1
|
Henderson A, Del Panta A, Schubert OT, Mitri S, van Vliet S. Disentangling the feedback loops driving spatial patterning in microbial communities. NPJ Biofilms Microbiomes 2025; 11:32. [PMID: 39979272 PMCID: PMC11842706 DOI: 10.1038/s41522-025-00666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The properties of multispecies biofilms are determined by how species are arranged in space. How these patterns emerge is a complex and largely unsolved problem. Here, we synthesize the known factors affecting pattern formation, identify the interdependencies and feedback loops coupling them, and discuss approaches to disentangle their effects. Finally, we propose an interdisciplinary research program that could create a predictive understanding of pattern formation in microbial communities.
Collapse
Affiliation(s)
- Alyssa Henderson
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Alessia Del Panta
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Olga T Schubert
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon van Vliet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Gonzalez La Corte S, Stevens CA, Cárcamo-Oyarce G, Ribbeck K, Wingreen NS, Datta SS. Morphogenesis of bacterial cables in polymeric environments. SCIENCE ADVANCES 2025; 11:eadq7797. [PMID: 39823332 PMCID: PMC11740958 DOI: 10.1126/sciadv.adq7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, laboratory studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine "cables" as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.
Collapse
Affiliation(s)
| | - Corey A. Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sujit S. Datta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Zdimal AM, Di Dio G, Liu W, Aftab T, Collins T, Colin R, Shrivastava A. Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. THE ISME JOURNAL 2025; 19:wrae263. [PMID: 39750029 PMCID: PMC11773418 DOI: 10.1093/ismejo/wrae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
Collapse
Affiliation(s)
- Amanda M Zdimal
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Giacomo Di Dio
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Wanxiang Liu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Tanya Aftab
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Taryn Collins
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Remy Colin
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Abhishek Shrivastava
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
4
|
Zdimal AM, Dio GD, Liu W, Aftab T, Collins T, Colin R, Shrivastava A. Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614802. [PMID: 39386520 PMCID: PMC11463409 DOI: 10.1101/2024.09.24.614802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The bacterial Type 9 Secretion System (T9SS) is essential for the development of periodontal diseases and Bacteroidetes gliding motility. T9SS-driven motile bacteria, abundant within the human oral microbiota, transport non-motile oral microbes and bacteriophages as cargo, shaping the spatial structure of polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
Collapse
|
5
|
de Freitas Magalhães B, Fan G, Sontag E, Josić K, Bennett MR. Pattern Formation and Bistability in a Synthetic Intercellular Genetic Toggle. ACS Synth Biol 2024; 13:2844-2860. [PMID: 39214591 DOI: 10.1021/acssynbio.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiation within multicellular organisms is a complex process that helps to establish spatial patterning and tissue formation within the body. Often, the differentiation of cells is governed by morphogens and intercellular signaling molecules that guide the fate of each cell, frequently using toggle-like regulatory components. Synthetic biologists have long sought to recapitulate patterned differentiation with engineered cellular communities, and various methods for differentiating bacteria have been invented. Here, we couple a synthetic corepressive toggle switch with intercellular signaling pathways to create a "quorum-sensing toggle". We show that this circuit not only exhibits population-wide bistability in a well-mixed liquid environment but also generates patterns of differentiation in colonies grown on agar containing an externally supplied morphogen. If coupled to other metabolic processes, circuits such as the one described here would allow for the engineering of spatially patterned, differentiated bacteria for use in biomaterials and bioelectronics.
Collapse
Affiliation(s)
| | - Gaoyang Fan
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Eduardo Sontag
- Department of Bioengineering and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Black ME, Fei C, Alert R, Wingreen NS, Shaevitz JW. Capillary interactions drive the self-organization of bacterial colonies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596252. [PMID: 38853967 PMCID: PMC11160631 DOI: 10.1101/2024.05.28.596252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.
