1
|
Frampton E, Som P, Hill B, Yu A, Naval-Sanchez M, Nefzger CM, Noordstra I, Gordon E, Schimmel L. Endothelial c-Src Mediates Neovascular Tuft Formation in Oxygen-Induced Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2239-2251. [PMID: 39332676 DOI: 10.1016/j.ajpath.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Vascular retinopathy, characterized by abnormal blood vessel growth in the retina, frequently results in vision impairment or loss. Neovascular tufts, a distinctive pathologic feature of this condition, are highly leaky blood vessel structures, exacerbating secondary complications. Despite their clinical significance, the mechanisms underlying tuft development are not fully elucidated, posing challenges for effective management and treatment of vascular retinopathy. This study investigates the role of cellular (c)-Src in neovascular tuft formation. Although c-Src is a pivotal regulator in developmental angiogenesis within the retinal vasculature, its specific role in governing pathologic retinal angiogenesis remains to be fully understood. Herein, the oxygen-induced retinopathy model was used for neovascular tuft formation in both Cre-mediated vascular-specific c-Src knockout mice and wild-type littermates. High-resolution imaging and analysis of isolated retinas were conducted. c-Src depletion demonstrated a significant reduction in neovascular tufts within the oxygen-induced retinopathy model. This decrease in tuft formation was observed independently of any alterations in cell death, cell proliferation, or cell adhesion, and the absence of c-Src did not impact tuft pericyte coverage and junctional morphology. These findings underline the critical role of c-Src in the pathogenesis of neovascular tufts in vascular retinopathy. Understanding the molecular mechanisms involving c-Src may offer valuable insights for the development of targeted therapies aimed at mitigating vision-threatening complications associated with retinopathy.
Collapse
Affiliation(s)
- Emmanuelle Frampton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Priyanka Som
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Brittany Hill
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Alexander Yu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Marina Naval-Sanchez
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Chistian M Nefzger
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Emma Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
3
|
Shih CP, Tang WC, Chen P, Chen BC. Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens. J Phys Chem B 2024; 128:8273-8289. [PMID: 39177503 PMCID: PMC11382282 DOI: 10.1021/acs.jpcb.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This Review explores the evolution, improvements, and recent applications of Light Sheet Fluorescence Microscopy (LSFM) in biological research using a high numerical aperture detection objective (lens) for imaging subcellular structures. The Review begins with an overview of the development of LSFM, tracing its evolution from its inception to its current state and emphasizing key milestones and technological advancements over the years. Subsequently, we will discuss various improvements of LSFM techniques, covering advancements in hardware such as illumination strategies, optical designs, and sample preparation methods that have enhanced imaging capabilities and resolution. The advancements in data acquisition and processing are also included, which provides a brief overview of the recent development of artificial intelligence. Fluorescence probes that were commonly used in LSFM will be highlighted, together with some insights regarding the selection of potential probe candidates for future LSFM development. Furthermore, we also discuss recent advances in the application of LSFM with a focus on high numerical aperture detection objectives for various biological studies. For sample preparation techniques, there are discussions regarding fluorescence probe selection, tissue clearing protocols, and some insights into expansion microscopy. Integrated setups such as adaptive optics, single objective modification, and microfluidics will also be some of the key discussion points in this Review. We hope that this comprehensive Review will provide a holistic perspective on the historical development, technical enhancements, and cutting-edge applications of LSFM, showcasing its pivotal role and future potential in advancing biological research.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Narotamo H, Silveira M, Franco CA. 3DVascNet: An Automated Software for Segmentation and Quantification of Mouse Vascular Networks in 3D. Arterioscler Thromb Vasc Biol 2024; 44:1584-1600. [PMID: 38779855 PMCID: PMC11208061 DOI: 10.1161/atvbaha.124.320672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Analysis of vascular networks is an essential step to unravel the mechanisms regulating the physiological and pathological organization of blood vessels. So far, most of the analyses are performed using 2-dimensional projections of 3-dimensional (3D) networks, a strategy that has several obvious shortcomings. For instance, it does not capture the true geometry of the vasculature and generates artifacts on vessel connectivity. These limitations are accepted in the field because manual analysis of 3D vascular networks is a laborious and complex process that is often prohibitive for large volumes. METHODS To overcome these issues, we developed 3DVascNet, a deep learning-based software for automated segmentation and quantification of 3D retinal vascular networks. 3DVascNet performs segmentation based on a deep learning model, and it quantifies vascular morphometric parameters such as vessel density, branch length, vessel radius, and branching point density. We tested the performance of 3DVascNet using a large data set of 3D microscopy images of mouse retinal blood vessels. RESULTS We demonstrated that 3DVascNet efficiently segments vascular networks in 3D and that vascular morphometric parameters capture phenotypes detected by using manual segmentation and quantification in 2 dimension. In addition, we showed that, despite being trained on retinal images, 3DVascNet has high generalization capability and successfully segments images originating from other data sets and organs. CONCLUSIONS Overall, we present 3DVascNet, a freely available software that includes a user-friendly graphical interface for researchers with no programming experience, which will greatly facilitate the ability to study vascular networks in 3D in health and disease. Moreover, the source code of 3DVascNet is publicly available, thus it can be easily extended for the analysis of other 3D vascular networks by other users.
