1
|
Ruyle BC, Masud S, Kesaraju R, Tahirkheli M, Modh J, Roth CG, Angulo-Lopera S, Lintz T, Higginbotham JA, Massaly N, Morón JA. Peripheral opioid receptor antagonism alleviates fentanyl-induced cardiorespiratory depression and is devoid of aversive behavior. eLife 2025; 13:RP104469. [PMID: 40167443 PMCID: PMC11961120 DOI: 10.7554/elife.104469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.
Collapse
Affiliation(s)
- Brian C Ruyle
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Sarah Masud
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Rohith Kesaraju
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Mubariz Tahirkheli
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Juhi Modh
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Caroline G Roth
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Sofia Angulo-Lopera
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Tania Lintz
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Jessica A Higginbotham
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Pain Center, Washington University in St. LouisSt. LouisUnited States
- School of Medicine, Washington University in St. LouisSt. LouisUnited States
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
2
|
Watkins J, Aradi P, Hahn R, Makriyannis A, Mackie K, Katona I, Hohmann AG. CB 1 cannabinoid receptor agonists induce acute respiratory depression in awake mice. Pharmacol Res 2025; 214:107682. [PMID: 40064359 PMCID: PMC12057448 DOI: 10.1016/j.phrs.2025.107682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Recreational use of synthetic cannabinoid agonists (i.e., "spice compounds") that target the cannabinoid type 1 receptor (CB1) can cause acute respiratory failure in humans. However, Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive phytocannabinoid in cannabis, is not traditionally thought to interact with the brain respiratory system, based largely upon sparse labeling of CB1 receptors in the medulla and relative safety suggested by widespread human use. Here we used whole body plethysmography and RNAscope in situ hybridization in mice to reconcile this conflict between conventional wisdom and human data. We examined the respiratory effects of the synthetic CB1 full agonist CP55,940 and Δ9-THC in male and female mice. CP55,940 and Δ9-THC potently and dose-dependently suppressed minute ventilation and tidal volume, decreasing measures of respiratory effort (i.e., peak inspiratory and expiratory flow). Both cannabinoids reduced respiratory frequency, decreasing inspiratory and expiratory time while markedly increasing inspiratory and expiratory pause. Respiratory suppressive effects were fully blocked by the CB1 antagonist AM251, were minimally impacted by the peripherally-restricted CB1 antagonist AM6545, and occurred at doses lower than those that produce cardinal behavioral signs of CB1 activation. Using RNAscope in situ hybridization, we also demonstrated extensive coexpression of Cnr1 (encoding the CB1 receptor) and Oprm1 (encoding the µ-opioid receptor) mRNA in respiratory cells in the medullary pre-Bötzinger complex, a critical nucleus of respiratory control. Our results show that mRNA for CB1 is present in respiratory cells in a medullary brain region essential for breathing and demonstrate that cannabinoids produce respiratory suppression via activation of central CB1 receptors.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Male
- Female
- Respiratory Insufficiency/chemically induced
- Respiratory Insufficiency/metabolism
- Respiratory Insufficiency/physiopathology
- Dronabinol/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Mice, Inbred C57BL
- Cyclohexanols/pharmacology
- Mice
- Respiration/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Wakefulness
Collapse
Affiliation(s)
- Joshua Watkins
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, United States
| | - Petra Aradi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States
| | - Rachel Hahn
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States
| | | | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, United States; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Istvan Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, United States; Institute of Experimental Medicine, HUN-REN, Budapest, Hungary
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, United States; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
3
|
Furdui A, da Silveira Scarpellini C, Montandon G. Mu-opioid receptors in tachykinin-1-positive cells mediate the respiratory and antinociceptive effects of the opioid fentanyl. Br J Pharmacol 2025; 182:1059-1074. [PMID: 39506356 DOI: 10.1111/bph.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Opioid drugs are potent analgesics that carry the risk of respiratory side effects due to actions on μ-opioid receptors (MORs) in brainstem regions that control respiration. Substance P is encoded by the Tac1 gene and is expressed in neurons regulating breathing, nociception, and locomotion. Tac1-positive cells also express MORs in brainstem regions mediating opioid-induced respiratory depression. We determined the role of Tac1-positive cells in mediating the respiratory effects of opioid drugs. EXPERIMENTAL APPROACH In situ hybridization was used to determine Oprm1 mRNA expression (gene encoding MORs) in Tac1-positive cells in regions regulating respiratory depression by opioid drugs. Conditional knockout mice lacking functional MORs in Tac1-positive cells were produced and the respiratory and locomotor responses to the opioid analgesic fentanyl were assessed using whole-body plethysmography. A tail immersion assay was used to assess the antinociceptive response to fentanyl. KEY RESULTS Oprm1 mRNA was highly expressed (>80%) in subpopulations of Tac1-positive cells in the preBötzinger Complex, nucleus tractus solitarius, and Kölliker-Fuse/lateral parabrachial region. Conditionally knocking out MORs in Tac1-positive cells abolished the effects of fentanyl on respiratory rate, relative tidal volume, and relative minute ventilation compared with control mice. Importantly, the antinociceptive response of fentanyl was eliminated in mice lacking functional MORs in Tac1-positive cells, whereas locomotor effects induced by fentanyl were preserved. CONCLUSIONS AND IMPLICATIONS Our findings suggest that Tac1-positive cells mediate the respiratory depressive and antinociceptive effects of the opioid fentanyl, providing important insights for the development of pain therapies with reduced risk of respiratory side effects.