Collapse
|
7
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
8
|
Chen JZ, Kwong Z, Gerardo NM, Vega NM. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol 2024; 22:e3002304. [PMID: 38662791 PMCID: PMC11075893 DOI: 10.1371/journal.pbio.3002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Zeeyong Kwong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Nicole M. Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Dukovski I, Golden L, Zhang J, Osborne M, Segrè D, Korolev KS. Biophysical metabolic modeling of complex bacterial colony morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584915. [PMID: 39502364 PMCID: PMC11537321 DOI: 10.1101/2024.03.13.584915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion, and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for Computation of Microbial Ecosystems in Time and Space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along "metabolic rings" that are reminiscent of coffee-stain rings, but have a completely different origin. Our approach is a key step towards predictive microbial ecosystems modeling.
Collapse
Affiliation(s)
- Ilija Dukovski
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, N. Macedonia
| | - Lauren Golden
- Broad Institute, Cambridge, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Jing Zhang
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
| | - Melisa Osborne
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Lead contact
| | - Kirill S. Korolev
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Tran P, Lander SM, Prindle A. Active pH regulation facilitates Bacillus subtilis biofilm development in a minimally buffered environment. mBio 2024; 15:e0338723. [PMID: 38349175 PMCID: PMC10936434 DOI: 10.1128/mbio.03387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Biofilms provide individual bacteria with many advantages, yet dense cellular proliferation can also create intrinsic metabolic challenges including excessive acidification. Because such pH stress can be masked in buffered laboratory media-such as MSgg commonly used to study Bacillus subtilis biofilms-it is not always clear how such biofilms cope with minimally buffered natural environments. Here, we report how B. subtilis biofilms overcome this intrinsic metabolic challenge through an active pH regulation mechanism. Specifically, we find that these biofilms can modulate their extracellular pH to the preferred neutrophile range, even when starting from acidic and alkaline initial conditions, while planktonic cells cannot. We associate this behavior with dynamic interplay between acetate and acetoin biosynthesis and show that this mechanism is required to buffer against biofilm acidification. Furthermore, we find that buffering-deficient biofilms exhibit dysregulated biofilm development when grown in minimally buffered conditions. Our findings reveal an active pH regulation mechanism in B. subtilis biofilms that could lead to new targets to control unwanted biofilm growth.IMPORTANCEpH is known to influence microbial growth and community dynamics in multiple bacterial species and environmental contexts. Furthermore, in many bacterial species, rapid cellular proliferation demands the use of overflow metabolism, which can often result in excessive acidification. However, in the case of bacterial communities known as biofilms, these acidification challenges can be masked when buffered laboratory media are employed to stabilize the pH environment for optimal growth. Our study reveals that B. subtilis biofilms use an active pH regulation mechanism to mitigate both growth-associated acidification and external pH challenges. This discovery provides new opportunities for understanding microbial communities and could lead to new methods for controlling biofilm growth outside of buffered laboratory conditions.
Collapse
Affiliation(s)
- Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Stephen M Lander
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Krajnc M, Fei C, Košmrlj A, Kalin M, Stopar D. Mechanical constraints to unbound expansion of B. subtilis on semi-solid surfaces. Microbiol Spectr 2024; 12:e0274023. [PMID: 38047692 PMCID: PMC10783106 DOI: 10.1128/spectrum.02740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE How bacterial cells colonize new territory is a problem of fundamental microbiological and biophysical interest and is key to the emergence of several phenomena of biological, ecological, and medical relevance. Here, we demonstrate how bacteria stuck in a colony of finite size can resume exploration of new territory by aquaplaning and how they fine tune biofilm viscoelasticity to surface material properties that allows them differential mobility. We show how changing local interfacial forces and colony viscosity results in a plethora of bacterial morphologies on surfaces with different physical and mechanical properties.
