1
|
De Nardo AN, Meena A, Maggu K, Eggs B, Sbilordo SH, Lüpold S. Experimental evolution reveals trade-offs between sexual selection and heat tolerance in Drosophila prolongata. Evolution 2025; 79:823-836. [PMID: 39964947 DOI: 10.1093/evolut/qpaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Sexual selection promotes traits that enhance mating or fertilization success, but these traits can be very costly under harsh environmental conditions. The extent to which differential investment in costly traits under varying intensities of sexual selection is related to their susceptibility to environmental stress remains unclear. This study explored how experimental evolution under different operational sex ratios (OSRs) shapes traits and reproductive success of male Drosophila prolongata, and how developmental and/or adult heat stress affect the expression of these traits. We found males from even and slightly male-biased OSRs to be larger and display greater reduction in body size under developmental heat stress, suggesting pre-mating sexual selection on body size and condition-dependent thermal sensitivity. These populations also exhibited consistently high mating and fertilization success across temperatures, potentially indicating selection for robust phenotypes with "good genes" that perform well regardless of temperature. Conversely, males from strongly male-biased OSR populations experienced more pronounced decline in sperm competitiveness following exposure to developmental or adult heat stress. These results highlight how environmental stressors differentially impact populations, shaped by varying strengths of pre- and post-mating sexual selection. These observed patterns suggest potential interactions between past selection and the ability to adapt to changing environments.
Collapse
Affiliation(s)
- Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Vasudeva R, Sales K, Gage MJG, Hosken DJ. Inbreeding depression in male reproductive traits. J Evol Biol 2025; 38:504-515. [PMID: 39976446 DOI: 10.1093/jeb/voaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Inbreeding frequently leads to inbreeding depression, a general reduction in trait values and loss of fitness, and it appears that some sexually selected traits are especially sensitive to inbreeding, but sperm may be an exception. Additionally, because inbreeding depression is always in the direction of low fitness, it can reveal the direction of past selection acting on trait values. Here, we experimentally manipulate levels of inbreeding in a beetle (Tribolium castaneum) by full-sib mating for six generations. This breeding design allowed us to track the effects of increasing homozygosity on male reproductive traits (sperm and testes size), male size and lifespan, and reproductive output within inbred families, and on the heritability of these traits. All traits measured showed significant inbreeding depression and heritabilities tended to increase with inbreeding. Since inbreeding resulted in shorter sperm and smaller testes, it suggests that longer sperm and larger testes confer higher fitness in this beetle.
Collapse
Affiliation(s)
- Ramakrishnan Vasudeva
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Kris Sales
- IFOS, Forest Research, Farnham GU10 4LH, United Kingdom
| | - Matthew J G Gage
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - David J Hosken
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
3
|
Leroy E, Gao S, Gonzalez M, Ellies-Oury MP, Tuda M. Wolbachia infection facilitates adaptive increase in male egg size in response to environmental changes. Sci Rep 2025; 15:13213. [PMID: 40240454 PMCID: PMC12003752 DOI: 10.1038/s41598-025-96680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Under challenging conditions such as maladapted biotic and abiotic conditions, females can plastically adjust their egg size (gamete or zygote size) to counteract fitness declines early in life. Recent evidence suggests that endosymbionts may enhance this egg-size plasticity. Possible endosymbionts' modification of impact of multiple stressors is not well explored. Therefore, this study aims to test (1) whether Wolbachia infection influences the plasticity of parental investment in egg size under suboptimal environmental conditions and (2) whether the plasticity depends on the sex of eggs. We used three lines of the azuki bean beetle (Callosobruchus chinensis): a line coinfected with the wBruCon and wBruOri Wolbachia strains, a cured line infected solely with the wBruCon, and an uninfected (cured) line. These lines were subjected to either a control environment or a simulated climate change environment (elevated temperature and carbon dioxide levels, eT&CO2) to examine Wolbachia infection effects on parental investment in their offspring (egg size) and its subsequent impact on offspring fitness, including survival, development, and adult lifespan under starvation. After two days of eT&CO2 exposure, coinfected parents increased male egg size only. Larger eggs developed faster in both sexes and exhibited higher survival. However, offspring adult lifespan was not influenced by egg size but by environment, sex, Wolbachia infection, and development time: eT&CO2 reduced male lifespan but not female lifespan, the singly-infected line females lived longer than coinfected and uninfected line females, and shorter development time linked to longer lifespan. The negative correlation between development time and lifespan was higher under eT&CO2 but not sex-specific. This study is the first to demonstrate sex-specific egg size plasticity associated with Wolbachia infection in species with sex determination systems other than haplodiploid.
