1
|
Christensen NK, Beedholm K, Damsgaard C. Short communication: Maintained visual performance in birds under high altitude hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111691. [PMID: 38971399 DOI: 10.1016/j.cbpa.2024.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Birds are highly dependent on their vision for orientation and navigation. The avian eye differs from the mammalian eye as the retina is avascular, leaving the inner, highly metabolically active layers with a very long diffusion distance to the oxygen supply. During flight at high altitudes, birds face a decrease in environmental oxygen partial pressure, which leads to a decrease in arterial oxygen levels. Since oxygen perfusion to the retina is already limited in birds, we hypothesize that visual function is impaired by low oxygen availability. However, the visual performance of birds exposed to hypoxia has not been evaluated before. Here, we assess the optomotor response (OMR) in zebra finches under simulated high-altitude hypoxia (10%) and show that the OMR is largely maintained under hypoxia with only a modest reduction in OMR, demonstrating that birds can largely maintain visual function at high altitudes. The method of our study does not provide insight into the mechanisms involved, but our findings suggest that birds have evolved physiological mechanisms for retinal function at low tissue oxygen levels.
Collapse
Affiliation(s)
| | - Kristian Beedholm
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Christian Damsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Ricci V, Ronco F, Boileau N, Salzburger W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. SCIENCE ADVANCES 2023; 9:eadg6568. [PMID: 37672578 PMCID: PMC10482347 DOI: 10.1126/sciadv.adg6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Tuning the visual sensory system to the ambient light is essential for survival in many animal species. This is often achieved through duplication, functional diversification, and/or differential expression of visual opsin genes. Here, we examined 753 new retinal transcriptomes from 112 species of cichlid fishes from Lake Tanganyika to unravel adaptive changes in gene expression at the macro-evolutionary and ecosystem level of one of the largest vertebrate adaptive radiations. We found that, across the radiation, all seven cone opsins-but not the rhodopsin-rank among the most differentially expressed genes in the retina, together with other vision-, circadian rhythm-, and hemoglobin-related genes. We propose two visual palettes characteristic of very shallow- and deep-water living species, respectively, and show that visual system adaptations along two major ecological axes, macro-habitat and diet, occur primarily via gene expression variation in a subset of cone opsin genes.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
5
|
Harter TS, Clifford AM, Tresguerres M. Adrenergically induced translocation of red blood cell β-adrenergic sodium-proton exchangers has ecological relevance for hypoxic and hypercapnic white seabass. Am J Physiol Regul Integr Comp Physiol 2021; 321:R655-R671. [PMID: 34494485 DOI: 10.1152/ajpregu.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White seabass (Atractoscion nobilis) increasingly experience periods of low oxygen (O2; hypoxia) and high carbon dioxide (CO2, hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O2 carrier in the blood and in many teleost fishes Hb-O2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O2-carrying capacity during hypoxia and hypercapnia. We determined the O2-binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O2 affinity (Po2 at half-saturation; P50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient -0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.
Collapse
Affiliation(s)
- Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
6
|
Andersen NCM, Fago A, Damsgaard C. Evolution of hemoglobin function in tropical air-breathing catfishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2021; 335:814-819. [PMID: 34254462 DOI: 10.1002/jez.2504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022]
Abstract
The evolution of hemoglobin function in the transition from water- to air-breathing has been highly debated but remains unresolved. Here, we characterized the hemoglobin function in five closely related water- and air-breathing catfishes. We identify distinct directions of hemoglobin evolution in the clades that evolved air-breathing, and we show strong selection on hemoglobin function within the catfishes. These findings show that the lack of a general direction in hemoglobin function in the transition from water- to air-breathing may have resulted from divergent selection on hemoglobin function in independent clades of air-breathing fishes.
Collapse
Affiliation(s)
| | - Angela Fago
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Christian Damsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
7
|
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr Opin Neurobiol 2021; 71:52-59. [PMID: 34600187 DOI: 10.1016/j.conb.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems - the receptors, cells, organs, and dedicated high-order circuits - can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.
Collapse
Affiliation(s)
- Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| |
Collapse
|
8
|
Pérez-Dones D, Ledesma-Terrón M, Míguez DG. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines 2021; 9:1222. [PMID: 34572408 PMCID: PMC8471905 DOI: 10.3390/biomedicines9091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.