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Getsy PM, May WJ, Henderson F, Seckler JM, Grossfield A, Baby SM, Lewis SJ. Nitrosyl factors play a vital role in the ventilatory depressant effects of fentanyl in freely moving guinea pigs. Biomed Pharmacother 2025; 183:117847. [PMID: 39862705 DOI: 10.1016/j.biopha.2025.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (NG-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand. L- and D-NAME elicited minor effects on most parameters, including frequency of breathing, tidal volume and minute ventilation, although L-NAME did decrease end expiratory pause and non-eupneic breathing index (NEBI). Subsequent injection of fentanyl in guinea pigs pre-treated with vehicle produced profound and sustained reductions in frequency, tidal volume, minute ventilation, peak inspiratory flow, and inspiratory and expiratory drives, while increasing inspiratory time, expiratory time, end inspiratory pause, and NEBI. These ventilatory depressant effects of fentanyl seen in guinea pigs pre-treated with vehicle were markedly diminished in guinea pigs pre-treated with L-NAME. Moreover, the adverse effects of fentanyl on many recorded breathing parameters were converted to stimulatory effects. In contrast, D-NAME did not alter any of the effects of fentanyl on breathing. This study is the first to characterize the role nitrosyl factors play in the intracellular mechanisms involved in fentanyl-induced respiratory depression in guinea pigs.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Moreira TS, Burgraff NJ, Takakura AC, Oliveira LM, Araujo EV, Guan S, Ramirez JM. Functional Modulation of Retrotrapezoid Neurons Drives Fentanyl-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635295. [PMID: 39975139 PMCID: PMC11838384 DOI: 10.1101/2025.01.28.635295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b + /Neuromedin-B ( Nmb ) propriobulbar neurons. These neurons, stimulated by CO 2 /H + , regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2B + / Nmb + neurons before and after fentanyl administration. As expected, fentanyl (500 µg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b + / Nmb + or chemogenetic inhibition of Nmb + cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic ablation of RTN Nmb neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b + / Nmb + cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a therapeutic approach to restore respiratory function in cases of OIRD.
Collapse
|
6
|
Ruyle BC, Masud S, Kesaraju R, Tahirkheli M, Modh J, Roth CG, Angulo-Lopera S, Lintz T, Higginbotham JA, Massaly N, Moron JA. Peripheral opioid receptor antagonism alleviates fentanyl-induced cardiorespiratory depression and is devoid of aversive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613257. [PMID: 39345613 PMCID: PMC11429738 DOI: 10.1101/2024.09.16.613257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Millions of Americans suffering from Opioid Use Disorders (OUD) face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX. Significance Statement In this study, we compare the central versus peripheral components underlying fentanyl-induced cardiorespiratory depression to prevent overdose deaths. Our data indicate that these effects are, at least partially, due to the activation of mu opioid receptors present in peripheral sites. These findings provide insight into peripheral contributions to fentanyl-induced overdoses and could potentially lead to the development of treatments selectively targeting the peripheral system, sparing individuals from the CNS-driven acute opioid withdrawal generally observed with the use of naloxone.
Collapse
|
7
|
Johnson SM, Johnson SM, Watters JJ, Baker TL. Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations. Respir Physiol Neurobiol 2025; 331:104351. [PMID: 39303801 PMCID: PMC11614698 DOI: 10.1016/j.resp.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Olsen WL, Hayes JA, Shuman D, Morris KF, Bolser DC. Modeling Insights into Potential Mechanisms of Opioid-Induced Respiratory Depression within Medullary and Pontine Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.628766. [PMID: 39763818 PMCID: PMC11702709 DOI: 10.1101/2024.12.19.628766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure (i.e., opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating μ-opioid receptors that are located throughout the respiratory control network in the brainstem. This can significantly affect ventilation and blunt CO2 responsiveness, but the precise neural mechanisms that suppress breathing are not fully understood. Previous research has suggested that opioids affect medullary and pontine inspiratory neuron activity by disrupting upstream elements within this circuit. Inspiratory neurons within this network exhibit synchrony consistent with shared excitation from other neuron populations and recurrent mechanisms. One possible target for opioid suppression of inspiratory drive are excitatory synapses. Reduced excitability of these synaptic elements may result in disfacilitation and reduced synchrony among inspiratory neurons. Downstream effects of disfacilitation may result in abnormal output from phrenic motoneurons resulting in distressed breathing. We tested the plausibility of this hypothesis with a computational model of the respiratory network by targeting the synaptic excitability in fictive medullary and pontine populations. The synaptic conductances were systematically decreased while monitoring the overall respiratory motor pattern and aggregate firing rates of subsets of cell populations. Simulations suggest that highly selective, rather than generalized, actions of opioids on synapses within the inspiratory network may account for different observed breathing mechanics.
