1
|
Kulkarni K, Walton RD, Chaigne S. Unlocking the potential of cardiac TRP channels using knockout mice models. Front Physiol 2025; 16:1585356. [PMID: 40313873 PMCID: PMC12043714 DOI: 10.3389/fphys.2025.1585356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Affiliation(s)
- Kanchan Kulkarni
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Richard D. Walton
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Sebastien Chaigne
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Cardiology, INSERM, U1045, CRCTB, Bordeaux, France
| |
Collapse
|
2
|
Rocereta JA, Sturhahn T, Pumroy RA, Fricke TC, Herzog C, Leffler A, Moiseenkova-Bell V. Structural insights into TRPV2 modulation by probenecid. Nat Struct Mol Biol 2025:10.1038/s41594-025-01494-9. [PMID: 39972168 DOI: 10.1038/s41594-025-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
The transient receptor potential vanilloid 2 (TRPV2) cation channel is a key player in cardiovascular physiology and pathophysiology. Probenecid (PBC), an FDA-approved uricosuric agent thought to activate TRPV2, has shown promise in enhancing cardiovascular function in both preclinical and clinical studies. Here our electrophysiological data reveal that PBC significantly potentiates rat TRPV2 to known stimuli, and cryo electron microscopy structures show that PBC directly interacts with rat TRPV2 in a previously unidentified intracellular binding pocket. PBC binding at a conserved TRPV2-specific histidine prevents the channel from taking on the inactivated carboxyl-terminal conformation. This effect extends to TRPV1 and TRPV3 channels when glutamine is substituted with histidine at the corresponding position, increasing their sensitivity to PBC. While PBC alone does not induce TRPV2 opening, its combination with 2-aminoethoxydiphenyl borate enables the channel to adopt an intermediate, potentiated state. Our results offer insights into potential therapeutic advancements for TRPV2 through this pocket.
Collapse
Affiliation(s)
- Julia A Rocereta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Toni Sturhahn
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tabea C Fricke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Talyzina IA, Nadezhdin KD, Sobolevsky AI. Forty sites of TRP channel regulation. Curr Opin Chem Biol 2025; 84:102550. [PMID: 39615427 PMCID: PMC11788071 DOI: 10.1016/j.cbpa.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Transient receptor potential (TRP) channels are polymodal molecular sensors that integrate chemical, thermal, mechanical and electrical stimuli and convert them into ionic currents that regulate senses of taste, smell, vision, hearing, touch and contribute to perception of temperature and pain. TRP channels are implicated in the pathogenesis of numerous human diseases, including cancers, and represent one of the most ardently pursued drug targets. Recent advances in structural biology, particularly associated with the cryo-EM "resolution revolution", yielded numerous TRP channel structures in complex with ligands that might have therapeutic potential. In this review, we describe the recent progress in TRP channel structural biology, focusing on the description of identified binding sites for small molecules, their relationship to membrane lipids, and interaction of TRP channels with other proteins. The characterized binding sites and interfaces create a diversity of druggable targets and provide a roadmap to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
- Irina A Talyzina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Saadabadi A, Wilkman L, Rantanen M, Koivisto AP, Salo-Ahen OMH. Structure- and Ligand-Based Virtual Screening for Identification of Novel TRPV4 Antagonists. Molecules 2024; 30:100. [PMID: 39795157 PMCID: PMC11722135 DOI: 10.3390/molecules30010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches. Since a high-resolution experimental structure of the human TRPV4 (hTRPV4) was not available during this study, we used a comparative model of hTRPV4 for the structure-based screening by molecular docking. The ligand-based virtual screening was performed using the pharmacophoric features of two known TRPV4 antagonists. Five potential hits were selected based on either the binding stability or the pharmacophore match, and their effect on hTRPV4 was tested using a FLIPRtetra assay. All tested compounds inhibited hTRPV4 at 30 µM, with compound Z1213735368 showing an IC50 of 8 µM at a concentration of 10 µM. Furthermore, natural stilbenoids, known to modulate other TRP channels, were evaluated for their hTRPV4 binding and inhibitory potential. The findings provide insight into the structural determinants of hTRPV4 modulation and may facilitate further efforts in developing therapeutic hTRPV4 ligands.