Collapse
Affiliation(s)
- Diego Pérez-Dones
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Smith MA, Waugh DA, McBurney DL, George JC, Suydam RS, Thewissen JGM, Crish SD. A comparative analysis of cone photoreceptor morphology in bowhead and beluga whales. J Comp Neurol 2020; 529:2376-2390. [PMID: 33377221 DOI: 10.1002/cne.25101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
The cetacean visual system is a product of selection pressures favoring underwater vision, yet relatively little is known about it across taxa. Previous studies report several mutations in the opsin genetic sequence in cetaceans, suggesting the evolutionary complete or partial loss of retinal cone photoreceptor function in mysticete and odontocete lineages, respectively. Despite this, limited anatomical evidence suggests cone structures are partially maintained but with absent outer and inner segments in the bowhead retina. The functional consequence and anatomical distributions associated with these unique cone morphologies remain unclear. The current study further investigates the morphology and distribution of cone photoreceptors in the bowhead whale and beluga retina and evaluates the potential functional capacity of these cells' alternative to photoreception. Refined histological and advanced microscopic techniques revealed two additional cone morphologies in the bowhead and beluga retina that have not been previously described. Two proteins involved in magnetosensation were present in these cone structures suggesting the possibility for an alternative functional role in responding to changes in geomagnetic fields. These findings highlight a revised understanding of the unique evolution of cone and gross retinal anatomy in cetaceans, and provide prefatory evidence of potential functional reassignment of these cells.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA
| | - David A Waugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Denise L McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Robert S Suydam
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Johannes G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
10
|
Dichiera AM, Esbaugh AJ. Red blood cell carbonic anhydrase mediates oxygen delivery via the Root effect in red drum. ACTA ACUST UNITED AC 2020; 223:223/22/jeb232991. [PMID: 33243926 DOI: 10.1242/jeb.232991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Oxygen (O2) and carbon dioxide (CO2) transport are tightly coupled in many fishes as a result of the presence of Root effect hemoglobins (Hb), whereby reduced pH reduces O2 binding even at high O2 tensions. Red blood cell carbonic anhydrase (RBC CA) activity limits the rate of intracellular acidification, yet its role in O2 delivery has been downplayed. We developed an in vitro assay to manipulate RBC CA activity while measuring Hb-O2 offloading following a physiologically relevant CO2-induced acidification. RBC CA activity in red drum (Sciaenops ocellatus) was inhibited with ethoxzolamide by 53.7±0.5%, which prompted a significant reduction in O2 offloading rate by 54.3±5.4% (P=0.0206, two-tailed paired t-test; n=7). Conversely, a 2.03-fold increase in RBC CA activity prompted a 2.14-fold increase in O2 offloading rate (P<0.001, two-tailed paired t-test; n=8). This approximately 1:1 relationship between RBC CA activity and Hb-O2 offloading rate coincided with a similar allometric scaling exponent for RBC CA activity and maximum metabolic rate. Together, our data suggest that RBC CA is rate limiting for O2 delivery in red drum.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
11
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
12
|
Muramoto C, Cardoso-Brito V, Raposo AC, Pires TT, Oriá AP. Ocular ultrasonography of sea turtles. Acta Vet Scand 2020; 62:52. [PMID: 32912266 PMCID: PMC7488042 DOI: 10.1186/s13028-020-00551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental changes contribute to the development of ophthalmic diseases in sea turtles, but information on their eye biometrics is scarce. The aim of this study was to describe ophthalmic ultrasonographic features of four different sea turtle species; Caretta caretta (Loggerhead turtle; n = 10), Chelonia mydas (Green turtle; n = 8), Eretmochelys imbricata (Hawksbill turtle; n = 8) and Lepidochelys olivacea (Olive ridley; n = 6) under human care. Corneal thickness, scleral ossicle width and thickness, anterior chamber depth, axial length of the lens, vitreous chamber depth and axial globe length were measured by B-mode sonography with a linear transducer. Carapace size and animal weight were recorded. A sonographic description of the eye structures was established. RESULTS The four species presented an ovate eyeball, a relatively thin cornea, and a small-sized lens positioned rostrally in the eye bulb, near the cornea, resulting in a shallow anterior chamber. The scleral ossicles did not prevent the evaluation of intraocular structures, even with a rotated eye or closed eyelids; image formation beyond the ossicles and measurements of all proposed structures were possible. B-mode sonography was easily performed in all animals studied. The sonographic characteristics of the eye were similar among the four species. Since there was a correlation between the size of the eye structures and the size of the individual, especially its carapace size, the differences found between E. imbricata and Caretta caretta are believed to be due to their overall difference in size. CONCLUSIONS Sonography is a valuable tool in ophthalmic evaluation of these species. Only minor differences were found between the species in this study, reinforcing their phylogenetic proximity and their similar functions and habitats.
Collapse
Affiliation(s)
- Caterina Muramoto
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Avenida Adhemar de Barros, 500, Ondina, Salvador, BA, 40170-110, Brazil
| | - Vinícius Cardoso-Brito
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Avenida Adhemar de Barros, 500, Ondina, Salvador, BA, 40170-110, Brazil
| | - Ana Cláudia Raposo
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Avenida Adhemar de Barros, 500, Ondina, Salvador, BA, 40170-110, Brazil
| | - Thais Torres Pires
- Fundação Pró-Tamar, Rua Rubens Guelli 134/ 307, Itaigara, Salvador, Bahia, 41815-135, Brazil
| | - Arianne Pontes Oriá
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Avenida Adhemar de Barros, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
13
|
Damsgaard C, Lauridsen H, Harter TS, Kwan GT, Thomsen JS, Funder AM, Supuran CT, Tresguerres M, Matthews PG, Brauner CJ. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 2020; 9:58995. [PMID: 32840208 PMCID: PMC7447425 DOI: 10.7554/elife.58995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O2 to be delivered to the retina at PO2s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H+-ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.
Collapse
Affiliation(s)
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Till S Harter
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Garfield T Kwan
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | | | - Anette Md Funder
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Department, Sezione di Scienze Farmaceutiche, Florence, Italy
| | - Martin Tresguerres
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Philip Gd Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|