Collapse
Affiliation(s)
- Eloïse Leroy
- Laboratory of Insect Natural Enemies, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Bordeaux Sciences Agro, 33170, Gradignan, France
| | - Siyi Gao
- Laboratory of Insect Natural Enemies, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | | | - Midori Tuda
- Laboratory of Insect Natural Enemies, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Antunes MA, Grandela A, Matos M, Simões P. Long-term evolution experiments fully reveal the potential for thermal adaptation. J Therm Biol 2025; 129:104118. [PMID: 40305922 DOI: 10.1016/j.jtherbio.2025.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
Evolutionary responses may be crucial in allowing organisms to cope with prolonged effects of climate change. However, a clear understanding of the dynamics of adaptation to warming environments is still lacking. Addressing how reproductive success evolves in such deteriorating environments is extremely relevant, as this trait is constrained at temperatures below critical thermal limits. Experimental evolution under a warming environment can elucidate the potential of populations to respond to rapid environmental changes. The few studies following such framework lack analysis of long-term response. We here focus on the long-term thermal evolution of two Drosophila subobscura populations, from different European latitudes, under warming temperatures. We tested reproductive success of these populations in the ancestral (control) and warming environment after ∼50 generations of thermal evolution. We found a general adaptive response to warming temperatures in the long term, since populations evolving in the warming environment showed increased performance in that environment relative to the respective control populations. On the other hand, no clear response was observed in the ancestral environment. Coupled with data from previous generations, we highlight a slow pace of adaptive response and differences in that response between populations of distinct histories. These findings demonstrate the need of long-term evolution experiments to fully reveal the potential for thermal adaptation. It also highlights that the scrutiny of different populations is needed as a measure of variation in evolutionary responses within a species. Accounting for these sources of variation - both temporal and spatial - will allow for more robust assessments of climate change evolutionary responses.
Collapse
Affiliation(s)
- Marta A Antunes
- CE3C - Center for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Afonso Grandela
- CE3C - Center for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Margarida Matos
- CE3C - Center for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Pedro Simões
- CE3C - Center for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sales K, Thomas P, Gage MJG, Vasudeva R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231949. [PMID: 38721134 PMCID: PMC11076118 DOI: 10.1098/rsos.231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 07/31/2024]
Abstract
Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.
Collapse
Affiliation(s)
- Kris Sales
- Forest Research, Inventory, Forecasting and Operational Support (IFOS), FarnhamGU10 4LH, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
8
|
Xiao L, Wang Q, Ni H, Xu T, Cai X, Dai T, Wang L, Song C, Li Y, Li F, Meng T, Sheng H, Yu X, Zeng Q, Guo P, Zhang X. Effects of temperature anomaly on sperm quality: A multi-center study of 33,234 men. Heliyon 2024; 10:e26765. [PMID: 38434420 PMCID: PMC10907732 DOI: 10.1016/j.heliyon.2024.e26765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Backgrounds Global fertility rates continue to decline and sperm quality is a prime factor affecting male fertility. Both extreme cold and heat have been demonstrated to be associated with decreased sperm quality, but no epidemiological studies have considered human adaptation to long-term temperature. Our aim was to conduct a multi-center retrospective cohort study to investigate exposure-response relationship between temperature anomaly (TA) that deviate from long-term climate patterns and sperm quality. Methods A total of 78,952 semen samples measured in 33,234 donors from 6 provincial human sperm banks in China were collected. This study considered heat and cold acclimatization to prolonged exposure in humans and explored the exposure-response relationship between TAs and sperm quality parameters (sperm concentrations, sperm count, progressive motility, progressive sperm count, total motility and total motile sperm count) during the hot and cold seasons, respectively. Linear mixed models and generalized linear models were built separately for specific centers to pool in a meta-analysis to obtain the pooled effect of TA on sperm quality, considering repeated measurements data structure and spatial heterogeneity. Results We identified an inverted U-shaped exposure-response relationship between TA and sperm quality during the hot season. Significant negative effect of anomalous cold on sperm quality during the hot season was found after additional adjustment for Body mass index, marital status and childbearing history. The heat-related TA in hot season was significantly negatively associated with sperm concentration, progressive sperm count and total motile sperm count (all P-values<0.05). After adjusting the relative humidity, the cold-related TA in cold season was negatively associated with the sperm total motility (P-values<0.05). Conclusions Our results suggest both heat-related and cold-related TAs are associated with decreased sperm quality. The findings highlight the importance of reducing exposure to anomalous temperatures to protect male fertility.