Collapse
Affiliation(s)
- Atefeh Saadabadi
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Linda Wilkman
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Marja Rantanen
- Pain Therapy Area, Orion Pharma, Tengströminkatu 8, 20360 Turku, Finland; (M.R.); (A.-P.K.)
| | - Ari-Pekka Koivisto
- Pain Therapy Area, Orion Pharma, Tengströminkatu 8, 20360 Turku, Finland; (M.R.); (A.-P.K.)
| | - Outi M. H. Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
5
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
6
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
8
|
Pumroy RA, De Jesús-Pérez JJ, Protopopova AD, Rocereta JA, Fluck EC, Fricke T, Lee BH, Rohacs T, Leffler A, Moiseenkova-Bell V. Molecular details of ruthenium red pore block in TRPV channels. EMBO Rep 2024; 25:506-523. [PMID: 38225355 PMCID: PMC10897480 DOI: 10.1038/s44319-023-00050-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna D Protopopova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia A Rocereta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tabea Fricke
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Bo-Hyun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju, Korea
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Andreas Leffler
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
De Jesús-Pérez JJ, Gabrielle M, Raheem S, Fluck EC, Rohacs T, Moiseenkova-Bell VY. Structural mechanism of TRPV5 inhibition by econazole. Structure 2024; 32:148-156.e5. [PMID: 38141613 PMCID: PMC10872542 DOI: 10.1016/j.str.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
The calcium-selective TRPV5 channel activated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in calcium homeostasis. Recently, cryoelectron microscopy (cryo-EM) provided molecular details of TRPV5 modulation by exogenous and endogenous molecules. However, the details of TRPV5 inhibition by the antifungal agent econazole (ECN) remain elusive due to the low resolution of the currently available structure. In this study, we employ cryo-EM to comprehensively examine how the ECN inhibits TRPV5. By combining our structural findings with site-directed mutagenesis, calcium measurements, electrophysiology, and molecular dynamics simulations, we determined that residues F472 and L475 on the S4 helix, along with residue W495 on the S5 helix, collectively constitute the ECN-binding site. Additionally, the structure of TRPV5 in the presence of ECN and PI(4,5)P2, which does not show the bound activator, reveals a potential inhibition mechanism in which ECN competes with PI(4,5)P2, preventing the latter from binding, and ultimately pore closure.
Collapse
Affiliation(s)
- José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sumiyya Raheem
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
11
|
Melancon K, Pliushcheuskaya P, Meiler J, Künze G. Targeting ion channels with ultra-large library screening for hit discovery. Front Mol Neurosci 2024; 16:1336004. [PMID: 38249296 PMCID: PMC10796734 DOI: 10.3389/fnmol.2023.1336004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Ion channels play a crucial role in a variety of physiological and pathological processes, making them attractive targets for drug development in diseases such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the importance of ion channels in drug discovery, the vastness of chemical space and the complexity of ion channels pose significant challenges for identifying drug candidates. The use of in silico methods in drug discovery has dramatically reduced the time and cost of drug development and has the potential to revolutionize the field of medicine. Recent advances in computer hardware and software have enabled the screening of ultra-large compound libraries. Integration of different methods at various scales and dimensions is becoming an inevitable trend in drug development. In this review, we provide an overview of current state-of-the-art computational chemistry methodologies for ultra-large compound library screening and their application to ion channel drug discovery research. We discuss the advantages and limitations of various in silico techniques, including virtual screening, molecular mechanics/dynamics simulations, and machine learning-based approaches. We also highlight several successful applications of computational chemistry methodologies in ion channel drug discovery and provide insights into future directions and challenges in this field.
Collapse
Affiliation(s)
- Kortney Melancon
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
13
|
Gu Y, Li Y, Ma B, Ren K, Cao C, Gu N. Probing Conformational Transition of TRPV5 Induced by Mechanical Force Using Coarse-Grained Molecular Dynamics. J Chem Inf Model 2023; 63:6768-6777. [PMID: 37871325 DOI: 10.1021/acs.jcim.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential vanilloid 5 (TRPV5) is a calcium-selective TRP channel that plays a crucial role in calcium homeostasis regulation. However, there are still many issues that need to be addressed, such as the specific conformational transition of TRPV5 and the specific functions of each structure in cation gating. Here, we build a model of the calcium ion transport protein from Xenopus oocytes in the presence of the lipid membrane and water molecules. Due to the activation process of ion channels are global and collective, coarse-grained molecular dynamics (CG-MD) simulations of the potential of mean force along the conformational transition pathway are performed. The CG-MD simulations show that the S6 helix plays a vital role in the TRPV5 conformational transition. Most importantly, these simulated trajectories indicate that the activation of ion channels happens before the extension and rotation of S6 helices, revealing that TRPV5 has a unique gating mechanism different from TRPV6. The present work demonstrates how the mechanical force acting on the S6 helix opens the TRPV5 channel gates. These results deepen our understanding of the TRPV5 gating mechanism.