Collapse
Affiliation(s)
- Wendy L Olsen
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL
- Department of Rehabilitation Sciences, Appalachian State University, Boone NC
| | - John A Hayes
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Dale Shuman
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Donald C Bolser
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Patel A, Poddar S, Nierenberg D, Lang S, Wang H, Pires DeMello CP, Gamarra J, Colon A, Kennedy P, Roles J, Klion J, Bogen W, Long C, Guo X, Tighe P, Schmidt S, Shuler ML, Hickman JJ. Microphysiological system to address the opioid crisis: A novel multi-organ model of acute opioid overdose and recovery. Curr Res Toxicol 2024; 8:100209. [PMID: 39839141 PMCID: PMC11745978 DOI: 10.1016/j.crtox.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Opioids have been the primary method used to manage pain for hundreds of years, however the increasing prescription rate of these drugs in the modern world has led to a public health crisis of overdose related deaths. Naloxone is the current standard treatment for opioid overdose rescue, but it has not been fully investigated for potential off-target toxicity effects. The current methods for pharmaceutical development do not correlate well with pre-clinical animal studies compared to clinical results, creating a need for improved methods for therapeutic evaluation. Microphysiological systems (MPS) are a rapidly growing field, and the FDA has accepted this area of research to address this concern, offering a promising alternative to traditional animal models. This study establishes a novel multi-organ MPS model of acute opioid overdose and rescue to investigate the efficacy and off-target toxicity of naloxone in combination with opioids. By integrating primary human and human induced pluripotent stem cell (hiPSC)-derived cells, including preBötzinger complex neurons, liver, cardiac, and skeletal muscle components, this study establishes a novel functional multi-organ MPS model of acute opioid overdose and rescue to investigate the efficacy and off-target toxicity of naloxone in combination with opioids, with clinically relevant functional readouts of organ function. The system was able to successfully exhibit opioid overdose using methadone, as well as rescue using naloxone evidenced by the neuronal component activity. In addition to efficacy, the multi-organ platform was able to characterize potential off-target toxicity effects of naloxone, specifically in the cardiac component.
Collapse
Affiliation(s)
- Aakash Patel
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Suruchi Poddar
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Daniel Nierenberg
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Stephanie Lang
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Hao Wang
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Camilly Pestana Pires DeMello
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Julio Gamarra
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Alisha Colon
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Paula Kennedy
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Jeffry Roles
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Jules Klion
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Will Bogen
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Christopher Long
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Xiufang Guo
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Patrick Tighe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, 32610 USA
| | - Stephan Schmidt
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, 32610 USA
| | - Michael L. Shuler
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - James J. Hickman
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| |
Collapse
|
10
|
Chen Y, Yu T, Jiang J. Effects of propofol on the electrophysiological properties of glutamatergic neurons in the ventrolateral medulla of mice. BMC Anesthesiol 2024; 24:432. [PMID: 39604849 PMCID: PMC11600619 DOI: 10.1186/s12871-024-02813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Propofol, a commonly used intravenous anesthetic, is associated with various respiratory adverse events, most notably different degrees of respiratory depression, which pose significant concerns for patient safety. Respiration is a fundamental behavior, with the initiation of breathing in mammals dependent on neuronal activity in the lower brainstem. Previous studies have suggested that propofol-induced respiratory depression might be associated with glutamatergic neurons in the pre-Bötzinger complex (preBötC), though the precise mechanisms are not well understood. In this study, we classify glutamatergic neurons in the brainstem preBötC using whole-cell patch-clamp techniques and investigate the effects of propofol on the electrophysiological properties of these neurons. Our findings aim to shed light on the mechanisms of propofol-induced respiratory depression and provide new experimental insights. METHODS We first employed electrophysiological techniques to classify glutamatergic neurons within the preBötC as Type-1 or Type-2. Following this classification, we applied varying concentrations of propofol through bath application to examine its effects on the electrophysiological properties of each type of glutamatergic neuron. RESULTS We found that Type-1 neurons exhibited a longer latency in excitation, while Type-2 neurons did not show this delayed excitation. On this basis, we further observed that bath application of propofol at concentrations of 5 μM and 10 μM shortened the latency period of Type-1 glutamatergic neurons but did not affect the latency period of Type-2 glutamatergic neurons. CONCLUSION Our study focuses on the glutamatergic neurons in the preBötC of adult mice. It introduces a novel method for classifying these neurons and reveals how propofol affects the activity of the two different types of glutamatergic neurons within the preBötC. These findings contribute to understanding the cellular basis of propofol-induced respiratory depression.