Collapse
Affiliation(s)
- Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Chunying Song
- Human Sperm Bank, The Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, The Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, The Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| |
Collapse
|
9
|
Macartney EL, Morrison K, Snook RR, Lagisz M, Nakagawa S. Intra-specific correlations between ejaculate traits and competitive fertilization success: a meta-analysis across species and fertilization modes. Evolution 2024; 78:497-510. [PMID: 38146674 DOI: 10.1093/evolut/qpad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Understanding of how selection can act on traits that improve competitiveness and subsequent paternity has advanced, including the idea that internal and external fertilization presents different environments that may select differentially on ejaculate traits. However, no studies have quantitatively synthesized the intra-specific relationships between these traits and paternity. Therefore, we conducted a meta-analysis across 52 papers to determine which ejaculate traits positively correlate with paternity share and how these correlations vary with fertilization mode. Overall, most ejaculate traits were positively associated with paternity, with the notable exception of sperm length. Sub-analyses on sperm number, sperm length, and sperm velocity revealed no statistical differences between fertilization modes in the relationship between traits and paternity when all effect sizes across species were combined. However, in a sub-analysis on fish species only, we found evidence that sperm velocity may be more important in external fertilizers. We also observed differences in the importance of phylogenetic relatedness and some species-specific differences. Our results suggest that while most ejaculate traits should be under positive directional selection in both internal and external fertilizers, sperm length may be subject to more nuanced selection pressures. Overall, we highlight important patterns of intra-specific relationships between ejaculate traits and competitive fertilization success.
Collapse
Affiliation(s)
- Erin L Macartney
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kyle Morrison
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
10
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Graziano M, Solberg MF, Glover KA, Vasudeva R, Dyrhovden L, Murray D, Immler S, Gage MJG. Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon ( Salmo salar). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231427. [PMID: 38094267 PMCID: PMC10716643 DOI: 10.1098/rsos.231427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
The environment gametes perform in just before fertilization is increasingly recognized to affect offspring fitness, yet the contributions of male and female gametes and their adaptive significance remain largely unexplored. Here, we investigated gametic thermal plasticity and its effects on hatching success and embryo performance in Atlantic salmon (Salmo salar). Eggs and sperm were incubated overnight at 2°C or 8°C, temperatures within the optimal thermal range of this species. Crosses between warm- and cold-incubated gametes were compared using a full-factorial design, with half of each clutch reared in cold temperatures and the other in warm temperatures. This allowed disentangling single-sex interaction effects when pre-fertilization temperature of gametes mismatched embryonic conditions. Pre-fertilization temperature influenced hatch timing and synchrony, and matching sperm and embryo temperatures resulted in earlier hatching. Warm incubation benefited eggs but harmed sperm, reducing the hatching success and, overall, gametic thermal plasticity did not enhance offspring fitness, indicating vulnerability to thermal changes. We highlight the sensitivity of male gametes to higher temperatures, and that gamete acclimation may not effectively buffer against deleterious effects of thermal fluctuations. From an applied angle, we propose the differential storage of male and female gametes as a tool to enhance sustainability within the hatcheries.