Collapse
Affiliation(s)
- Mojca Krajnc
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey, USA
| | - Mitjan Kalin
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Ye Y, Lin J. Fingering Instability Accelerates Population Growth of a Proliferating Cell Collective. PHYSICAL REVIEW LETTERS 2024; 132:018402. [PMID: 38242660 DOI: 10.1103/physrevlett.132.018402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 01/21/2024]
Abstract
During the growth of a cell collective, such as proliferating microbial colonies and epithelial tissues, the local cell growth increases the local pressure, which in turn suppresses cell growth. How this pressure-growth coupling affects the growth of a cell collective remains unclear. Here, we answer this question using a continuum model of a cell collective. We find that a fast-growing leading front and a slow-growing interior of the cell collective emerge due to the pressure-dependent growth rate. The leading front can exhibit fingering instability, and we confirm the predicted instability criteria numerically with the leading front explicitly simulated. Intriguingly, we find that fingering instability is not only a consequence of local cell growth but also enhances the entire population's growth rate as positive feedback. Our work unveils the fitness advantage of fingering formation and suggests that the ability to form protrusions can be evolutionarily selected.
Collapse
Affiliation(s)
- Yiyang Ye
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Jie Lin
- Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
14
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
15
|
Echeverría-Alar S, Clerc MG, Bordeu I. Emergence of disordered branching patterns in confined chiral nematic liquid crystals. Proc Natl Acad Sci U S A 2023; 120:e2221000120. [PMID: 37027428 PMCID: PMC10104489 DOI: 10.1073/pnas.2221000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Spatial branching processes are ubiquitous in nature, yet the mechanisms that drive their growth may vary significantly from one system to another. In soft matter physics, chiral nematic liquid crystals provide a controlled setting to study the emergence and growth dynamic of disordered branching patterns. Via an appropriate forcing, a cholesteric phase may nucleate in a chiral nematic liquid crystal, which self-organizes into an extended branching pattern. It is known that branching events take place when the rounded tips of cholesteric fingers swell, become unstable, and split into two new cholesteric tips. The origin of this interfacial instability and the mechanisms that drive the large-scale spatial organization of these cholesteric patterns remain unclear. In this work, we investigate experimentally the spatial and temporal organization of thermally driven branching patterns in chiral nematic liquid crystal cells. We describe the observations through a mean-field model and find that chirality is responsible for the creation of fingers, regulates their interactions, and controls the tip-splitting process. Furthermore, we show that the complex dynamics of the cholesteric pattern behaves as a probabilistic process of branching and inhibition of chiral tips that drives the large-scale topological organization. Our theoretical findings are in good agreement with the experimental observations.
Collapse
Affiliation(s)
- Sebastián Echeverría-Alar
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415Santiago, Chile
- Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415Santiago, Chile
| | - Marcel G. Clerc
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415Santiago, Chile
- Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415Santiago, Chile
| | - Ignacio Bordeu
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415Santiago, Chile
| |
Collapse
|
16
|
Bravo P, Lung Ng S, MacGillivray KA, Hammer BK, Yunker PJ. Vertical growth dynamics of biofilms. Proc Natl Acad Sci U S A 2023; 120:e2214211120. [PMID: 36881625 PMCID: PMC10089195 DOI: 10.1073/pnas.2214211120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023] Open
Abstract
During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Kathryn A. MacGillivray
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
17
|
Frankel E, Temple J, Dikener E, Berkmen M. Bridging the gap with bacterial art. FEMS Microbiol Lett 2023; 370:fnad025. [PMID: 37028930 PMCID: PMC10132471 DOI: 10.1093/femsle/fnad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Living art made with bacteria is gaining global attention, spreading from laboratories into the public domain: from school STEAM (Science, Technology, Engineering, the Arts, and Mathematics) events to art galleries, museums, community labs, and ultimately to the studios of microbial artists. Bacterial art is a synthesis of science and art that can lead to developments in both fields. Through the 'universal language of art', many social and preconceived ideas-including abstract scientific concepts-can be challenged and brought to the public attention in a unique way. By using bacteria to create publicly accessible art pieces, the barriers between humans and microbes can be lessened, and the artificial separation of the fields of science and art may be brought one step closer. Here, we document the history, impact, and current moment in the field of microbiologically inspired art for the benefit of educators, students, and the interested public. We provide a comprehensive historical background and examples of ancient bacterial art from cave paintings to uses in modern synthetic biology, a simple protocol for conducting bacterial art in a safe and responsible manner, a discussion of the artificial separation of science and art, and the future implications of art made from living microbes.