Collapse
Affiliation(s)
- Ya Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.
| | - Junli Jiang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Dhingra RR, MacFarlane PM, Thomas PJ, Paton JFR, Dutschmann M. Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623076. [PMID: 39605441 PMCID: PMC11601293 DOI: 10.1101/2024.11.11.623076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Like other brain circuits, the brainstem respiratory network is continually modulated by neurotransmitters that activate slow metabotropic receptors. In many cases, activation of these receptors only subtly modulates the respiratory motor pattern. However, activation of some receptor types evokes the arrest of the respiratory motor pattern as can occur following the activation of μ-opioid receptors. We propose that the varied effects of neuromodulation on the respiratory motor pattern depend on the pattern of neuromodulator receptor expression and their influence on the excitability of their post-synaptic targets. Because a comprehensive characterization of these cellular properties across the respiratory network remains challenging, we test our hypothesis by combining computational modelling with ensemble electrophysiologic recording in the pre-Bötzinger complex (pre-BötC) using high-density multi-electrode arrays (MEA). Our computational model encapsulates the hypothesis that neuromodulatory transmission is organized asymmetrically across the respiratory network to promote rhythm and pattern generation. To test this hypothesis, we increased the strength of neuromodulatory connections in the model and used selective agonists in situ while monitoring pre-BötC ensemble activities. The model predictions of increasing slow inhibition were consistent with experiments examining the effect of systemic administration of the 5HT1aR agonist 8-OH-DPAT. Similarly, the predicted effects of increasing slow excitation in the model were experimentally confirmed in pre-BötC ensemble activities before and after systemic administration of the μ-opioid receptor agonist fentanyl. We conclude that asymmetric neuromodulation can contribute to respiratory rhythm and pattern generation and accounts for its varied effects on breathing.
Collapse
Affiliation(s)
- Rishi R Dhingra
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Peter J Thomas
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mathias Dutschmann
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024; 25:1438-1450. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Budda D, Gülave B, van Hasselt JGC, de Lange ECM. Non-linear blood-brain barrier transport and dosing strategies influence receptor occupancy ratios of morphine and its metabolites in pain matrix. Br J Pharmacol 2024; 181:3856-3868. [PMID: 38663441 DOI: 10.1111/bph.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Morphine is important for treatment of acute and chronic pain. However, there is high interpatient variability and often inadequate pain relief and adverse effects. To better understand variability in the dose-effect relationships of morphine, we investigated the effects of its non-linear blood-brain barrier (BBB) transport on μ-receptor occupancy in different CNS locations, in conjunction with its main metabolites that bind to the same receptor. EXPERIMENTAL APPROACH CNS exposure profiles for morphine, M3G and M6G for clinically relevant dosing regimens based on intravenous, oral immediate- and extended-release formulations were generated using a physiology-based pharmacokinetic model of the CNS, with non-linear BBB transport of morphine. The simulated CNS exposure profiles were then used to derive corresponding μ-receptor occupancies at multiple CNS pain matrix locations. KEY RESULTS Simulated CNS exposure profiles for morphine, M3G and M6G, associated with non-linear BBB transport of morphine resulted in varying μ-receptor occupancies between different dose regimens, formulations and CNS locations. At lower doses, the μ-receptor occupancy of morphine was relatively higher than at higher doses of morphine, due to the relative contribution of M3G and M6G. At such higher doses, M6G showed higher occupancy than morphine, whereas M3G occupancy was low throughout the dose ranges. CONCLUSION AND IMPLICATIONS Non-linear BBB transport of morphine affects the μ-receptor occupancy ratios of morphine with its metabolites, depending on dose and route of administration, and CNS location. These predictions need validation in animal or clinical experiments, to understand the clinical implications.