Collapse
Affiliation(s)
- Marco Graziano
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Monica F. Solberg
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Kevin A. Glover
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Ramakrishnan Vasudeva
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lise Dyrhovden
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - David Murray
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Simone Immler
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Santos MA, Antunes MA, Grandela A, Quina AS, Santos M, Matos M, Simões P. Slow and population specific evolutionary response to a warming environment. Sci Rep 2023; 13:9700. [PMID: 37322066 PMCID: PMC10272154 DOI: 10.1038/s41598-023-36273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Adaptation to increasingly warmer environments may be critical to avoid extinction. Whether and how these adaptive responses can arise is under debate. Though several studies have tackled evolutionary responses under different thermal selective regimes, very few have specifically addressed the underlying patterns of thermal adaptation under scenarios of progressive warming conditions. Also, considering how much past history affects such evolutionary response is critical. Here, we report a long-term experimental evolution study addressing the adaptive response of Drosophila subobscura populations with distinct biogeographical history to two thermal regimes. Our results showed clear differences between the historically differentiated populations, with adaptation to the warming conditions only evident in the low latitude populations. Furthermore, this adaptation was only detected after more than 30 generations of thermal evolution. Our findings show some evolutionary potential of Drosophila populations to respond to a warming environment, but the response was slow and population specific, emphasizing limitations to the ability of ectotherms to adapt to rapid thermal shifts.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta A Antunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso Grandela
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- CESAM-Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarida Matos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Simões
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
13
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
14
|
Experimental evidence for stronger impacts of larval but not adult rearing temperature on female fertility and lifespan in a seed beetle. Evol Ecol 2023. [DOI: 10.1007/s10682-022-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractTemperature impacts behaviour, physiology and life-history of many life forms. In many ectotherms, phenotypic plasticity within reproductive traits could act as a buffer allowing adaptation to continued global warming within biological limits. But there could be costs involved, potentially affecting adult reproductive performance and population growth. Empirical data on the expression of reproductive plasticity when different life stages are exposed is still lacking. Plasticity in key components of fitness (e.g., reproduction) can impose life-history trade-offs. Ectotherms are sensitive to temperature variation and the resulting thermal stress is known to impact reproduction. So far, research on reproductive plasticity to temperature variation in this species has focused on males. Here, I explore how rearing temperature impacted female reproduction and lifespan in the bruchid beetle Callosobruchus maculatus by exposing them to four constant temperatures (17 °C, 25 °C, 27 °C and 33 °C) during larval or adult stages. In these experiments, larval rearing cohorts (exposed to 17 °C, 25 °C, 27 °C and 33 °C, from egg to adulthood) were tested in a common garden setting at 27 °C and adult rearing cohorts, after having developed entirely at 27 °C, were exposed to four constant rearing temperatures (17 °C, 25 °C, 27 °C and 33 °C). I found stage-specific plasticity in all the traits measured here: fecundity, egg morphological dimensions (length and width), lifespan and egg hatching success (female fertility). Under different larval rearing conditions, fecundity and fertility was drastically reduced (by 51% and 42%) at 17 °C compared to controls (27 °C). Female lifespan was longest at 17 °C across both larval and adult rearing: by 36% and 55% compared to controls. Collectively, these results indicate that larval rearing temperature had greater reproductive impacts. Integrating both larval and adult rearing effects, I present evidence that female fertility is more sensitive during larval development compared to adult rearing temperature in this system.