Collapse
Affiliation(s)
- Hemaxi Narotamo
- Instituto de Sistemas e Robótica, LARSyS, Instituto Superior Técnico (H.N., M.S.), Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina (H.N., C.A.F.), Universidade de Lisboa, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal (H.N., C.A.F.)
| | - Margarida Silveira
- Instituto de Sistemas e Robótica, LARSyS, Instituto Superior Técnico (H.N., M.S.), Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio A. Franco
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina (H.N., C.A.F.), Universidade de Lisboa, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal (H.N., C.A.F.)
| |
Collapse
|
5
|
Krimpenfort LT, Garcia-Collado M, van Leeuwen T, Locri F, Luik AL, Queiro-Palou A, Kanatani S, André H, Uhlén P, Jakobsson L. Anatomy of the complete mouse eye vasculature explored by light-sheet fluorescence microscopy exposes subvascular-specific remodeling in development and pathology. Exp Eye Res 2023; 237:109674. [PMID: 37838300 DOI: 10.1016/j.exer.2023.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.
Collapse
Affiliation(s)
- Luc Thomas Krimpenfort
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Maria Garcia-Collado
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Tom van Leeuwen
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Anna-Liisa Luik
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Antonio Queiro-Palou
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Wang J, Baumgarten S, Balcewicz F, Johnen S, Walter P, Lohmann T. A workflow to visualize vertebrate eyes in 3D. PLoS One 2023; 18:e0290420. [PMID: 37607178 PMCID: PMC10443858 DOI: 10.1371/journal.pone.0290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE To establish a workflow to visualize the surgical anatomy in 3D based on histological data of eyes of experimental animals for improving the planning of complex surgical procedures. METHODS Four C57BL/6J wild-type(wt) mouse eyes, three Brown Norway rat eyes and four Chinchilla Bastard rabbit eyes were enucleated and processed for standard histology with serial sections and hematoxylin and eosin staining. Image stacks were processed to obtain a representation of the eye anatomy in 3D. In addition, virtual image stacks and 3D point clouds were generated by processing sagittal sections of eyes with stepwise 180° rotation and projection around the eye axis to construct a rotationally symmetric 3D model from one single sagittal section. RESULTS Serial sections of whole eyes of mice, rats and rabbits showed significant artifacts interfering with a practical image stack generation and straightforward 3D reconstruction despite the application of image registration techniques. A workflow was established to obtain a 3D image of the eye based on virtual image stacks and point cloud generation by rotation of a single sagittal section of the eye around the symmetry axis. By analyzing the tissue shrinkage during histological processing true biometric reconstructions of the eyes were feasible making the resulting model usable for 3D modeling and simulation, e.g. for planning of complex surgical procedures in different species. CONCLUSION Because serial sections of the eye with standard histological protocols yielded too many artifacts for a straightforward 3D visualization we reconstructed a pseudorealistic 3D model based on virtual image stacks and point cloud generation calculated from a single sagittal section of the eye. Such a model detailing microscopic structures of the whole eye will allow for a specific planning of surgical procedures in small animal eyes in order to prevent surgical complications in a very early stage of an experiment and it will support the design and development of complex intraocular implants. It will therefore be helpful in surgical teaching and improve laboratory animal welfare by an expected reduction of experimental animal numbers. Further processing including integration of mechanical tissue properties is needed to convert these 3D models into a practical virtual reality teaching and simulation platform for eyes of several species.
