was identified in non-tumorigenic breast epithelium and breast cancer cell lines, but differences in cellular localization were found among the neoplasia subtypes. ANKHD1 silencing reduced the viability, clonogenicity, and migration of triple-negative breast cancer (TNBC) cells. Bioinformatics analyses demonstrated that patients with triple-negative basal-like 2 and mesenchymal breast cancer subtypes had high ANKHD1 expression associated with poor recurrence-free survival. Therefore, these data indicate that ANKHD1 relevance in breast cancer varies among its subtypes, indicating the importance of ANKHD1 in TNBC.
Collapse
Affiliation(s)
- Bruna O de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Larissa C de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Martinez D, Zhu M, Guidry JJ, Majeste N, Mao H, Yanofsky ST, Tian X, Wu C. Mask, the Drosophila ankyrin repeat and KH domain-containing protein, affects microtubule stability. J Cell Sci 2021; 134:272264. [PMID: 34553767 PMCID: PMC8572007 DOI: 10.1242/jcs.258512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
Proper regulation of microtubule (MT) stability and dynamics is vital for essential cellular processes, including axonal transportation and synaptic growth and remodeling in neurons. In the present study, we demonstrate that the Drosophila ankyrin repeat and KH domain-containing protein Mask negatively affects MT stability in both larval muscles and motor neurons. In larval muscles, loss-of-function of mask increases MT polymer length, and in motor neurons, loss of mask function results in overexpansion of the presynaptic terminal at the larval neuromuscular junctions (NMJs). mask genetically interacts with stathmin (stai), a neuronal modulator of MT stability, in the regulation of axon transportation and synaptic terminal stability. Our structure–function analysis of Mask revealed that its ankyrin repeats domain-containing N-terminal portion is sufficient to mediate Mask's impact on MT stability. Furthermore, we discovered that Mask negatively regulates the abundance of the MT-associated protein Jupiter in motor neuron axons, and that neuronal knocking down of Jupiter partially suppresses mask loss-of-function phenotypes at the larval NMJs. Taken together, our studies demonstrate that Mask is a novel regulator for MT stability, and such a role of Mask requires normal function of Jupiter. Summary: Mask is a novel regulator of MT stability in Drosophila. Mask shows prominent interplay with two important modulators of MT, Tau and Stathmin (Stai), whose mutations are related to human diseases.
Collapse
Affiliation(s)
- Daniel Martinez
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mingwei Zhu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jessie J Guidry
- Proteomics Core Facility, and the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Niles Majeste
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Mao
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sarah T Yanofsky
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
17
|
Janiszewska M, Stein S, Metzger Filho O, Eng J, Kingston NL, Harper NW, Rye IH, Alečković M, Trinh A, Murphy KC, Marangoni E, Cristea S, Oakes B, Winer EP, Krop IE, Russnes HG, Spellman PT, Bucher E, Hu Z, Chin K, Gray JW, Michor F, Polyak K. The impact of tumor epithelial and microenvironmental heterogeneity on treatment responses in HER2+ breast cancer. JCI Insight 2021; 6:147617. [PMID: 33886505 PMCID: PMC8262355 DOI: 10.1172/jci.insight.147617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the availability of multiple human epidermal growth factor receptor 2-targeted (HER2-targeted) treatments, therapeutic resistance in HER2+ breast cancer remains a clinical challenge. Intratumor heterogeneity for HER2 and resistance-conferring mutations in the PIK3CA gene (encoding PI3K catalytic subunit α) have been investigated in response and resistance to HER2-targeting agents, while the role of divergent cellular phenotypes and tumor epithelial-stromal cell interactions is less well understood. Here, we assessed the effect of intratumor cellular genetic heterogeneity for ERBB2 (encoding HER2) copy number and PIK3CA mutation on different types of neoadjuvant HER2-targeting therapies and clinical outcome in HER2+ breast cancer. We found that the frequency of cells lacking HER2 was a better predictor of response to HER2-targeted treatment than intratumor heterogeneity. We also compared the efficacy of different therapies in the same tumor using patient-derived xenograft models of heterogeneous HER2+ breast cancer and single-cell approaches. Stromal determinants were better predictors of response than tumor epithelial cells, and we identified alveolar epithelial and fibroblastic reticular cells as well as lymphatic vessel endothelial hyaluronan receptor 1-positive (Lyve1+) macrophages as putative drivers of therapeutic resistance. Our results demonstrate that both preexisting and acquired resistance to HER2-targeting agents involve multiple mechanisms including the tumor microenvironment. Furthermore, our data suggest that intratumor heterogeneity for HER2 should be incorporated into treatment design.