Collapse
|
15
|
Wang S, Zhang Y, Yang W, Shen Y, Lin Z, Zhang S, Song G. Duplicate genes as sources for rapid adaptive evolution of sperm under environmental pollution in tree sparrow. Mol Ecol 2022; 32:1673-1684. [PMID: 36567644 DOI: 10.1111/mec.16833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Environmental pollution can result in poor sperm quality either directly or indirectly in birds. However, adaptive and compensatory sperm morphology changes and motility improvements have rapidly evolved in tree sparrows (Passer montanus) inhabiting polluted areas over the past 65 years. To identify the genetic underpinnings of the rapidly evolving sperm phenotype, we carried out population genomics and transcriptomics on tree sparrow populations in the two differently polluted places. We identified a gene encoding the serine/threonine protein kinase PIM1, which may drive rapid phenotypic evolution of sperm. An unprecedented and remarkable expansion of the PIM gene family, caused by tandem and segmental duplication of PIM1, was subsequently observed in the tree sparrow genome. Most PIM1 duplicates showed a testis-specific expression pattern, suggesting that their functions are related to male reproduction. Furthermore, the elevated expression level of PIM1 was consistent with our earlier findings of longer and faster swimming sperm in polluted sites, indicating an important role for duplicated PIM1 in facilitating the rapid evolution of sperm. Our results suggest that duplicated PIM1 provides sources of genetic variation that may enable the rapid evolution of sperm under environmental heavy metal pollution. The findings of this study indicated that duplicated genes can be targets of selection and predominant sources for rapid adaptation to environmental change and shed light on sperm evolution under pollution stress.
Collapse
Affiliation(s)
- Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Sheng Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Science, Beijing, China
| |
Collapse
|
16
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
17
|
Duarte S, Magro A, Tomás J, Hilário C, Ferreira RB, Carvalho MO. Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. INSECTS 2022; 13:868. [PMID: 36292816 PMCID: PMC9603965 DOI: 10.3390/insects13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Tribolium castaneum (Herbst) adults produce 1,4-benzoquinone (BQ), methyl-1,4-benzoquinone (MBQ), and ethyl-1,4-benzoquinone (EBQ). These components are chemical defenses used as repellents and irritants, and BQ has a negative impact on the growth of some fungal species. In this work, the inhibitory and/or lethal effects of these benzoquinones on the development of six fungi identified in maize, namely Aspergillus flavus, A. fumigatus, A. niger, Fusarium sp., Penicillium sp., and Trichoderma sp., were evaluated. Ten-day-long disk diffusion trials were performed using benzoquinones. The experiments simulated the activity of BQ (B1) or "EBQ + MBQ" (B2) released by 40-day-old insect adults (n = 200), considering a total average release of 45 µg per adult. Inhibition halos imposed by benzoquinones on fungal growth showed a significant effect when compared with the controls (water and solvent). Mycelial growth was decreased for all fungi, with the level of response depending on the fungal species. B1 and B2 displayed an inhibitory effect against all fungi, but Trichoderma sp. and A. niger showed rapid recoveries. B2 showed a lethal effect on Penicillium sp. The inhibitory and lethal activities of benzoquinones released by T. castaneum adults may contribute to regulate fungal growth, and understanding their interaction is important to develop innovative control strategies.
Collapse
Affiliation(s)
- Sónia Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
18
|
Vasudeva R, Graziano M, Pointer M, Cole B, West G. Obituary: Professor Matthew James George Gage (1967-2022). Evolution 2022. [PMID: 35421257 DOI: 10.1111/evo.14487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramakrishnan Vasudeva
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Marco Graziano
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Michael Pointer
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Benjamin Cole
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - George West
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
19
|
Wang WWY, Gunderson AR. The Physiological and Evolutionary Ecology of Sperm Thermal Performance. Front Physiol 2022; 13:754830. [PMID: 35399284 PMCID: PMC8987524 DOI: 10.3389/fphys.2022.754830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Ongoing anthropogenic climate change has increased attention on the ecological and evolutionary consequences of thermal variation. Most research in this field has focused on the physiology and behavior of diploid whole organisms. The thermal performance of haploid gamete stages directly tied to reproductive success has received comparatively little attention, especially in the context of the evolutionary ecology of wild (i.e., not domesticated) organisms. Here, we review evidence for the effects of temperature on sperm phenotypes, emphasizing data from wild organisms whenever possible. We find that temperature effects on sperm are pervasive, and that above normal temperatures in particular are detrimental. That said, there is evidence that sperm traits can evolve adaptively in response to temperature change, and that adaptive phenotypic plasticity in sperm traits is also possible. We place results in the context of thermal performance curves, and encourage this framework to be used as a guide for experimental design to maximize ecological relevance as well as the comparability of results across studies. We also highlight gaps in our understanding of sperm thermal performance that require attention to more fully understand thermal adaptation and the consequences of global change.