Collapse
Affiliation(s)
- Eve Frankel
- Boston Open Science Laboratory, Cambridge, MA 02138, USA
| | - Jasmine Temple
- Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
18
|
Morris RJ, Stevenson D, Sukhodub T, Stanley-Wall NR, MacPhee CE. Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-γ-glutamic acid production. NPJ Biofilms Microbiomes 2022; 8:98. [PMID: 36528619 PMCID: PMC9759580 DOI: 10.1038/s41522-022-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.
Collapse
Affiliation(s)
- Ryan J. Morris
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| | - David Stevenson
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Tetyana Sukhodub
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Nicola R. Stanley-Wall
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Cait E. MacPhee
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| |
Collapse
|
19
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
20
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
21
|
Hitomi K, Weng J, Ying BW. Contribution of the genomic and nutritional differentiation to the spatial distribution of bacterial colonies. Front Microbiol 2022; 13:948657. [PMID: 36081803 PMCID: PMC9448356 DOI: 10.3389/fmicb.2022.948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Colony growth is a common phenomenon of structured populations dispersed in nature; nevertheless, studies on the spatial distribution of colonies are largely insufficient. Here, we performed a systematic survey to address the questions of whether and how the spatial distribution of colonies was influenced by the genome and environment. Six Escherichia coli strains carrying either the wild-type or reduced genomes and eight media of varied nutritional richness were used to evaluate the genomic and environmental impacts, respectively. The genome size and nutritional variation contributed to the mean size and total area but not the variation and shape of size distribution of the colonies formed within the identical space and of equivalent spatial density. The spatial analysis by means of the Voronoi diagram found that the Voronoi correlation remained nearly constant in common, in comparison to the Voronoi response decreasing in correlation to genome reduction and nutritional enrichment. Growth analysis at the single colony level revealed positive correlations of the relative growth rate to both the maximal colony size and the Voronoi area, regardless of the genomic and nutritional variety. This result indicated fast growth for the large space assigned and supported homeostasis in the Voronoi correlation. Taken together, the spatial distribution of colonies might benefit efficient clonal growth. Although the mechanisms remain unclear, the findings provide quantitative insights into the genomic and environmental contributions to the growth and distribution of spatially or geographically isolated populations.
Collapse
|
22
|
Controlling the shape and topology of two-component colloidal membranes. Proc Natl Acad Sci U S A 2022; 119:e2204453119. [PMID: 35914159 PMCID: PMC9371715 DOI: 10.1073/pnas.2204453119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elasticity. Their open edges and micrometer-length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. Here, we find that doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped surfaces with complex edge structures. The saddle-shaped membranes are well approximated by Enneper's minimal surfaces. Theoretical modeling demonstrates that their formation is driven by increasing the positive Gaussian modulus, which in turn, is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse topologically distinct structures, including shapes similar to catenoids, trinoids, four-noids, and higher-order structures. At long timescales, we observe the formation of a system-spanning, sponge-like phase. The unique features of colloidal membranes reveal the topological transformations that accompany coalescence pathways in real time. We enhance the functionality of these membranes by making their shape responsive to external stimuli. Our results demonstrate a pathway toward control of thin elastic sheets' shape and topology-a pathway driven by the emergent elasticity induced by compositional heterogeneity.