Collapse
Affiliation(s)
- Jiayun Wang
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sabine Baumgarten
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | | | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Tibor Lohmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Campos Pamplona C, Moers C, Leuvenink HGD, van Leeuwen LL. Expanding the Horizons of Pre-Transplant Renal Vascular Assessment Using Ex Vivo Perfusion. Curr Issues Mol Biol 2023; 45:5437-5459. [PMID: 37504261 PMCID: PMC10378498 DOI: 10.3390/cimb45070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, immense efforts have focused on improving the preservation of (sub)optimal donor organs by means of ex vivo perfusion, which enables the opportunity for organ reconditioning and viability assessment. However, there is still no biomarker that correlates with renal viability. Therefore, it is essential to explore new techniques for pre-transplant assessment of organ quality to guarantee successful long-term transplantation outcomes. The renal vascular compartment has received little attention in machine perfusion studies. In vivo, proper renal vascular and endothelial function is essential for maintaining homeostasis and long-term graft survival. In an ex vivo setting, little is known about vascular viability and its implications for an organ's suitability for transplant. Seeing that endothelial damage is the first step in a cascade of disruptions and maintaining homeostasis is crucial for positive post-transplant outcomes, further research is key to clarifying the (patho)physiology of the renal vasculature during machine perfusion. In this review, we aim to summarize key aspects of renal vascular physiology, describe the role of the renal vasculature in pathophysiological settings, and explain how ex vivo perfusion plays a role in either unveiling or targeting such processes. Additionally, we discuss potentially new vascular assessment tools during ex vivo renal perfusion.
Collapse
Affiliation(s)
- Carolina Campos Pamplona
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
8
|
Ma XH, Feng WY, Xiao K, Zhong Z, Fei P, Zhao Y, Sun XF. Detection of Choroidal Neovascularization Using Optical Tissue Transparency. Transl Vis Sci Technol 2023; 12:10. [PMID: 37318439 PMCID: PMC10278551 DOI: 10.1167/tvst.12.6.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Purpose Optical tissue transparency (OTT) provides a tool for visualizing the entire tissue block. This study provides insights into the potential value of OTT with light-sheet fluorescence microscopy (LSFM) in detecting choroidal neovascularization (CNV) lesions. Methods OTT with LSFM, hematoxylin and eosin (H&E) staining of paraffin sections, choroidal flatmount immunofluorescence, and optical coherence tomography angiography (OCTA) were used to obtain images of CNV. We determined the rate of change as (Data of week 1 - Data of week 2)/Data of week 1 × 100%. Finally, we compared the rate of change acquired from OTT with LSFM and the other methodologies. Results We found that OTT with LSFM can realize three-dimensional (3D) visualizations of the entire CNV. The results showed that the decline in the rate of change from week 1 to week 2 after laser photocoagulation was 33.05% with OTT, 53.01% with H&E staining, 48.11% with choroidal flatmount, 24.06% with OCTA (B-scan), 18.08% with OCTA (en face), 10.98% with OCTA (3D reconstruction), and 7.74% with OCTA (vessel diameter index). Conclusions OTT with LSFM will continue to be an invaluable resource for investigators to detect more visualized and quantified information regarding CNV. Translational Relevance OTT with LSFM now serves as a tool for detecting CNV in mice, and it may undergo human clinical trials in the future.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Wen-Yang Feng
- School of Optical and Electronic Information–Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ke Xiao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Peng Fei
- School of Optical and Electronic Information–Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xu-Fang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
9
|
Zhang Q, Yang Y, Cao KJ, Chen W, Paidi S, Xia CH, Kramer RH, Gong X, Ji N. Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy. eLife 2023; 12:84853. [PMID: 37039777 PMCID: PMC10089658 DOI: 10.7554/elife.84853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
The retina, behind the transparent optics of the eye, is the only neural tissue whose physiology and pathology can be non-invasively probed by optical microscopy. The aberrations intrinsic to the mouse eye, however, prevent high-resolution investigation of retinal structure and function in vivo. Optimizing the design of a two-photon fluorescence microscope (2PFM) and sample preparation procedure, we found that adaptive optics (AO), by measuring and correcting ocular aberrations, is essential for resolving putative synaptic structures and achieving three-dimensional cellular resolution in the mouse retina in vivo. Applying AO-2PFM to longitudinal retinal imaging in transgenic models of retinal pathology, we characterized microvascular lesions with sub-capillary details in a proliferative vascular retinopathy model, and found Lidocaine to effectively suppress retinal ganglion cell hyperactivity in a retinal degeneration model. Tracking structural and functional changes at high-resolution longitudinally, AO-2PFM enables microscopic investigations of retinal pathology and pharmacology for disease diagnosis and treatment in vivo.