Collapse
Affiliation(s)
- Yinwei Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Baocai Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ke Ren
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
- Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Lee BH, De Jesús Pérez JJ, Moiseenkova-Bell V, Rohacs T. Structural basis of the activation of TRPV5 channels by long-chain acyl-Coenzyme-A. Nat Commun 2023; 14:5883. [PMID: 37735536 PMCID: PMC10514044 DOI: 10.1038/s41467-023-41577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Long-chain acyl-coenzyme A (LC-CoA) is a crucial metabolic intermediate that plays important cellular regulatory roles, including activation and inhibition of ion channels. The structural basis of ion channel regulation by LC-CoA is not known. Transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6) are epithelial calcium-selective ion channels. Here, we demonstrate that LC-CoA activates TRPV5 and TRPV6 in inside-out patches, and both exogenously supplied and endogenously produced LC-CoA can substitute for the natural ligand phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in maintaining channel activity in intact cells. Utilizing cryo-electron microscopy, we determined the structure of LC-CoA-bound TRPV5, revealing an open configuration with LC-CoA occupying the same binding site as PI(4,5)P2 in previous studies. This is consistent with our finding that PI(4,5)P2 could not further activate the channels in the presence of LC-CoA. Our data provide molecular insights into ion channel regulation by a metabolic signaling molecule.
Collapse
Affiliation(s)
- Bo-Hyun Lee
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
- Department of Physiology, Gyeongsang National University Medical School, Jinju, Korea
| | - José J De Jesús Pérez
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
15
|
Alnammi M, Liu S, Ericksen SS, Ananiev GE, Voter AF, Guo S, Keck JL, Hoffmann FM, Wildman SA, Gitter A. Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries. J Chem Inf Model 2023; 63:5513-5528. [PMID: 37625010 PMCID: PMC10538940 DOI: 10.1021/acs.jcim.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Traditional small-molecule drug discovery is a time-consuming and costly endeavor. High-throughput chemical screening can only assess a tiny fraction of drug-like chemical space. The strong predictive power of modern machine-learning methods for virtual chemical screening enables training models on known active and inactive compounds and extrapolating to much larger chemical libraries. However, there has been limited experimental validation of these methods in practical applications on large commercially available or synthesize-on-demand chemical libraries. Through a prospective evaluation with the bacterial protein-protein interaction PriA-SSB, we demonstrate that ligand-based virtual screening can identify many active compounds in large commercial libraries. We use cross-validation to compare different types of supervised learning models and select a random forest (RF) classifier as the best model for this target. When predicting the activity of more than 8 million compounds from Aldrich Market Select, the RF substantially outperforms a naïve baseline based on chemical structure similarity. 48% of the RF's 701 selected compounds are active. The RF model easily scales to score one billion compounds from the synthesize-on-demand Enamine REAL database. We tested 68 chemically diverse top predictions from Enamine REAL and observed 31 hits (46%), including one with an IC50 value of 1.3 μM.
Collapse
Affiliation(s)
- Moayad Alnammi
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
- Department
of Information and Computer Science, King
Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Shengchao Liu
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| | - Spencer S. Ericksen
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Gene E. Ananiev
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Andrew F. Voter
- Department
of Biomolecular Chemistry, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Song Guo
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - James L. Keck
- Department
of Biomolecular Chemistry, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - F. Michael Hoffmann
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
- McArdle Laboratory
for Cancer Research, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Scott A. Wildman
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Anthony Gitter
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
- Department
of Biostatistics and Medical Informatics, University of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| |
Collapse
|
16
|
Luo ZH, Ma JX, Zhang W, Tian AX, Gong SW, Li Y, Lai YX, Ma XL. Alterations in the microenvironment and the effects produced of TRPV5 in osteoporosis. J Transl Med 2023; 21:327. [PMID: 37198647 DOI: 10.1186/s12967-023-04182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.