Collapse
Affiliation(s)
- Divakar Budda
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Demery-Poulos C, Moore SC, Levitt ES, Anand JP, Traynor JR. Xylazine Exacerbates Fentanyl-Induced Respiratory Depression and Bradycardia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608310. [PMID: 39229079 PMCID: PMC11370410 DOI: 10.1101/2024.08.16.608310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fatal opioid overdoses in the United States have nearly tripled during the past decade, with greater than 92% involving a synthetic opioid like fentanyl. Fentanyl potently activates the μ-opioid receptor to induce both analgesia and respiratory depression. The danger of illicit fentanyl has recently been exacerbated by adulteration with xylazine, an α2-adrenergic receptor agonist typically used as a veterinary anesthetic. In 2023, over a 1,000% increase in xylazine-positive overdoses was reported in some regions of the U.S. Xylazine has been shown to potentiate the lethality of fentanyl in mice, yet a mechanistic underpinning for this effect has not been defined. Herein, we evaluate fentanyl, xylazine, and their combination in whole-body plethysmography (to measure respiration) and pulse oximetry (to measure blood oxygen saturation and heart rate) in male and female CD-1 mice. We show that xylazine decreases breathing rate more than fentanyl by increasing the expiration time. In contrast, fentanyl primarily reduces breathing by inhibiting inspiration, and xylazine exacerbates these effects. Fentanyl but not xylazine decreased blood oxygen saturation, and when combined, xylazine did not change the maximum level of fentanyl-induced hypoxia. Xylazine also reduced heart rate more than fentanyl. Finally, loss in blood oxygen saturation correlated with the frequency of fentanyl-induced apneas, but not breathing rate. Together, these findings provide insight into how the addition of xylazine to illicit fentanyl may increase the risk of overdose.
Collapse
Affiliation(s)
- Catherine Demery-Poulos
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sierra C Moore
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Erica S Levitt
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jessica P Anand
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Javaheri S, Randerath WJ, Safwan Badr M, Javaheri S. Medication-induced central sleep apnea: a unifying concept. Sleep 2024; 47:zsae038. [PMID: 38334297 DOI: 10.1093/sleep/zsae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Medication-induced central sleep apnea (CSA) is one of the eight categories of causes of CSA but in the absence of awareness and careful history may be misclassified as primary CSA. While opioids are a well-known cause of respiratory depression and CSA, non-opioid medications including sodium oxybate, baclofen, valproic acid, gabapentin, and ticagrelor are less well-recognized. Opioids-induced respiratory depression and CSA are mediated primarily by µ-opioid receptors, which are abundant in the pontomedullary centers involved in breathing. The non-opioid medications, sodium oxybate, baclofen, valproic acid, and gabapentin, act upon brainstem gamma-aminobutyric acid (GABA) receptors, which co-colonize with µ-opioid receptors and mediate CSA. The pattern of ataxic breathing associated with these medications is like that induced by opioids on polysomnogram. Finally, ticagrelor also causes periodic breathing and CSA by increasing central chemosensitivity and ventilatory response to carbon dioxide. Given the potential consequences of CSA and the association between some of these medications with mortality, it is critical to recognize these adverse drug reactions, particularly because discontinuation of the offending agents has been shown to eliminate CSA.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Adjunct Professor of Medicine, Division of Cardiology, The Ohio State University, Columbus, Ohio, USA
- Emeritus Professor of Medicine, Division of Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winfried J Randerath
- Professor and Head Physician, Institute of Pneumology, University of Cologne, Bethanien Hospital, Solingen, Germany
| | - M Safwan Badr
- Professor and Chair, Department of Internal Medicine, Wayne State University School of Medicine Detroit, Staff Physician, John D. Dingell VA Medical Center, MI, USA
| | - Sogol Javaheri
- Assistant Professor of Sleep Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Guo X, Akanda N, Fiorino G, Nimbalkar S, Long CJ, Colón A, Patel A, Tighe PJ, Hickman JJ. Human IPSC-Derived PreBötC-Like Neurons and Development of an Opiate Overdose and Recovery Model. Adv Biol (Weinh) 2024; 8:e2300276. [PMID: 37675827 PMCID: PMC10921423 DOI: 10.1002/adbi.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Opioid overdose is the leading cause of drug overdose lethality, posing an urgent need for investigation. The key brain region for inspiratory rhythm regulation and opioid-induced respiratory depression (OIRD) is the preBötzinger Complex (preBötC) and current knowledge has mainly been obtained from animal systems. This study aims to establish a protocol to generate human preBötC neurons from induced pluripotent cells (iPSCs) and develop an opioid overdose and recovery model utilizing these iPSC-preBötC neurons. A de novo protocol to differentiate preBötC-like neurons from human iPSCs is established. These neurons express essential preBötC markers analyzed by immunocytochemistry and demonstrate expected electrophysiological responses to preBötC modulators analyzed by patch clamp electrophysiology. The correlation of the specific biomarkers and function analysis strongly suggests a preBötC-like phenotype. Moreover, the dose-dependent inhibition of these neurons' activity is demonstrated for four different opioids with identified IC50's comparable to the literature. Inhibition is rescued by naloxone in a concentration-dependent manner. This iPSC-preBötC mimic is crucial for investigating OIRD and combating the overdose crisis and a first step for the integration of a functional overdose model into microphysiological systems.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Gabriella Fiorino
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Siddharth Nimbalkar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Long
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Alisha Colón
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Patrick J Tighe
- College of Medicine, Department of Anesthesiology, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| |
Collapse
|
17
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
18
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People’s Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| |
Collapse
|
19
|
MacDonald A, Hebling A, Wei XP, Yackle K. The breath shape controls intonation of mouse vocalizations. eLife 2024; 13:RP93079. [PMID: 38963785 PMCID: PMC11223766 DOI: 10.7554/elife.93079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.