Collapse
|
23
|
Surface Motility Favors Codependent Interaction between Pseudomonas aeruginosa and Burkholderia cenocepacia. mSphere 2022; 7:e0015322. [PMID: 35862793 PMCID: PMC9429929 DOI: 10.1128/msphere.00153-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between different bacterial species shape bacterial communities and their environments. The opportunistic pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia both can colonize the lungs of individuals affected by cystic fibrosis. Using the social surface behavior called swarming motility as a study model, we noticed intricate interactions between B. cenocepacia K56-2 and P. aeruginosa PA14. While strain K56-2 does not swarm under P. aeruginosa favorable swarming conditions, co-inoculation with a nonmotile PA14 flagellum-less ΔfliC mutant restored spreading for both strains. We show that P. aeruginosa provides the wetting agent rhamnolipids allowing K56-2 to perform swarming motility, while aflagellated PA14 appears to “hitchhike” along with K56-2 cells in the swarming colony. IMPORTANCEPseudomonas aeruginosa and Burkholderia cenocepacia are important opportunistic pathogens often found together in the airways of persons with cystic fibrosis. Laboratory cocultures of both species often ends with one taking over the other. We used a surface motility assay to study the social interactions between populations of these bacterial species. Under our conditions, B. cenocepacia cannot swarm without supplementation of the wetting agent produced by P. aeruginosa. In a mixed colony of both species, an aflagellated mutant of P. aeruginosa provides the necessary wetting agent to B. cenocepacia, allowing both bacteria to swarm and colonize a surface. We highlight this peculiar interaction where both bacteria set aside their antagonistic tendencies to travel together.
Collapse
|
24
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
25
|
Slow expanders invade by forming dented fronts in microbial colonies. Proc Natl Acad Sci U S A 2022; 119:2108653119. [PMID: 34983839 PMCID: PMC8740590 DOI: 10.1073/pnas.2108653119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Living organisms never cease to evolve, so there is a significant interest in predicting and controlling evolution in all branches of life sciences. The most basic question is whether a trait should increase or decrease in a given environment. The answer seems to be trivial for traits such as the growth rate in a bioreactor or the expansion rate of a tumor. Yet, it has been suggested that such traits can decrease, rather than increase, during evolution. Here, we report a mutant that outcompeted the ancestor despite having a slower expansion velocity when in isolation. To explain this observation, we developed and validated a theory that describes spatial competition between organisms with different expansion rates and arbitrary competitive interactions. Most organisms grow in space, whether they are viruses spreading within a host tissue or invasive species colonizing a new continent. Evolution typically selects for higher expansion rates during spatial growth, but it has been suggested that slower expanders can take over under certain conditions. Here, we report an experimental observation of such population dynamics. We demonstrate that mutants that grow slower in isolation nevertheless win in competition, not only when the two types are intermixed, but also when they are spatially segregated into sectors. The latter was thought to be impossible because previous studies focused exclusively on the global competitions mediated by expansion velocities, but overlooked the local competitions at sector boundaries. Local competition, however, can enhance the velocity of either type at the sector boundary and thus alter expansion dynamics. We developed a theory that accounts for both local and global competitions and describes all possible sector shapes. In particular, the theory predicted that a slower on its own, but more competitive, mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were indeed observed experimentally, and their shapes matched quantitatively with the theory. In simulations, we further explored several mechanisms that could provide slow expanders with a local competitive advantage and showed that they are all well-described by our theory. Taken together, our results shed light on previously unexplored outcomes of spatial competition and establish a universal framework to understand evolutionary and ecological dynamics in expanding populations.
Collapse
|
26
|
Painter KJ, Ptashnyk M, Headon DJ. Systems for intricate patterning of the vertebrate anatomy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200270. [PMID: 34743605 PMCID: PMC8580425 DOI: 10.1098/rsta.2020.0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy
| | - Mariya Ptashnyk
- School of Mathematical and Computer Sciences and Maxwell Institute, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
27
|
Muok AR, Claessen D, Briegel A. Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria. THE ISME JOURNAL 2021; 15:2591-2600. [PMID: 33723381 PMCID: PMC8397704 DOI: 10.1038/s41396-021-00952-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Streptomycetes are sessile bacteria that produce metabolites that impact the behavior of microbial communities. Emerging studies have demonstrated that Streptomyces spores are distributed through various mechanisms, but it remains unclear how spores are transported to their preferred microenvironments, such as plant roots. Here, we show that Streptomyces spores are capable of utilizing the motility machinery of other soil bacteria. Motility assays and microscopy studies reveal that Streptomyces spores are transported to plant tissues by interacting directly with the flagella of both gram-positive and gram-negative bacteria. Genetics experiments demonstrate that this form of motility is facilitated by structural proteins on the spore coat. These results demonstrate that nonmotile bacteria are capable of utilizing the motility machinery of other microbes to complete necessary stages of their lifecycle.