Collapse
Affiliation(s)
- Zhi-Heng Luo
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ai-Xian Tian
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Shu-Wei Gong
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
17
|
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun 2023; 14:2451. [PMID: 37117175 PMCID: PMC10147690 DOI: 10.1038/s41467-023-38162-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Feng S, Pumroy RA, Protopopova AD, Moiseenkova‐Bell VY, Im W. Modulation of TRPV2 by endogenous and exogenous ligands: A computational study. Protein Sci 2023; 32:e4490. [PMID: 36327382 PMCID: PMC9794027 DOI: 10.1002/pro.4490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C-terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor-like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Ruth A. Pumroy
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Anna D. Protopopova
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Wonpil Im
- Departments of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
19
|
Appiah-Kubi P, Iwuchukwu EA, Soliman MES. Structure-based identification of novel scaffolds as potential HIV-1 entry inhibitors involving CCR5. J Biomol Struct Dyn 2022; 40:13115-13126. [PMID: 34569417 DOI: 10.1080/07391102.2021.1982006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C-C chemokine receptor 5 (CCR5), which is part of the chemokine receptor family, is a member of the G protein-coupled receptor superfamily. The interactions of CCR5 with HIV-1 during viral entry position it as an effective therapeutic target for designing potent antiviral therapies. The small-molecule Maraviroc was approved by the FDA as a CCR5 drug in 2007, while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the continual identification of potential CCR5 inhibitors is, therefore, warranted. In this study, a structure-based discovery approach has been utilised to screen and retrieved novel potential CCR5 inhibitors from the Asinex antiviral compound (∼ 8,722) database. Explicit lipid-bilayer molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were further performed for the top compounds. A total of 23 structurally diverse compounds with binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543, maintained stability at the CCR5 binding site. Furthermore, these compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the predicted in silico physicochemical and pharmacokinetic descriptors of the selected compounds were within the acceptable range for drug-likeness. The results suggest positive indications that the identified molecules may represent promising CCR5 entry inhibitors. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of effective HIV-1 therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emmanuel Amarachi Iwuchukwu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Zhu H, Zhang Y, Li W, Huang N. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug Discovery in the Past Fifteen Years. Int J Mol Sci 2022; 23:15961. [PMID: 36555602 PMCID: PMC9781938 DOI: 10.3390/ijms232415961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Structure-based virtual screening (SBVS), also known as molecular docking, has been increasingly applied to discover small-molecule ligands based on the protein structures in the early stage of drug discovery. In this review, we comprehensively surveyed the prospective applications of molecular docking judged by solid experimental validations in the literature over the past fifteen years. Herein, we systematically analyzed the novelty of the targets and the docking hits, practical protocols of docking screening, and the following experimental validations. Among the 419 case studies we reviewed, most virtual screenings were carried out on widely studied targets, and only 22% were on less-explored new targets. Regarding docking software, GLIDE is the most popular one used in molecular docking, while the DOCK 3 series showed a strong capacity for large-scale virtual screening. Besides, the majority of identified hits are promising in structural novelty and one-quarter of the hits showed better potency than 1 μM, indicating that the primary advantage of SBVS is to discover new chemotypes rather than highly potent compounds. Furthermore, in most studies, only in vitro bioassays were carried out to validate the docking hits, which might limit the further characterization and development of the identified active compounds. Finally, several successful stories of SBVS with extensive experimental validations have been highlighted, which provide unique insights into future SBVS drug discovery campaigns.