Collapse
Affiliation(s)
- Alastair MacDonald
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
| | - Alina Hebling
- Neuroscience Graduate Program, University of California-San FranciscoSan FranciscoUnited States
| | - Xin Paul Wei
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California-San FranciscoSan FranciscoUnited States
| | - Kevin Yackle
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
| |
Collapse
|
20
|
Furdui A, da Silveira Scarpellini C, Montandon G. Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network. J Neurophysiol 2024; 132:108-129. [PMID: 38748514 DOI: 10.1152/jn.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024] Open
Abstract
µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Kaye AD, Dufrene K, Cooley J, Walker M, Shah S, Hollander A, Shekoohi S, Robinson CL. Neuropsychiatric Effects Associated with Opioid-Based Management for Palliative Care Patients. Curr Pain Headache Rep 2024; 28:587-594. [PMID: 38564124 DOI: 10.1007/s11916-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The abundance of opioids administered in the palliative care setting that was once considered a standard of care is at present necessitating that providers evaluate patients for unintentional and deleterious symptomology related to aberrant opioid use and addiction. Polypharmacy with opioids is dynamic in affecting patients neurologically, and increased amounts of prescriptions have had inimical effects, not only for the individual, but also for their families and healthcare providers. The purpose of this review is to widen the perspective of opioid consequences and bring awareness to the numerous neuropsychiatric effects associated with the most commonly prescribed opioids for patients receiving palliative care. RECENT FINDINGS Numerous clinical and research studies have found evidence in support for increased incidence of opioid usage and abuse as well as undesirable neurological outcomes. The most common and concerning effects of opioid usage in this setting are delirium and problematic drug-related behavioral changes such as deceitful behavior towards family and physicians, anger outbursts, overtaking of medications, and early prescription refill requests. Other neuropsychiatric effects detailed by recent studies include drug-seeking behavior, tolerance, dependence, addictive disorder, anxiety, substance use disorder, emotional distress, continuation of opioids to avoid opioid withdrawal syndrome, depression, and suicidal ideation. Opioid usage has detrimental and confounding effects that have been overlooked for many years by palliative care providers and patients receiving palliative care. It is necessary, even lifesaving, to be cognizant of potential neuropsychiatric effects that opioids can have on an individual, especially for those under palliative care. By having an increased understanding and awareness of potential opioid neuropsychiatric effects, patient quality of life can be improved, healthcare system costs can be decreased, and patient outcomes can be met and exceeded.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Louisiana State University Health Sciences Center at Shreveport, Toxicology, and Neurosciences, Shreveport, LA, 71103, USA
| | - Kylie Dufrene
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Jada Cooley
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Madeline Walker
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shivam Shah
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Alex Hollander
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
22
|
Martucci KT. Neuroimaging of opioid effects in humans across conditions of acute administration, chronic pain therapy, and opioid use disorder. Trends Neurosci 2024; 47:418-431. [PMID: 38762362 PMCID: PMC11168870 DOI: 10.1016/j.tins.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.
Collapse
Affiliation(s)
- Katherine T Martucci
- Human Affect and Pain Neuroscience Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Fagan RR, Lee DF, Geron M, Scherrer G, von Zastrow M, Ehrlich AT. Selective targeting of mu opioid receptors to primary cilia. Cell Rep 2024; 43:114164. [PMID: 38678559 PMCID: PMC11257377 DOI: 10.1016/j.celrep.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Opioid receptors are therapeutically important G protein-coupled receptors (GPCRs) with diverse neuromodulatory effects. The functional consequences of opioid receptor activation are known to depend on receptor location in the plasma membrane, but mechanisms mediating selective localization of receptors to any particular membrane domain remain elusive. Here, we demonstrate the targeting of the mu opioid receptor (MOR) to the primary cilium, a discrete microdomain of the somatic plasma membrane, both in vivo and in cultured cells. We further show that ciliary targeting is specific to MORs, requires a 17-residue sequence unique to the MOR cytoplasmic tail, and additionally requires the Tubby-like protein 3 (TULP3) ciliary adaptor protein. Our results reveal the potential for opioid receptors to undergo selective localization to the primary cilium. We propose that ciliary targeting is mediated through an elaboration of the recycling pathway, directed by a specific C-terminal recycling sequence in cis and requiring TULP3 in trans.