Collapse
Affiliation(s)
- Qinrong Zhang
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, United States
| | - Kevin J Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
| | - Wei Chen
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Santosh Paidi
- School of Optometry, University of California, Berkeley, United States
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
| | - Na Ji
- Department of Physics, University of California, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States
- Vision Science Program, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
10
|
Li Y, Lu S, Zhang Y, Li J, Xiong L. High-Resolution Imaging of the Ocular Vasculature of Conjunctivitis in Mice Using Highly Bright Polymer Dots. Adv Healthc Mater 2022; 11:e2200978. [PMID: 36027786 DOI: 10.1002/adhm.202200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Ocular diseases are mainly caused by vascular aberrations in the eye, and accurate imaging and analysis of the ocular vascular structure is crucial. In this study, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (PFBT) polymer dots (Pdots), with the advantages of easy synthesis, high brightness, and low toxicity, are used as nanoprobes to perform high-resolution imaging of the vasculature of the eyeball and optic nerve. Moreover, rapid imaging of the choroidal microvessels is carried out by stereoscopic fluorescence microscopy with a resolution of up to 1.6 µm. The comprehensive 3D vascular information of retinal aorta and optic nerve microvessels is obtained by combining tissue clearing and multiphoton microscopy. In addition, the vascular density of Schlemm's canal and iris blood vessels is compared between the conjunctivitis mice and the normal mice. These results suggest that PFBT Pdots have great application potential in the fast and accurate imaging of ocular diseases.
Collapse
Affiliation(s)
- Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shuting Lu
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
11
|
Asrar H, Tucker AS. Endothelial cells during craniofacial development: Populating and patterning the head. Front Bioeng Biotechnol 2022; 10:962040. [PMID: 36105604 PMCID: PMC9465086 DOI: 10.3389/fbioe.2022.962040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Major organs and tissues require close association with the vasculature during development and for later function. Blood vessels are essential for efficient gas exchange and for providing metabolic sustenance to individual cells, with endothelial cells forming the basic unit of this complex vascular framework. Recent research has revealed novel roles for endothelial cells in mediating tissue morphogenesis and differentiation during development, providing an instructive role to shape the tissues as they form. This highlights the importance of providing a vasculature when constructing tissues and organs for tissue engineering. Studies in various organ systems have identified important signalling pathways crucial for regulating the cross talk between endothelial cells and their environment. This review will focus on the origin and migration of craniofacial endothelial cells and how these cells influence the development of craniofacial tissues. For this we will look at research on the interaction with the cranial neural crest, and individual organs such as the salivary glands, teeth, and jaw. Additionally, we will investigate the methods used to understand and manipulate endothelial networks during the development of craniofacial tissues, highlighting recent advances in this area.
Collapse
|
12
|
Kesavamoorthy N, Junge JA, Fraser SE, Ameri H. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice. Cells 2022; 11:2265. [PMID: 35892562 PMCID: PMC9331481 DOI: 10.3390/cells11152265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining.
Collapse
Affiliation(s)
- Niranjana Kesavamoorthy
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Jason A. Junge
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Scott E. Fraser
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
13
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
14
|
Lin X, Chen L, Jullienne A, Zhang H, Salehi A, Hamer M, C. Holmes T, Obenaus A, Xu X. Longitudinal dynamics of microvascular recovery after acquired cortical injury. Acta Neuropathol Commun 2022; 10:59. [PMID: 35468870 PMCID: PMC9036719 DOI: 10.1186/s40478-022-01361-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Acquired brain injuries due to trauma damage the cortical vasculature, which in turn impairs blood flow to injured tissues. There are reports of vascular morphological recovery following traumatic brain injury, but the remodeling process has not been examined longitudinally in detail after injury in vivo. Understanding the dynamic processes that influence recovery is thus critically important. We evaluated the longitudinal and dynamic microvascular recovery and remodeling up to 2 months post injury using live brain miniscope and 2-photon microscopic imaging. The new imaging approaches captured dynamic morphological and functional recovery processes at high spatial and temporal resolution in vivo. Vessel painting documented the initial loss and subsequent temporal morphological vascular recovery at the injury site. Miniscopes were used to longitudinally image the temporal dynamics of vascular repair in vivo after brain injury in individual mice across each cohort. We observe near-immediate nascent growth of new vessels in and adjacent to the injury site that peaks between 14 and 21 days post injury. 2-photon microscopy confirms new vascular growth and further demonstrates differences between cortical layers after cortical injury: large vessels persist in deeper cortical layers (> 200 μm), while superficial layers exhibit a dense plexus of fine (and often non-perfused) vessels displaying regrowth. Functionally, blood flow increases mirror increasing vascular density. Filopodia development and endothelial sprouting is measurable within 3 days post injury that rapidly transforms regions devoid of vessels to dense vascular plexus in which new vessels become increasingly perfused. Within 7 days post injury, blood flow is observed in these nascent vessels. Behavioral analysis reveals improved vascular modulation after 9 days post injury, consistent with vascular regrowth. We conclude that morphological recovery events are closely linked to functional recovery of blood flow to the compromised tissues, which subsequently leads to improved behavioral outcomes.