Collapse
Affiliation(s)
- Michalina Janiszewska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Shayna Stein
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Otto Metzger Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Eng
- OHSU Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Natalie L Kingston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicholas W Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Inga H Rye
- Department of Pathology, Division of Laboratory Medicine, and Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine C Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Benjamin Oakes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hege G Russnes
- Department of Pathology, Division of Laboratory Medicine, and Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Paul T Spellman
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.,Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Elmar Bucher
- OHSU Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhi Hu
- OHSU Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Koei Chin
- OHSU Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Ludwig Center at Harvard Medical School, Boston, Massachusetts, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Ludwig Center at Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Chopra M, McEntagart M, Clayton-Smith J, Platzer K, Shukla A, Girisha KM, Kaur A, Kaur P, Pfundt R, Veenstra-Knol H, Mancini GM, Cappuccio G, Brunetti-Pierri N, Kortüm F, Hempel M, Denecke J, Lehman A, Kleefstra T, Stuurman KE, Wilke M, Thompson ML, Bebin EM, Bijlsma EK, Hoffer MJ, Peeters-Scholte C, Slavotinek A, Weiss WA, Yip T, Hodoglugil U, Whittle A, diMonda J, Neira J, Yang S, Kirby A, Pinz H, Lechner R, Sleutels F, Helbig I, McKeown S, Helbig K, Willaert R, Juusola J, Semotok J, Hadonou M, Short J, Yachelevich N, Lala S, Fernández-Jaen A, Pelayo JP, Klöckner C, Kamphausen SB, Abou Jamra R, Arelin M, Innes AM, Niskakoski A, Amin S, Williams M, Evans J, Smithson S, Smedley D, de Burca A, Kini U, Delatycki MB, Gallacher L, Yeung A, Pais L, Field M, Martin E, Charles P, Courtin T, Keren B, Iascone M, Cereda A, Poke G, Abadie V, Chalouhi C, Parthasarathy P, Halliday BJ, Robertson SP, Lyonnet S, Amiel J, Gordon CT, Amiel J, Gordon CT. Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism. Am J Hum Genet 2021; 108:1138-1150. [PMID: 33909992 DOI: 10.1016/j.ajhg.2021.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), and Institut Imagine, Paris 75015, France; Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France
| | - Christopher T Gordon
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France.
| |
Collapse
|
19
|
Cho YS, Jiang J. Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Front Cell Dev Biol 2021; 9:658481. [PMID: 33869224 PMCID: PMC8047194 DOI: 10.3389/fcell.2021.658481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
20
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
21
|
Baker K, Kwok E, Reardon P, Rodriguez DJ, Rolland AD, Wilson JW, Prell JS, Nyarko A. Yorkie-Warts Complexes are an Ensemble of Interconverting Conformers Formed by Multivalent Interactions. J Mol Biol 2020; 433:166776. [PMID: 33383033 DOI: 10.1016/j.jmb.2020.166776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Multiple copies of WW domains and PPXY motif sequences are often reciprocally presented by regulatory proteins that interact at crucial regulatory steps in the cell life cycle. While biophysical studies of single WW domain-single PPXY motif complexes abound in the literature, the molecular mechanisms of multivalent WW domain-PPXY assemblies are still poorly understood. By way of investigating such assemblies, we characterized the multivalent association of the entire cognate binding domains, two WW sequences and five PPXY motifs respectively, of the Yorkie transcription coactivator and the Warts tumor suppressor. Isothermal titration calorimetry, sedimentation velocity, size-exclusion chromatography coupled to multi-angle light scattering and native-state mass spectrometry of Yorkie WW domains interactions with the full-length Warts PPXY domain, and numerous PPXY motif variants of Warts show that the two proteins assemble via binding of tandem WW domains to adjacent PPXY pairs to produce an ensemble of interconverting complexes of variable stoichiometries, binding energetics and WW domain occupancy. Apparently, the Yorkie tandem WW domains first target the two adjacent PPXY motifs at the C-terminus of the Warts polypeptide and additional WW domains bind unoccupied motifs. Similar ensembles of interconverting conformers may be common in multivalent WW domain-PPXY interactions to promote the adaptability and versatility of WW domain-PPXY mediated cellular processes.
Collapse
Affiliation(s)
- Kasie Baker
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ethiene Kwok
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Reardon
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Diego J Rodriguez
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Amber D Rolland
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jesse W Wilson
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - James S Prell
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Afua Nyarko
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
22
|
Almeida BOD, Machado-Neto JA. Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes. BMB Rep 2020. [PMID: 32635985 PMCID: PMC7473474 DOI: 10.5483/bmbrep.2020.53.8.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and high-light future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.
Collapse
Affiliation(s)
- Bruna Oliveira de Almeida
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
23
|
de Almeida BO, Machado-Neto JA. Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes. BMB Rep 2020; 53:413-418. [PMID: 32635985 PMCID: PMC7473474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 08/02/2024] Open
Abstract
ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer. [BMB Reports 2020; 53(8): 413-418].
Collapse
Affiliation(s)
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
24
|
DeAngelis MW, McGhie EW, Coolon JD, Johnson RI. Mask, a component of the Hippo pathway, is required for Drosophila eye morphogenesis. Dev Biol 2020; 464:53-70. [PMID: 32464117 DOI: 10.1016/j.ydbio.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
Hippo signaling is an important regulator of tissue size, but it also has a lesser-known role in tissue morphogenesis. Here we use the Drosophila pupal eye to explore the role of the Hippo effector Yki and its cofactor Mask in morphogenesis. We found that Mask is required for the correct distribution and accumulation of adherens junctions and appropriate organization of the cytoskeleton. Accordingly, disrupting mask expression led to severe mis-patterning and similar defects were observed when yki was reduced or in response to ectopic wts. Further, the patterning defects generated by reducing mask expression were modified by Hippo pathway activity. RNA-sequencing revealed a requirement for Mask for appropriate expression of numerous genes during eye morphogenesis. These included genes implicated in cell adhesion and cytoskeletal organization, a comprehensive set of genes that promote cell survival, and numerous signal transduction genes. To validate our transcriptome analyses, we then considered two loci that were modified by Mask activity: FER and Vinc, which have established roles in regulating adhesion. Modulating the expression of either locus modified mask mis-patterning and adhesion phenotypes. Further, expression of FER and Vinc was modified by Yki. It is well-established that the Hippo pathway is responsive to changes in cell adhesion and the cytoskeleton, but our data indicate that Hippo signaling also regulates these structures.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Emily W McGhie
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Joseph D Coolon
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Ruth I Johnson
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| |
Collapse
|
25
|
Manning SA, Kroeger B, Harvey KF. The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development 2020; 147:147/8/dev179069. [PMID: 32341025 DOI: 10.1242/dev.179069] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800 .,Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia 3000.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|