Collapse
Affiliation(s)
- Rita R Fagan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David F Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation, Chapel Hill, NC 27599, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Testelmans D, Kalkanis A, Papadopoulos D, Demolder S, Buyse B. Central sleep apnea: emphasizing recognition and differentiation. Expert Rev Respir Med 2024; 18:309-320. [PMID: 38878064 DOI: 10.1080/17476348.2024.2369256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
INTRODUCTION Central sleep apnea (CSA) is a sleep-related breathing disorder in which the effort to breathe is intermittently diminished or absent. CSA is a common disorder among patients with different cardiovascular disorders, including heart failure. In addition, a growing number of medications have been shown to induce CSA and CSA can emerge after initiation of treatment for obstructive sleep apnea. Accumulating evidence shows that CSA is a heterogeneous disorder with individual differences in clinical and biological characteristics and/or underlying pathophysiological mechanisms. AREAS COVERED This narrative review offers an overview of the diagnostic aspects and classification of CSA, with an emphasis on heart failure patients, patients with CSA due to a medication and treatment-emergent CSA. The importance of evaluation of prognostic biomarkers in patients with different types of CSA is discussed. This narrative review synthesizes literature on CSA sourced from the PubMed database up to February 2024. EXPERT OPINION CSA presents a remarkably diverse disorder, with treatment modalities exhibiting potentially varied efficacy across its various phenotypes. This highlights the imperative for tailored management strategies that are rooted in phenotype classification.
Collapse
Affiliation(s)
- Dries Testelmans
- Department of Pneumology, Leuven University Center for Sleep and Wake disorders, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Alexandros Kalkanis
- Department of Pneumology, Leuven University Center for Sleep and Wake disorders, University Hospitals Leuven, Leuven, Belgium
| | - Dimitrios Papadopoulos
- Department of Pneumology, Leuven University Center for Sleep and Wake disorders, University Hospitals Leuven, Leuven, Belgium
| | - Saartje Demolder
- Department of Pneumology, Leuven University Center for Sleep and Wake disorders, University Hospitals Leuven, Leuven, Belgium
| | - Bertien Buyse
- Department of Pneumology, Leuven University Center for Sleep and Wake disorders, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Kroning K, Gannot N, Li X, Putansu A, Zhou G, Sescil J, Shen J, Wilson A, Fiel H, Li P, Wang W. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. Proc Natl Acad Sci U S A 2024; 121:e2307090121. [PMID: 38648487 PMCID: PMC11067452 DOI: 10.1073/pnas.2307090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Humans
- Mice
- HEK293 Cells
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Isoproterenol/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Morphine/pharmacology
- Brain/metabolism
- Brain/drug effects
- Brain/diagnostic imaging
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Biosensing Techniques/methods
Collapse
Affiliation(s)
- Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Aubrey Putansu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Jennifer Sescil
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Avery Wilson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
26
|
Green M, Veltri CA, Grundmann O. Nalmefene Hydrochloride: Potential Implications for Treating Alcohol and Opioid Use Disorder. Subst Abuse Rehabil 2024; 15:43-57. [PMID: 38585160 PMCID: PMC10999209 DOI: 10.2147/sar.s431270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Nalmefene hydrochloride was first discovered as an opioid antagonist derivative of naltrexone in 1975. It is among the most potent opioid antagonists currently on the market and is differentiated from naloxone and naltrexone by its partial agonist activity at the kappa-opioid receptor which may benefit in the treatment of alcohol use disorder. Oral nalmefene has been approved in the European Union for treatment of alcohol use disorder since 2013. As of 2023, nalmefene is available in the United States as an intranasal spray for reversal of opioid overdose but is not approved for alcohol or opioid use disorder as a maintenance treatment. The substantially longer half-life of nalmefene and 5-fold higher binding affinity to opioid receptors makes it a superior agent over naloxone in the reversal of high potency synthetic opioids like fentanyl and the emerging nitazenes. Nalmefene presents with a comparable side effect profile to other opioid antagonists and should be considered for further development as a maintenance treatment for opioid and other substance use disorders.
Collapse
Affiliation(s)
- MeShell Green
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| | - Charles A Veltri
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| | - Oliver Grundmann
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
- College of Pharmacy, Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Sandelich S, Hooley G, Hsu G, Rose E, Ruttan T, Schwarz ES, Simon E, Sulton C, Wall J, Dietrich AM. Acute opioid overdose in pediatric patients. J Am Coll Emerg Physicians Open 2024; 5:e13134. [PMID: 38464332 PMCID: PMC10920943 DOI: 10.1002/emp2.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Recent increases in pediatric and adolescent opioid fatalities mandate an urgent need for early consideration of possible opioid exposure and specific diagnostic and management strategies and interventions tailored to these unique populations. In contrast to adults, pediatric methods of exposure include accidental ingestions, prescription misuse, and household exposure. Early recognition, appropriate diagnostic evaluation, along with specialized treatment for opioid toxicity in this demographic are discussed. A key focus is on Naloxone, an essential medication for opioid intoxication, addressing its unique challenges in pediatric use. Unique pediatric considerations include recognition of accidental ingestions in our youngest population, critical social aspects including home safety and intentional exposure, and harm reduction strategies, mainly through Naloxone distribution and education on safe medication practices. It calls for a multifaceted approach, including creating pediatric-specific guidelines, to combat the opioid crisis among children and to work to lower morbidity and mortality from opioid overdoses.