Collapse
|
15
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
16
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Regional Targeting of Bladder and Urethra Afferents in the Lumbosacral Spinal Cord of Male and Female Rats: A Multiscale Analysis. eNeuro 2021; 8:ENEURO.0364-21.2021. [PMID: 34772694 PMCID: PMC8690816 DOI: 10.1523/eneuro.0364-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor circuits of the lumbosacral spinal cord are required for lower urinary tract (LUT) regulation as well as being engaged in pelvic pain states. To date, no molecular markers have been identified to enable specific visualization of LUT afferents, which are embedded within spinal cord segments that also subserve somatic functions. Moreover, previous studies have not fully investigated the patterning within or across spinal segments, compared afferent innervation of the bladder and urethra, or explored possible structural sex differences in these pathways. We have addressed these questions in adult Sprague Dawley rats, using intramural microinjection of the tract tracer, B subunit of cholera toxin (CTB). Afferent distribution was analyzed within individual sections and 3D reconstructions from sections across four spinal cord segments (L5-S2), and in cleared intact spinal cord viewed with light sheet microscopy. Simultaneous mapping of preganglionic neurons showed their location throughout S1 but restricted to the caudal half of L6. Afferents from both LUT regions extended from L5 to S2, even where preganglionic motor pathways were absent. In L6 and S1, most afferents were associated with the sacral preganglionic nucleus (SPN) and sacral dorsal commissural nucleus (SDCom), with very few in the superficial laminae of the dorsal horn. Spinal innervation patterns by bladder and urethra afferents were remarkably similar, likewise the patterning in male and female rats. In conclusion, microscale to macroscale mapping has identified distinct features of LUT afferent projections to the lumbosacral cord and provided a new anatomic approach for future studies on plasticity, injury responses, and modeling of these pathways.
Collapse
|
18
|
Ha Y, Ochoa LF, Solomon O, Shi S, Villarreal PP, Li S, Buscho S, Vargas G, Zhang W. Light-Sheet Microscopy of the Optic Nerve Reveals Axonal Degeneration and Microglial Activation in NMDA-Induced Retinal Injury. EC OPHTHALMOLOGY 2021; 12:23-31. [PMID: 36108311 PMCID: PMC9450914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Optic nerve degeneration is a feature of neurodegenerative eye diseases and causes irreversible vision loss. Therefore, understanding the degenerating patterns of the optic nerve is critical to find the potential therapeutic target for optic neuropathy. However, the traditional method of optic nerve degeneration has the limitations of losing spatiotemporal tissue information. Light sheet fluorescence microscopy (LSFM) is a fluorescence microscopy technique that allows capturing 3D images rapidly with a high spatial optical resolution. In this study, we evaluated the availability of LSFM on the optic nerve with NMDA injected Thy1-CFP mice. METHODS NMDA injected to both eyes of Thy1-CFP mice. After 7 days from the injection, the retina and optic nerve were collected and immunostained with anti-Iba1 antibody. NMDA excitotoxicity induced RGC, and its axon loss and microglial activation in the retina were observed using confocal microscopy. The immunostained optic nerve was completed the optical clearing process with TDE and mounted for LSFM imaging. RESULTS We found that retinal flatmounts confirmed significant loss of CFP-expressing RGC and axon degradation and loss in Thy1-CFP mice at 7 days after NMDA injection. Together with these data verifying that NMDA induces RGC and its axon loss, we confirmed that NMDA excitotoxicity induced microglia activation and leukostasis, such as increased microglia number, transform its morphology to ameboid or round, and increase in attached leukocytes in vessels. Using LSFM, we observed that CFP expressing nerve fiber was well organized and arranged parallel in vehicle treated optic nerve, whileas NMDA injected optic nerve showed axon swelling and fragmentation and loss of axon density from the anterior to the posterior regions. Furthermore, LSFM enabled the observation of microglia phenotype transformation in the entire optic nerve. Unlike microglia in vehicle injected optic nerve, microglia in NMDA injected optic nerve displayed larger soma and short process with high Iba1 expression through the entire optic nerve from the anterior to posterior. CONCLUSIONS In summary, we examined the applicability of the modified optic clearing protocol for the optic nerve and verified it enabled to acquiring of the 3D images of the optic nerve successfully revealing the complex spatial relationships between the axons, microglia and vasculature throughout the entire organ with single acquisitions. With these optimized techniques, we successfully obtained the high-resolution 3D images of NMDA-induced optic neuropathy, including the clues for optic nerve degeneration such as axon swelling, axonal fragmentation, and microglia activation. Overall, we believe that our current study could help understand the pathology of the optic nerve in neurodegenerative diseases, and it will be the basis for translational research.