Collapse
Affiliation(s)
- Hui Zhu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yulin Zhang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wei Li
- RPXDs (Suzhou) Co., Ltd., Suzhou 215028, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
21
|
Rohacs T, Fluck EC, De Jesús-Pérez JJ, Moiseenkova-Bell VY. What structures did, and did not, reveal about the function of the epithelial Ca 2+ channels TRPV5 and TRPV6. Cell Calcium 2022; 106:102620. [PMID: 35834842 PMCID: PMC11500022 DOI: 10.1016/j.ceca.2022.102620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
22
|
Oken AC, Krishnamurthy I, Savage JC, Lisi NE, Godsey MH, Mansoor SE. Molecular Pharmacology of P2X Receptors: Exploring Druggable Domains Revealed by Structural Biology. Front Pharmacol 2022; 13:925880. [PMID: 35784697 PMCID: PMC9248971 DOI: 10.3389/fphar.2022.925880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular ATP is a critical signaling molecule that is found in a wide range of concentrations across cellular environments. The family of nonselective cation channels that sense extracellular ATP, termed P2X receptors (P2XRs), is composed of seven subtypes (P2X1-P2X7) that assemble as functional homotrimeric and heterotrimeric ion channels. Each P2XR is activated by a distinct concentration of extracellular ATP, spanning from high nanomolar to low millimolar. P2XRs are implicated in a variety of physiological and pathophysiological processes in the cardiovascular, immune, and central nervous systems, corresponding to the spatiotemporal expression, regulation, and activation of each subtype. The therapeutic potential of P2XRs is an emerging area of research in which structural biology has seemingly exceeded medicinal chemistry, as there are several published P2XR structures but currently no FDA-approved drugs targeting these ion channels. Cryogenic electron microscopy is ideally suited to facilitate structure-based drug design for P2XRs by revealing and characterizing novel ligand-binding sites. This review covers structural elements in P2XRs including the extracellular orthosteric ATP-binding site, extracellular allosteric modulator sites, channel pore, and cytoplasmic substructures, with an emphasis on potential therapeutic ligand development.
Collapse
Affiliation(s)
- Adam C. Oken
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan C. Savage
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Nicolas E. Lisi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Michael H. Godsey
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Steven E. Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
23
|
Sun MY, Zhang X, Yu PC, Liu D, Yang Y, Cui WW, Yang XN, Lei YT, Li XH, Wang WH, Cao P, Wang HS, Zhu MX, Li CZ, Wang R, Fan YZ, Yu Y. Vanilloid agonist-mediated activation of TRPV1 channels requires coordinated movement of the S1-S4 bundle rather than a quiescent state. Sci Bull (Beijing) 2022; 67:1062-1076. [PMID: 36546250 DOI: 10.1016/j.scib.2022.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
Transient receptor potential vanilloid1 (TRPV1) channel plays an important role in a wide range of physiological and pathological processes, and a comprehensive understanding of TRPV1 gating will create opportunities for therapeutic intervention. Recent incredible advances in cryo-electron microscopy (cryo-EM) have yielded high-resolution structures of all TRPV subtypes (TRPV1-6) and all of them share highly conserved six transmembrane (TM) domains (S1-S6). As revealed by the open structures of TRPV1 in the presence of a bound vanilloid agonist (capsaicin or resiniferatoxin), TM helicesS1 to S4 form a bundle that remains quiescent during channel activation, highlighting differences in the gating mechanism of TRPV1 and voltage-gated ion channels. Here, however, we argue that the structural dynamics rather than quiescence of S1-S4 domains is necessary for capsaicin-mediated activation of TRPV1. Using fluorescent unnatural amino acid (flUAA) incorporation and voltage-clamp fluorometry (VCF) analysis, we directly observed allostery of the S1-S4 bundle upon capsaicin binding. Covalent occupation of VCF-identified sites, single-channel recording, cell apoptosis analysis, and exploration of the role of PSFL828, a novel non-vanilloid agonist we identified, have collectively confirmed the essential role of this coordinated S1-S4 motility in capsaicin-mediated activation of TRPV1. This study concludes that, in contrast to cryo-EM structural studies, vanilloid agonists are also required for S1-S4 movement during TRPV1 activation. Redefining the gating process of vanilloid agonists and the discovery of new non-vanilloid agonists will allow the evaluation of new strategies aimed at the development of TRPV1 modulators.
Collapse
Affiliation(s)
- Meng-Yang Sun
- School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Zhang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng-Cheng Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Di Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Wen Cui
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Na Yang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yun-Tao Lei
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Hua Li
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Rui Wang
- School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai 200062, China.