Collapse
Affiliation(s)
- Alise R. Muok
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
28
|
The spatial organization of microbial communities during range expansion. Curr Opin Microbiol 2021; 63:109-116. [PMID: 34329942 DOI: 10.1016/j.mib.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Microbes in nature often live in dense and diverse communities exhibiting a variety of spatial structures. Microbial range expansion is a universal ecological process that enables populations to form spatial patterns. It can be driven by both passive and active processes, for example, mechanical forces from cell growth and bacterial motility. In this review, we provide a taste of recent creative and sophisticated efforts being made to address basic questions in spatial ecology and pattern formation during range expansion. We especially highlight the role of motility to shape community structures, and discuss the research challenges and future directions.
Collapse
|
29
|
King WL, Bell TH. Can dispersal be leveraged to improve microbial inoculant success? Trends Biotechnol 2021; 40:12-21. [PMID: 33972105 DOI: 10.1016/j.tibtech.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023]
Abstract
Microorganisms have long been isolated from soils to develop microbial inoculants, with the goal of spiking them into new soils to augment target functions. However, establishment can be sporadic, and we assume that inoculants simply arrive at their destination. Here, we posit a need for integrating dispersal into inoculant development and deployment. We argue that consideration for an inoculant's dispersal ability, whether via active (e.g., chemotaxis) or passive (e.g., attachment to other organisms) means, and including methods of deployment that allow multiple establishment attempts could help increase the predictability of inoculant success. Dispersal can influence many key aspects of in-field survival, including the ability to escape stressors, seek favorable colonization sites, facilitate multiple establishment attempts, and engage in multikingdom interactions.
Collapse
Affiliation(s)
- William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
30
|
Xue H, Kurokawa M, Ying BW. Correlation between the spatial distribution and colony size was common for monogenetic bacteria in laboratory conditions. BMC Microbiol 2021; 21:114. [PMID: 33858359 PMCID: PMC8051089 DOI: 10.1186/s12866-021-02180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background Geographically separated population growth of microbes is a common phenomenon in microbial ecology. Colonies are representative of the morphological characteristics of this structured population growth. Pattern formation by single colonies has been intensively studied, whereas the spatial distribution of colonies is poorly investigated. Results The present study describes a first trial to address the questions of whether and how the spatial distribution of colonies determines the final colony size using the model microorganism Escherichia coli, colonies of which can be grown under well-controlled laboratory conditions. A computational tool for image processing was developed to evaluate colony density, colony size and size variation, and the Voronoi diagram was applied for spatial analysis of colonies with identical space resources. A positive correlation between the final colony size and the Voronoi area was commonly identified, independent of genomic and nutritional differences, which disturbed the colony size and size variation. Conclusions This novel finding of a universal correlation between the spatial distribution and colony size not only indicated the fair distribution of spatial resources for monogenetic colonies growing with identical space resources but also indicated that the initial localization of the microbial colonies decided by chance determined the fate of the subsequent population growth. This study provides a valuable example for quantitative analysis of the complex microbial ecosystems by means of experimental ecology. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02180-8.