Collapse
Affiliation(s)
- Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lorenzo F Ochoa
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Olivia Solomon
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
- Human Pathophysiology and Translational Medicine Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Paula P Villarreal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shengguo Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Seth Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gracie Vargas
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Endothelial cell (EC) front-rear (axial) polarization in response to chemokines and shear stress is fundamental for angiogenesis. This review provides an overview of the in vitro and in vivo methods that are currently available to quantify EC axial polarity. RECENT FINDINGS Innovative methodologies and new animal models have been developed to evaluate EC axial polarity. Micropatterning, wound healing and microfluidic assays allow interrogation of signalling mechanisms in vitro. Mouse and zebrafish transgenic lines, in combination with advances in imaging techniques and computational tools, enable interrogation of physiological functions of EC axial polarity in vascular biology during development and in pathology in vivo. SUMMARY We present a literature-based review of the methods available to study EC polarity. Further refinement of quantitative methods to analyse EC axial polarity using deep learning-based computational tools will generate new understanding on the aetiology of vascular malformations.
Collapse
|
20
|
Gurdita A, Nickerson PEB, Pokrajac NT, Ortín-Martínez A, Samuel Tsai EL, Comanita L, Yan NE, Dolati P, Tachibana N, Liu ZC, Pearson JD, Chen D, Bremner R, Wallace VA. InVision: An optimized tissue clearing approach for three-dimensional imaging and analysis of intact rodent eyes. iScience 2021; 24:102905. [PMID: 34430805 PMCID: PMC8374524 DOI: 10.1016/j.isci.2021.102905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
The mouse eye is used to model central nervous system development, pathology, angiogenesis, tumorigenesis, and regenerative therapies. To facilitate the analysis of these processes, we developed an optimized tissue clearing and depigmentation protocol, termed InVision, that permits whole-eye fluorescent marker tissue imaging. We validated this method for the analysis of normal and degenerative retinal architecture, transgenic fluorescent reporter expression, immunostaining and three-dimensional volumetric (3DV) analysis of retinoblastoma and angiogenesis. We also used this method to characterize material transfer (MT), a recently described phenomenon of horizontal protein exchange that occurs between transplanted and recipient photoreceptors. 3D spatial distribution analysis of MT in transplanted retinas suggests that MT of cytoplasmic GFP between photoreceptors is mediated by short-range, proximity-dependent cellular interactions. The InVision protocol will allow investigators working across multiple cell biological disciplines to generate novel insights into the local cellular networks involved in cell biological processes in the eye. InVision is an optimized tissue clearing protocol for the rodent eye InVision can be used to study a wide variety of physiological processes in the eye Material transfer between transplanted and host photoreceptors is spatially correlated
Collapse
Affiliation(s)
- Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Neno T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Nicole E Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Parnian Dolati
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhongda C Liu
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
21
|
Ninchoji T, Love DT, Smith RO, Hedlund M, Vestweber D, Sessa WC, Claesson-Welsh L. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. eLife 2021; 10:e64944. [PMID: 33908348 PMCID: PMC8087444 DOI: 10.7554/elife.64944] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background Hypoxia and consequent production of vascular endothelial growth factor A (VEGFA) promote blood vessel leakiness and edema in ocular diseases. Anti-VEGFA therapeutics may aggravate hypoxia; therefore, therapy development is needed. Methods Oxygen-induced retinopathy was used as a model to test the role of nitric oxide (NO) in pathological neovascularization and vessel permeability. Suppression of NO formation was achieved chemically using L-NMMA, or genetically, in endothelial NO synthase serine to alanine (S1176A) mutant mice. Results Suppression of NO formation resulted in reduced retinal neoangiogenesis. Remaining vascular