Collapse
|
20
|
Dobler R, Charette M, Kaplan K, Turnell BR, Reinhardt K. Divergent natural selection alters male sperm competition success in Drosophila melanogaster. Ecol Evol 2022; 12:e8567. [PMID: 35222953 PMCID: PMC8848461 DOI: 10.1002/ece3.8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Sexually selected traits may also be subject to non-sexual selection. If optimal trait values depend on environmental conditions, then "narrow sense" (i.e., non-sexual) natural selection can lead to local adaptation, with fitness in a certain environment being highest among individuals selected under that environment. Such adaptation can, in turn, drive ecological speciation via sexual selection. To date, most research on the effect of narrow-sense natural selection on sexually selected traits has focused on precopulatory measures like mating success. However, postcopulatory traits, such as sperm function, can also be under non-sexual selection, and have the potential to contribute to population divergence between different environments. Here, we investigate the effects of narrow-sense natural selection on male postcopulatory success in Drosophila melanogaster. We chose two extreme environments, low oxygen (10%, hypoxic) or high CO2 (5%, hypercapnic) to detect small effects. We measured the sperm defensive (P1) and offensive (P2) capabilities of selected and control males in the corresponding selection environment and under control conditions. Overall, selection under hypoxia decreased both P1 and P2, while selection under hypercapnia had no effect. Surprisingly, P1 for both selected and control males was higher under both ambient hypoxia and ambient hypercapnia, compared to control conditions, while P2 was lower under hypoxia. We found limited evidence for local adaptation: the positive environmental effect of hypoxia on P1 was greater in hypoxia-selected males than in controls. We discuss the implications of our findings for the evolution of postcopulatory traits in response to non-sexual and sexual selection.
Collapse
Affiliation(s)
- Ralph Dobler
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Marc Charette
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Katrin Kaplan
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
| | - Biz R. Turnell
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Klaus Reinhardt
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
21
|
Walsh BS, Parratt SR, Mannion NLM, Snook RR, Bretman A, Price TAR. Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis. Ecol Evol 2021; 11:18238-18247. [PMID: 35003670 PMCID: PMC8717264 DOI: 10.1002/ece3.8418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/03/2022] Open
Abstract
The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening, which limits a species' ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Bretman
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Tom A. R. Price
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
22
|
Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J Anim Ecol 2021; 91:391-403. [PMID: 34775602 DOI: 10.1111/1365-2656.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant. Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress. We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits. Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability. Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.
Collapse
Affiliation(s)
| | | | | | - Jana Djukarić
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lena C Ruf
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Enos AN, Kozak GM. Elevated temperature increases reproductive investment in less preferred mates in the invasive European corn borer moth. Ecol Evol 2021; 11:12064-12074. [PMID: 34522361 PMCID: PMC8427566 DOI: 10.1002/ece3.7972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 07/14/2021] [Indexed: 01/26/2023] Open
Abstract
Rapidly changing environments may weaken sexual selection and lead to indiscriminate mating by interfering with the reception of mating signals or by increasing the costs associated with mate choice. If temperature alters sexual selection, it may impact population response and adaptation to climate change. Here, we examine how differences in temperature of the mating environment influence reproductive investment in the European corn borer moth (Ostrinia nubilalis). Mate preference in this species is known to be related to pheromone usage, with assortative mating occurring between genetically distinct E and Z strains that differ in the composition of female and male pheromones. We compared egg production within and between corn borer lines derived from four different populations that vary in pheromone composition and other traits. Pairs of adults were placed in a mating environment that matched the pupal environment (ambient temperature) or at elevated temperature (5°C above the pupal environment). At ambient temperature, we found that within-line pairs produced eggs sooner and produced more egg clusters than between-line pairs. However, at elevated temperature, between-line pairs produced the same number of egg clusters as within-line pairs. These results suggest that elevated temperature increased investment in matings with typically less preferred, between-line mates. This increased investment could result in changes in gene flow among corn borer populations in warming environments.