Collapse
Affiliation(s)
- Heng Xue
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
31
|
Wang M, Geng S, Hu B, Nie Y, Wu X. Sessile bacterium unlocks ability of surface motility through mutualistic interspecies interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:112-118. [PMID: 33225572 PMCID: PMC7984234 DOI: 10.1111/1758-2229.12911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
In addition to their common planktonic lifestyle, bacteria frequently live in surface-associated habitats. Surface motility is essential for exploring these habitats for food sources. However, many bacteria are found on surfaces, even though they lack features required for migrating along surfaces. How these canonical non-motile bacteria adapt to the environmental fluctuations on surfaces remains unknown. Here, we report a previously unknown surface motility mode of the canonical non-motile bacterium, Dietzia sp. DQ12-45-1b, which is triggered by interaction with a dimorphic prosthecate bacterium, Glycocaulis alkaliphilus 6B-8T. Dietzia cells exhibits 'sliding'-like motility in an area where the strain Glycocaulis cells was pre-colonized with a sufficient density. Our analysis also demonstrates that Dietzia degrade n-alkanes and provide Glycocaulis with the resulting metabolites for survival, which in turn induced directional migration of Dietzia towards nutrient-rich environments. Such interaction-triggered migration was also found between Dietzia and Glycocaulis strains isolated from other habitats, suggesting that this mutualistic relationship ubiquitously occurs in natural environments. In conclusion, we propose a novel model for such a 'win-win' strategy, whereby non-motile bacteria pay metabolites to dimorphic prosthecate bacteria in return for migrating to seek for nutrients, which may represent a common strategy for canonically non-motile bacteria living on a surface.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of EngineeringPeking UniversityBeijing100871China
| | - Shuang Geng
- College of EngineeringPeking UniversityBeijing100871China
| | - Bing Hu
- College of EngineeringPeking UniversityBeijing100871China
| | - Yong Nie
- College of EngineeringPeking UniversityBeijing100871China
| | - Xiao‐Lei Wu
- College of EngineeringPeking UniversityBeijing100871China
- Institute of EcologyPeking UniversityBeijing100871China
- Institute of Ocean ResearchPeking UniversityBeijing100871China
| |
Collapse
|
32
|
Booth SC, Rice SA. Influence of interspecies interactions on the spatial organization of dual species bacterial communities. Biofilm 2021; 2:100035. [PMID: 33447820 PMCID: PMC7798468 DOI: 10.1016/j.bioflm.2020.100035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Interspecies interactions in bacterial biofilms have important impacts on the composition and function of communities in natural and engineered systems. To investigate these interactions, synthetic communities provide experimentally tractable systems. Biofilms grown on agar-surfaces have been used for investigating the eco-evolutionary and biophysical forces that determine community composition and spatial distribution of bacteria. Prior studies have used genetically identical bacterial strains and strains with specific mutations, that express different fluorescent proteins, to investigate intraspecies interactions. Here, we investigated interspecies interactions and, specifically, determined the community composition and spatial distribution in synthetic communities of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Using quantitative microscopic imaging, we found that interspecies interactions in multispecies colonies were influenced by type IV pilus mediated motility, extracellular matrix secretion, environmental parameters, and these effects were also influenced by the specific partner in the dual species combinations. These results indicate that the patterns observable in mixed species colonies can be used to understand the mechanisms that drive interspecies interactions, which are dependent on the interplay between specific species’ physiology and environmental conditions. Spatial patterns in bacterial colonies are species and interaction dependent. Surface motility and extracellar matrix production affect interspecies interactions. Agar surface colonies show how bacteria interact in biofilms.
Collapse
Affiliation(s)
- Sean C Booth
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore.,The School of Biological Sciences, Nanyang Technological University, Singapore.,The Ithree Institute, The University of Technology Sydney, Australia
| |
Collapse
|
33
|
Muok AR, Briegel A. Intermicrobial Hitchhiking: How Nonmotile Microbes Leverage Communal Motility. Trends Microbiol 2020; 29:542-550. [PMID: 33160853 DOI: 10.1016/j.tim.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/12/2023]
Abstract
Motility allows many microbes to traverse their environment to find nutrient sources or escape unfavorable environments. However, some microbes are nonmotile and are restricted to their immediate conditions. Intriguingly, sporadic reports have demonstrated that many nonmotile microbes can utilize the motility machinery of other microbes in their vicinity. This form of transportation, called hitchhiking, has been observed with both prokaryotic and eukaryotic microbes. Importantly, many hitchhiking microbes are pathogenic to humans or plants. Here, we discuss reports of intermicrobial hitchhiking to generate a comprehensive view of hitchhiking mechanisms and how such interactions may influence human and plant health. We hypothesize that microbial hitchhiking is ubiquitous in nature and may become the subject of an independent subfield of research in microbiology.