tufts exhibited reduced vascular leakage through stabilized endothelial adherens junctions, manifested as reduced phosphorylation of vascular endothelial (VE)-cadherin Y685 in a c-Src-dependent manner. Treatment with a single dose of L-NMMA in established retinopathy restored the vascular barrier and prevented leakage. Conclusions We conclude that NO destabilizes adheren junctions, resulting in vascular hyperpermeability, by converging with the VEGFA/VEGFR2/c-Src/VE-cadherin pathway. Funding This study was supported by the Swedish Cancer foundation (19 0119 Pj ), the Swedish Research Council (2020-01349), the Knut and Alice Wallenberg foundation (KAW 2020.0057) and a Fondation Leducq Transatlantic Network of Excellence Grant in Neurovascular Disease (17 CVD 03). KAW also supported LCW with a Wallenberg Scholar grant (2015.0275). WCS was supported by Grants R35 HL139945, P01 HL1070205, AHA MERIT Award. DV was supported by grants from the Deutsche Forschungsgemeinschaft, SFB1450, B03, and CRU342, P2.
Collapse
Affiliation(s)
- Takeshi Ninchoji
- Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and PathologyUppsalaSweden
| | - Dominic T Love
- Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and PathologyUppsalaSweden
| | - Ross O Smith
- Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and PathologyUppsalaSweden
| | - Marie Hedlund
- Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and PathologyUppsalaSweden
| | | | - William C Sessa
- Yale University School of Medicine, Department of Pharmacology and Vascular Biology and Therapeutics ProgramNew HavenUnited States
| | - Lena Claesson-Welsh
- Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and PathologyUppsalaSweden
| |
Collapse
|
22
|
Abstract
In this report, we describe how endothelial cells, the cells lining the interior of blood vessels, invade into tissues to form new vessels through sprouting angiogenesis. We found that endothelial cells use a specific lamellipodia-related membrane protrusion for invasion, which we termed dactylopodia. These protrusions have a special morphology, originate from filopodia, are linked to membrane-ruffling activity, and are specialized in invading into avascular extracellular matrix. Our work lays the foundations for drug discovery targeting sprouting angiogenesis. Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
Collapse
|
23
|
Chang CC, Chu A, Meyer S, Ding Y, Sun MM, Abiri P, Baek KI, Gudapati V, Ding X, Guihard P, Bostrom KI, Li S, Gordon LK, Zheng JJ, Hsiai TK. Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration. Theranostics 2021; 11:1162-1175. [PMID: 33391527 PMCID: PMC7738897 DOI: 10.7150/thno.53073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction: Murine models provide microvascular insights into the 3-D network disarray seen in retinopathy and cardiovascular diseases. Light-sheet fluorescence microscopy (LSFM) has emerged to capture retinal vasculature in 3-D, allowing for assessment of the progression of retinopathy and the potential to screen new therapeutic targets in mice. We hereby coupled LSFM, also known as selective plane illumination microscopy, with topological quantification, to characterize the retinal vascular plexuses undergoing preferential obliteration. Method and Result: In postnatal mice, we revealed the 3-D retinal microvascular network in which the vertical sprouts bridge the primary (inner) and secondary (outer) plexuses, whereas, in an oxygen-induced retinopathy (OIR) mouse model, we demonstrated preferential obliteration of the secondary plexus and bridging vessels with a relatively unscathed primary plexus. Using clustering coefficients and Euler numbers, we computed the local versus global vascular connectivity. While local connectivity was preserved (p > 0.05, n = 5 vs. normoxia), the global vascular connectivity in hyperoxia-exposed retinas was significantly reduced (p < 0.05, n = 5 vs. normoxia). Applying principal component analysis (PCA) for auto-segmentation of the vertical sprouts, we corroborated the obliteration of the vertical sprouts bridging the secondary plexuses, as evidenced by impaired vascular branching and connectivity, and reduction in vessel volumes and lengths (p < 0.05, n = 5 vs. normoxia). Conclusion: Coupling 3-D LSFM with topological quantification uncovered the retinal vasculature undergoing hyperoxia-induced obliteration from the secondary (outer) plexus to the vertical sprouts. The use of clustering coefficients, Euler's number, and PCA provided new network insights into OIR-associated vascular obliteration, with translational significance for investigating therapeutic interventions to prevent visual impairment.