Collapse
Affiliation(s)
- Arielle N. Enos
- Department of BiologyUniversity of Massachusetts‐DartmouthDartmouthMassachusettsUSA
| | - Genevieve M. Kozak
- Department of BiologyUniversity of Massachusetts‐DartmouthDartmouthMassachusettsUSA
| |
Collapse
|
24
|
Duarte S, Magro A, Tomás J, Hilário C, Alvito P, Ferreira RB, Carvalho MO. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. INSECTS 2021; 12:insects12080730. [PMID: 34442296 PMCID: PMC8396807 DOI: 10.3390/insects12080730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary It is important to hold cereals in storage conditions that exclude insect pests such as the red flour beetle and fungi, especially mycotoxin-producing ones (as a few strains of Aspergillus flavus). This work aims to investigate the interaction between these two organisms when thriving in maize flour. It was observed that when both organisms were together, the mycotoxins detected in maize flour were far higher than when the fungi were on their own, suggesting that the presence of insects may contribute positively to fungi development and mycotoxin production. The insects in contact with the fungi were almost all dead at the end of the trials, suggesting a negative effect of the fungi growth on the insects. Both organisms interacted when in contact. This is the first study on this issue, although further investigation would benefit from clarification on the mechanisms leading to the nature of the detected interactions. Abstract Tribolium castaneum is one of the most common insect pests of stored products. Its presence makes cereals more susceptible to the spread of the fungi Aspergillus flavus, which may produce mycotoxins. The aim of this work was to evaluate the influence of T. castaneum adults on the development of a mycotoxigenic A. flavus strain in maize flour as well as the influence of this fungus on the insects. Maize flour was exposed to T. castaneum, spores of A. flavus or to both. The results revealed an interaction between T. castaneum and A. flavus as the flour exposed to both organisms was totally colonized by the fungus whereas almost all the insects were killed. Aflatoxin B1 (AFB1) revealed a significantly higher concentration in the flour inoculated with both organisms (18.8 µg/kg), being lower when exposed only to A. flavus, suggesting that the presence of insects may trigger fungal development and enhance mycotoxin production. The ability of these organisms to thrive under the same conditions and the chemical compounds they release makes the interaction between them a subject of great importance to maintain the safety of stored maize. This is the first work evaluating the interaction between T. castaneum and A. flavus mycotoxin production.
Collapse
Affiliation(s)
- Sónia Duarte
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- Correspondence:
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Paula Alvito
- National Health Institute Dr. Ricardo Jorge (INSA), 1600-609 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Boavida Ferreira
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
25
|
Vasudeva R, Dickinson M, Sutter A, Powell S, Sales K, Gage M. Facultative polyandry protects females from compromised male fertility caused by heatwave conditions. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Leith NT, Macchiano A, Moore MP, Fowler-Finn KD. Temperature impacts all behavioral interactions during insect and arachnid reproduction. CURRENT OPINION IN INSECT SCIENCE 2021; 45:106-114. [PMID: 33831604 DOI: 10.1016/j.cois.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 05/26/2023]
Abstract
Temperature shapes the processes and outcomes of behaviors that occur throughout the progression of insect and arachnid mating interactions and reproduction. Here, we highlight how temperature impacts precopulatory activity levels, competition among rivals, communication with potential mates, and the relative costs and benefits of mating. We review how both the prevailing temperature conditions during reproductive activity and the temperatures experienced early in life influence mating-related behavior. To effectively predict the consequences of global warming for insect and arachnid mating behavior, we advocate for future work that universally integrates a function-valued approach to measuring thermal sensitivity. A function-valued approach will be especially useful for understanding how fine-scale temperature variation shapes current and future selection on mating interactions.