| | - Ye Yu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Yelshanskaya MV, Sobolevsky AI. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Front Pharmacol 2022; 13:900623. [PMID: 35652046 PMCID: PMC9149226 DOI: 10.3389/fphar.2022.900623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Vanilloid-subfamily TRP channels TRPV1-6 play important roles in various physiological processes and are implicated in numerous human diseases. Advances in structural biology, particularly the "resolution revolution" in cryo-EM, have led to breakthroughs in molecular characterization of TRPV channels. Structures with continuously improving resolution uncover atomic details of TRPV channel interactions with small molecules and protein-binding partners. Here, we provide a classification of structurally characterized binding sites in TRPV channels and discuss the progress that has been made by structural biology combined with mutagenesis, functional recordings, and molecular dynamics simulations toward understanding of the molecular mechanisms of ligand action. Given the similarity in structural architecture of TRP channels, 16 unique sites identified in TRPV channels may be shared between TRP channel subfamilies, although the chemical identity of a particular ligand will likely depend on the local amino-acid composition. The characterized binding sites and molecular mechanisms of ligand action create a diversity of druggable targets to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Olivet J, Maseko SB, Volkov AN, Salehi-Ashtiani K, Das K, Calderwood MA, Twizere JC, Gorgulla C. A systematic approach to identify host targets and rapidly deliver broad-spectrum antivirals. Mol Ther 2022; 30:1797-1800. [PMID: 35231394 PMCID: PMC8884476 DOI: 10.1016/j.ymthe.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Julien Olivet
- Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven (KU Leuven), Leuven, Belgium; Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Free University of Brussels (VUB), Brussels, Belgium
| | | | - Kalyan Das
- Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium; Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liège, Gembloux, Belgium.
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Fluck EC, Yazici AT, Rohacs T, Moiseenkova-Bell VY. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep 2022; 39:110737. [PMID: 35476976 PMCID: PMC9088182 DOI: 10.1016/j.celrep.2022.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.
Collapse
Affiliation(s)
- Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Gong Z, Xie J, Chen L, Tang Q, Hu Y, Xu A, Wang Z. Integrative analysis of TRPV family to prognosis and immune infiltration in renal clear cell carcinoma. Channels (Austin) 2022; 16:84-96. [PMID: 35389815 PMCID: PMC8993079 DOI: 10.1080/19336950.2022.2058733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The transient receptor potential vanilloid (TRPV) family has been preliminarily discovered to play an important role in various cancers, including clear cell renal cell carcinoma (ccRCC), which is closely associated with immune infiltration. However, the expression and prognosis of TRPV family and tumor-infiltrating immune cells in ccRCC are obscure. This study aimed to explore the prognostic and therapeutic value of the TRPV family expression in ccRCC from the perspective of bioinformatics. We analyzed the transcriptome and clinical data of kidney renal clear cell carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) database. A clustering analysis and immune infiltration analysis were conducted to investigate the influence of the TRPV family genes on ccRCC. Our study found that the TRPV family is an excellent prognostic stratification for ccRCC. Among them, TRPV3 is the most significant prognostic marker of ccRCC. In addition, we performed a drug sensitivity analysis to identify the drugs with the strongest association with TRPV3. As a result, the TRPV family, particularly TRPV3, can act as a prognostic biomarker in ccRCC to determine prognosis and levels of immune infiltration.
Collapse
Affiliation(s)
- Zixuan Gong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
29
|
Zhang K, Julius D, Cheng Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 2021; 184:5138-5150.e12. [PMID: 34496225 DOI: 10.1016/j.cell.2021.08.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P, Hussain S. Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci 2021; 42:657-674. [PMID: 34270922 DOI: 10.1016/j.tips.2021.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (MPs) are important drug targets across most fields of medicine, but historically have posed a major challenge for drug discovery due to difficulties in producing them in functional forms. We review the state of the art in drug discovery strategies using recombinant multipass MPs, and outline methods to successfully express, stabilize, and formulate them for small-molecule and monoclonal antibody therapeutics development. Advances in structure-based drug design and high-throughput screening are allowing access to previously intractable targets such as ion channels and transporters, propelling the field towards the development of highly specific therapies targeting desired conformations.
Collapse
Affiliation(s)
- Ellen Gulezian
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | | | - Janna Bednenko
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Claudia Zafra
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Yihui Zhang
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Paul Colussi
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Sunyia Hussain
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA.
| |
Collapse
|
31
|
Zhao Y, McVeigh BM, Moiseenkova-Bell VY. Structural Pharmacology of TRP Channels. J Mol Biol 2021; 433:166914. [PMID: 33676926 PMCID: PMC8338738 DOI: 10.1016/j.jmb.2021.166914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.