Collapse
Affiliation(s)
- Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Scott Meyer
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yichen Ding
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michel M. Sun
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Parinaz Abiri
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Varun Gudapati
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xili Ding
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Pierre Guihard
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kristina I. Bostrom
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Lynn K. Gordon
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA
- Medical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
24
|
Autonomous adaptive data acquisition for scanning hyperspectral imaging. Commun Biol 2020; 3:684. [PMID: 33208883 PMCID: PMC7676237 DOI: 10.1038/s42003-020-01385-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Non-invasive and label-free spectral microscopy (spectromicroscopy) techniques can provide quantitative biochemical information complementary to genomic sequencing, transcriptomic profiling, and proteomic analyses. However, spectromicroscopy techniques generate high-dimensional data; acquisition of a single spectral image can range from tens of minutes to hours, depending on the desired spatial resolution and the image size. This substantially limits the timescales of observable transient biological processes. To address this challenge and move spectromicroscopy towards efficient real-time spatiochemical imaging, we developed a grid-less autonomous adaptive sampling method. Our method substantially decreases image acquisition time while increasing sampling density in regions of steeper physico-chemical gradients. When implemented with scanning Fourier Transform infrared spectromicroscopy experiments, this grid-less adaptive sampling approach outperformed standard uniform grid sampling in a two-component chemical model system and in a complex biological sample, Caenorhabditis elegans. We quantitatively and qualitatively assess the efficiency of data acquisition using performance metrics and multivariate infrared spectral analysis, respectively. Holman et al. develop a grid-less autonomous adaptive sampling method to explore high-dimensional spatiochemical experimental systems. Their method greatly decreases image acquisition time while improving spatial resolution, and when implemented with FTIR, it outperforms existing standard grid sampling approaches. They further show its utility for a complex biological sample, C. elegans.
Collapse
|
25
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
26
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Yang Y, Li G, Chen L. High resolution three-dimensional imaging of the ocular surface and intact eyeball using tissue clearing and light sheet microscopy. Ocul Surf 2020; 18:526-532. [PMID: 32417103 DOI: 10.1016/j.jtos.2020.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE High resolution visualization of the ocular surface and intact eyeball is critical and essential for our understanding and treatment of eye diseases. This study is to achieve this goal using advanced tissue clearing and three-dimensional (3D) imaging technologies. METHODS Wild type and fluorescently labeled transgenic mice of Prox-1-GFP (green fluorescent protein) or Thy1-YFP (yellow fluorescent protein) were used in the study. Eyeballs were harvested from normal or a disease model of corneal inflammation. Samples were infused with hydrogel monomers and heated for polymerization. Lipids were removed by electrophoresis. The transparent tissue-hydrogel hybrids of the anterior segments or intact eyeballs with immunolabeling or endogenous fluorescence were imaged by an advanced light sheet fluorescent microscope. High resolution 3D images and videos were captured for a wide array of structures and cell types. RESULTS Optical transparency was achieved from intact eyeballs of both normal and diseased conditions. A variety of important structures and cell types, such as blood and lymphatic vessels, Schlemm's canal, nerves and endothelial cells, were detected with their natural morphology, location and organizational network. CONCLUSIONS This study provides the first comprehensive and 3D high resolution imaging of the intact eyeball using tissue clearing and advanced light sheet microscopy. Given that the eye is the window of the body, we anticipate this advanced technology will facilitate diverse applications in biomedical research inside and outside the eye.
Collapse
Affiliation(s)
- Yujia Yang
- Vision Science Graduate Program, Center for Eye Disease and Development, and School of Optometry, University of California, Berkeley, CA, 94720, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guangyu Li
- Vision Science Graduate Program, Center for Eye Disease and Development, and School of Optometry, University of California, Berkeley, CA, 94720, USA
| | - Lu Chen
- Vision Science Graduate Program, Center for Eye Disease and Development, and School of Optometry, University of California, Berkeley, CA, 94720, USA; The Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|