Collapse
Affiliation(s)
- Noah T Leith
- Department of Biology, Saint Louis University, United States.
| | | | - Michael P Moore
- Living Earth Collaborative, Washington University in St. Louis, United States
| | - Kasey D Fowler-Finn
- Department of Biology, Saint Louis University, United States; Living Earth Collaborative, Washington University in St. Louis, United States
| |
Collapse
|
27
|
Pointer MD, Gage MJG, Spurgin LG. Tribolium beetles as a model system in evolution and ecology. Heredity (Edinb) 2021; 126:869-883. [PMID: 33767370 PMCID: PMC8178323 DOI: 10.1038/s41437-021-00420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
Flour beetles of the genus Tribolium have been utilised as informative study systems for over a century and contributed to major advances across many fields. This review serves to highlight the significant historical contribution that Tribolium study systems have made to the fields of ecology and evolution, and to promote their use as contemporary research models. We review the broad range of studies employing Tribolium to make significant advances in ecology and evolution. We show that research using Tribolium beetles has contributed a substantial amount to evolutionary and ecological understanding, especially in the fields of population dynamics, reproduction and sexual selection, population and quantitative genetics, and behaviour, physiology and life history. We propose a number of future research opportunities using Tribolium, with particular focus on how their amenability to forward and reverse genetic manipulation may provide a valuable complement to other insect models.
Collapse
Affiliation(s)
- Michael D Pointer
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
28
|
Sales K, Vasudeva R, Gage MJG. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201717. [PMID: 33959335 PMCID: PMC8074959 DOI: 10.1098/rsos.201717] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
With climate change creating a more volatile atmosphere, heatwaves that create thermal stress for living systems will become stronger and more frequent. Using the flour beetle Tribolium castaneum, we measure the impacts of thermal stress from experimental heatwaves in the laboratory on reproduction and survival across different insect life stages, and the extent and pace of any recovery. We exposed larvae, pupae, juvenile and mature adult male beetles to 5-day periods of heat stress where temperatures were maintained at either 40°C or 42°C, a few degrees above the 35°C optimum for this species' population productivity, and then measured survival and reproduction compared with controls at 30°C. Mortality due to thermal stress was greatest among juvenile life stages. Male reproductive function was specifically damaged by high temperatures, especially if experienced through pupal or immature life stages when complete sterility was shown at reproductive maturity; larval exposure did not damage adult male fertility. High temperatures impaired testis development and the production of viable sperm, with damage being strongest when experienced during pupal or juvenile adult stages. Despite this disruption, males recovered from heat stress and, depending on the stage of exposure, testis size, sperm production and fertility returned to normal 15-28 days after exposure. Our experiments reveal how thermal stress from heatwave conditions could impact on insect survival and reproduction across different life stages, and the potential and timescales of recovery.
Collapse
Affiliation(s)
- Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
29
|
Extreme temperatures compromise male and female fertility in a large desert bird. Nat Commun 2021; 12:666. [PMID: 33531493 PMCID: PMC7854745 DOI: 10.1038/s41467-021-20937-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Temperature has a crucial influence on the places where species can survive and reproduce. Past research has primarily focused on survival, making it unclear if temperature fluctuations constrain reproductive success, and if so whether populations harbour the potential to respond to climatic shifts. Here, using two decades of data from a large experimental breeding programme of the iconic ostrich (Struthio camelus) in South Africa, we show that the number of eggs females laid and the number of sperm males produced were highly sensitive to natural temperature extremes (ranging from -5 °C to 45 °C). This resulted in reductions in reproductive success of up to 44% with 5 °C deviations from their thermal optimum. In contrast, gamete quality was largely unaffected by temperature. Extreme temperatures also did not expose trade-offs between gametic traits. Instead, some females appeared to invest more in reproducing at high temperatures, which may facilitate responses to climate change. These results show that the robustness of fertility to temperature fluctuations, and not just temperature increases, is a critical aspect of species persistence in regions predicted to undergo the greatest change in climate volatility.
Collapse
|