Collapse
Affiliation(s)
- Yaxian Zhao
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bridget M McVeigh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|
33
|
Cao E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 2021; 152:133640. [PMID: 31972006 PMCID: PMC7054860 DOI: 10.1085/jgp.201811998] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are evolutionarily ancient sensory proteins that detect and integrate a wide range of physical and chemical stimuli. TRP channels are fundamental for numerous biological processes and are therefore associated with a multitude of inherited and acquired human disorders. In contrast to many other major ion channel families, high-resolution structures of TRP channels were not available before 2013. Remarkably, however, the subsequent “resolution revolution” in cryo-EM has led to an explosion of TRP structures in the last few years. These structures have confirmed that TRP channels assemble as tetramers and resemble voltage-gated ion channels in their overall architecture. But beyond the relatively conserved transmembrane core embedded within the lipid bilayer, each TRP subtype appears to be endowed with a unique set of soluble domains that may confer diverse regulatory mechanisms. Importantly, TRP channel structures have revealed sites and mechanisms of action of numerous synthetic and natural compounds, as well as those for endogenous ligands such as lipids, Ca2+, and calmodulin. Here, I discuss these recent findings with a particular focus on the conserved transmembrane region and how these structures may help to rationally target this important class of ion channels for the treatment of numerous human conditions.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
34
|
Fluck EC, Pumroy RA, Moiseenkova-Bell VY. Production and purification of TRPV2 and TRPV5 for structural and functional studies. Methods Enzymol 2021; 653:49-74. [PMID: 34099181 PMCID: PMC8610384 DOI: 10.1016/bs.mie.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential (TRP) vanilloid 2 (TRPV2) and TRP vanilloid 5 (TRPV5) cation channels play an important role in various physiological and pathophysiological processes. The heterologous expression and purification of these channels is critical for functional and structural characterization of these important proteins. Full-length rat TRPV2 and rabbit TRPV5 can both be expressed in Saccharomyces cerevisiae and affinity purified using the 1D4 epitope and antibody to yield pure, functional channels. Further, these channels can be reconstituted into lipid nanodiscs for a more functionally relevant environment. Presented here are protocols for the expression of full-length rat TRPV2 and rabbit TRPV5 in Saccharomyces cerevisiae, their affinity purification, and their reconstitution into nanodiscs for structural and functional studies.
Collapse
Affiliation(s)
- Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Zheng W, Wen H. Predicting lipid and ligand binding sites in TRPV1 channel by molecular dynamics simulation and machine learning. Proteins 2021; 89:966-977. [PMID: 33739482 DOI: 10.1002/prot.26075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
As a key cellular sensor, the TRPV1 channel undergoes a gating transition from a closed state to an open state in response to many physical and chemical stimuli. This transition is regulated by small-molecule ligands including lipids and various agonists/antagonists, but the underlying molecular mechanisms remain obscure. Thanks to recent revolution in cryo-electron microscopy, a growing list of new structures of TRPV1 and other TRPV channels have been solved in complex with various ligands including lipids. Toward elucidating how ligand binding correlates with TRPV1 gating, we have performed extensive molecular dynamics simulations (with cumulative time of 20 μs), starting from high-resolution structures of TRPV1 in both the closed and open states. By comparing between the open and closed state ensembles, we have identified state-dependent binding sites for small-molecule ligands in general and lipids in particular. We further use machine learning to predict top ligand-binding sites as important features to classify the closed vs open states. The predicted binding sites are thoroughly validated by matching homologous sites in all structures of TRPV channels bound to lipids and other ligands, and with previous functional/mutational studies of ligand binding in TRPV1. Taken together, this study has integrated rich structural, dynamic, and functional data to inform future design of small-molecular drugs targeting TRPV1.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
36
|
Ribet ABP, Ng PY, Pavlos NJ. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front Cell Dev Biol 2021; 9:644986. [PMID: 33718388 PMCID: PMC7952445 DOI: 10.3389/fcell.2021.644986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular ‘gatekeepers’ to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the ‘ins and outs’ of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Amy B P Ribet
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
37
|
Zubcevic L. Temperature‐sensitive transient receptor potential vanilloid channels: structural insights into ligand‐dependent activation. Br J Pharmacol 2020; 179:3542-3559. [DOI: 10.1111/bph.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry and Molecular Biology The University of Kansas School of Medicine Kansas City KS USA
| |
Collapse
|
38
|
Huffer KE, Aleksandrova AA, Jara-Oseguera A, Forrest LR, Swartz KJ. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. eLife 2020; 9:e58660. [PMID: 32804077 PMCID: PMC7431192 DOI: 10.7554/elife.58660] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
The recent proliferation of published TRP channel structures provides a foundation for understanding the diverse functional properties of this important family of ion channel proteins. To facilitate mechanistic investigations, we constructed a structure-based alignment of the transmembrane domains of 120 TRP channel structures. Comparison of structures determined in the absence or presence of activating stimuli reveals similar constrictions in the central ion permeation pathway near the intracellular end of the S6 helices, pointing to a conserved cytoplasmic gate and suggesting that most available structures represent non-conducting states. Comparison of the ion selectivity filters toward the extracellular end of the pore supports existing hypotheses for mechanisms of ion selectivity. Also conserved to varying extents are hot spots for interactions with hydrophobic ligands, lipids and ions, as well as discrete alterations in helix conformations. This analysis therefore provides a framework for investigating the structural basis of TRP channel gating mechanisms and pharmacology, and, despite the large number of structures included, reveals the need for additional structural data and for more functional studies to establish the mechanistic basis of TRP channel function.