Collapse
Affiliation(s)
- A R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - A Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.
| |
Collapse
|
34
|
Abstract
Despite their small sizes, bacterial cells within a host-associated microbial community often form highly structured complexes determined by environmental factors and interspecies interactions. Wilbert et al. combined species-specific fluorescent labels and high-resolution microscopy to visualize human tongue dorsum microbiomes and to highlight their structure and dynamics.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Uppal G, Hu W, Vural DC. Evolution of chemotactic hitchhiking. J Evol Biol 2020; 33:1593-1605. [PMID: 32929788 DOI: 10.1111/jeb.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Bacteria typically reside in heterogeneous environments with various chemogradients where motile cells can gain an advantage over nonmotile cells. Since motility is energetically costly, cells must optimize their swimming speed and behaviour to maximize their fitness. Here, we investigate how cheating strategies might evolve where slow or nonmotile microbes exploit faster ones by sticking together and hitching a ride. Starting with physical and biological first principles, we computationally study the effects of sticking on the evolution of motility in a controlled chemostat environment. We find that stickiness allows for slow cheaters to dominate when chemoattractants are dispersed at intermediate distances. In this case, slow microbes exploit faster ones until they consume the population, leading to a tragedy of commons. For long races, slow microbes do gain an initial advantage from sticking, but eventually fall behind. Here, fast microbes are more likely to stick to other fast microbes and co-operate to increase their own population. We therefore conclude that whether the nature of the hitchhiking interaction is parasitic or mutualistic, depends on the chemoattractant distribution.
Collapse
Affiliation(s)
| | - Weiyi Hu
- Mathematics, Sichuan University, Chengdu, China
| | | |
Collapse
|
36
|
You Z, Baskaran A, Marchetti MC. Nonreciprocity as a generic route to traveling states. Proc Natl Acad Sci U S A 2020; 117:19767-19772. [PMID: 32753380 PMCID: PMC7444273 DOI: 10.1073/pnas.2010318117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We examine a nonreciprocally coupled dynamical model of a mixture of two diffusing species. We demonstrate that nonreciprocity, which is encoded in the model via antagonistic cross-diffusivities, provides a generic mechanism for the emergence of traveling patterns in purely diffusive systems with conservative dynamics. In the absence of nonreciprocity, the binary fluid mixture undergoes a phase transition from a homogeneous mixed state to a demixed state with spatially separated regions rich in one of the two components. Above a critical value of the parameter tuning nonreciprocity, the static demixed pattern acquires a finite velocity, resulting in a state that breaks both spatial and time-reversal symmetry, as well as the reflection parity of the static pattern. We elucidate the generic nature of the transition to traveling patterns using a minimal model that can be studied analytically. Our work has direct relevance to nonequilibrium assembly in mixtures of chemically interacting colloids that are known to exhibit nonreciprocal effective interactions, as well as to mixtures of active and passive agents where traveling states of the type predicted here have been observed in simulations. It also provides insight on transitions to traveling and oscillatory states seen in a broad range of nonreciprocal systems with nonconservative dynamics, from reaction-diffusion and prey-predators models to multispecies mixtures of microorganisms with antagonistic interactions.
Collapse
Affiliation(s)
- Zhihong You
- Department of Physics, University of California, Santa Barbara, CA 93106;
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453
| | | |
Collapse
|
37
|
Karkaria BD, Treloar NJ, Barnes CP, Fedorec AJH. From Microbial Communities to Distributed Computing Systems. Front Bioeng Biotechnol 2020; 8:834. [PMID: 32793576 PMCID: PMC7387671 DOI: 10.3389/fbioe.2020.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools.
Collapse
Affiliation(s)
- Behzad D. Karkaria
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Neythen J. Treloar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Alex J. H. Fedorec
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|