Collapse
Affiliation(s)
- Katherine E Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of HealthBethesdaUnited States
| | - Antoniya A Aleksandrova
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of HealthBethesdaUnited States
| | - Andrés Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of HealthBethesdaUnited States
| | - Lucy R Forrest
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
39
|
TRPV Subfamily (TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis. J Immunol Res 2020; 2020:2906845. [PMID: 32455137 PMCID: PMC7231094 DOI: 10.1155/2020/2906845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction TRPVs are a group of receptors with a channel activity predominantly permeable to Ca2+. This subfamily is involved in the development of gastrointestinal diseases such as ulcerative colitis (UC). The aim of the study was to characterize the gene and protein expression of the TRPV subfamily in UC patients and controls. Methods We determined by quantitative PCR the gene expression of TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6 in 45 UC patients (29 active UC and 16 remission UC) and 26 noninflamed controls. Protein expression was evaluated in 5 μm thick sections of formalin-fixed, paraffin-embedded tissue from 5 customized severe active UC patients and 5 control surgical specimens. Results TRPV2 gene expression was increased in the control group compared with active UC and remission patients (P = 0.002 and P = 0.05, respectively). TRPV3 gene expression was significantly higher in controls than in active UC patients (P = 0.002). The gene expression of TRPV4 was significantly higher in colonic tissue from patients with remission UC compared with active UC patients (P = 0.05) and controls (P = 0.005). TRPV5 had significantly higher mRNA levels in a control group compared with active UC patients (P = 0.02). The gene expression of TRPV6 was significantly higher in the colonic tissue from patients with active UC compared with the control group (P = 0.05). The protein expression of TRPV2 was upregulated in the mucosa and submucosa from the controls compared with the UC patients (P ≤ 0.003). The protein expression of TRPV3 and TRPV4 was upregulated in all intestinal layers from the controls compared with the UC patients (P < 0.001). TRPV5 was upregulated in the submucosa and serosa from the controls vs. UC patients (P < 0.001). TRPV6 was upregulated in all intestinal layers from the UC patients vs. controls (P ≤ 0.001). Conclusion The TRPV subfamily clearly showed a differential expression in the UC patients compared with the controls, suggesting their role in the pathophysiology of UC.
Collapse
|
40
|
Zhao S, Yudin Y, Rohacs T. Disease-associated mutations in the human TRPM3 render the channel overactive via two distinct mechanisms. eLife 2020; 9:e55634. [PMID: 32343227 PMCID: PMC7255801 DOI: 10.7554/elife.55634] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca2+ permeable non-selective cation channel activated by heat and chemical agonists such as pregnenolone sulfate and CIM0216. TRPM3 mutations in humans were recently reported to be associated with intellectual disability and epilepsy; the functional effects of those mutations, however, were not reported. Here, we show that both disease-associated mutations in the human TRPM3 render the channel overactive, but likely via different mechanisms. The Val to Met substitution in the S4-S5 loop induced a larger increase in basal activity and agonist sensitivity at room temperature than the Pro to Gln substitution in the extracellular segment of S6. In contrast, heat activation was increased more by the S6 mutant than by the S4-S5 segment mutant. Both mutants were inhibited by the TRPM3 antagonist primidone, suggesting a potential therapeutic intervention to treat this disease.
Collapse
Affiliation(s)
- Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| |
Collapse
|
41
|
Pumroy RA, Fluck EC, Ahmed T, Moiseenkova-Bell VY. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87:102168. [PMID: 32004816 DOI: 10.1016/j.ceca.2020.102168] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Tofayel Ahmed
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| |
Collapse
|