Collapse
Affiliation(s)
- Stephen Sandelich
- Department of Emergency MedicinePenn State College of MedicinePenn State Milton S. Hershey Medical CenterHersheyPennsylvaniaUSA
| | - Gwen Hooley
- Department of Emergency MedicineChildren's Hospital of Los AngelesLos AngelesCaliforniaUSA
| | - George Hsu
- Department of Emergency MedicineAugusta University‐Medical College of GeorgiaAugustaGeorgiaUSA
| | - Emily Rose
- Department of Emergency MedicineKeck School of Medicine of the University of Southern CaliforniaLos Angeles General Medical CenterLos AngelesCaliforniaUSA
| | - Tim Ruttan
- Department of PediatricsDell Medical SchoolThe University of Texas at AustinUS Acute Care SolutionsCantonOhioUSA
| | - Evan S. Schwarz
- Division of Medical ToxicologyDepartment of Emergency MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Erin Simon
- Department of Emergency MedicineCleveland ClinicAkronOhioUSA
| | - Carmen Sulton
- Departments of Pediatrics and Emergency MedicineEmory University School of MedicineChildren's Healthcare of Atlanta, EglestonAtlantaGeorgiaUSA
| | - Jessica Wall
- Departments of Pediatrics and Emergency MedicineSeattle Children's HospitalHarborview Medical CenterSeattleWashingtonUSA
| | - Ann M Dietrich
- Department of Emergency MedicinePrisma HealthGreenvilleSouth CarolinaUSA
| |
Collapse
|
28
|
Kise R, Inoue A. GPCR signaling bias: an emerging framework for opioid drug development. J Biochem 2024; 175:367-376. [PMID: 38308136 DOI: 10.1093/jb/mvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Biased signaling, also known as functional selectivity, has emerged as an important concept in drug development targeting G-protein-coupled receptors (GPCRs). Drugs that provoke biased signaling are expected to offer an opportunity for enhanced therapeutic effectiveness with minimized side effects. Opioid analgesics, whilst exerting potent pain-relieving effects, have become a social problem owing to their serious side effects. For the development of safer pain medications, there has been extensive exploration of agonists with a distinct balance of G-protein and β-arrestin (βarr) signaling. Recently, several approaches based on protein-protein interactions have been developed to precisely evaluate individual signal pathways, paving the way for the comprehensive analysis of biased signals. In this review, we describe an overview of bias signaling in opioid receptors, especially the μ-opioid receptor (MOR), and how to evaluate signaling bias in the GPCR field. We also discuss future directions for rational drug development through the integration of diverse signal datasets.
Collapse
Affiliation(s)
- Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
29
|
Watkins J, Aradi P, Hahn R, Katona I, Mackie K, Makriyannis A, Hohmann AG. CB 1 Cannabinoid Receptor Agonists Induce Acute Respiratory Depression in Awake Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584260. [PMID: 38558988 PMCID: PMC10980063 DOI: 10.1101/2024.03.12.584260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recreational use of synthetic cannabinoid agonists (i.e., "Spice" compounds) that target the Cannabinoid Type 1 receptor (CB 1 ) can cause respiratory depression in humans. However, Δ 9 -tetrahydrocannabinol (THC), the major psychoactive phytocannabinoid in cannabis, is not traditionally thought to interact with CNS control of respiration, based largely upon sparse labeling of CB1 receptors in the medulla and few reports of clinically significant respiratory depression following cannabis overdose. The respiratory effects of CB 1 agonists have rarely been studied in vivo , suggesting that additional inquiry is required to reconcile the conflict between conventional wisdom and human data. Here we used whole body plethysmography to examine the respiratory effects of the synthetic high efficacy CB 1 agonist CP55,940, and the low efficacy CB 1 agonist Δ 9 -tetrahydrocannabinol in male and female mice. CP55,940 and THC, administered systemically, both robustly suppressed minute ventilation. Both cannabinoids also produced sizable reductions in tidal volume, decreasing both peak inspiratory and expiratory flow - measures of respiratory effort. Similarly, both drugs reduced respiratory frequency, decreasing both inspiratory and expiratory time while markedly increasing expiratory pause, and to a lesser extent, inspiratory pause. Respiratory suppressive effects occurred at lower doses in females than in males, and at many of the same doses shown to produce cardinal behavioral signs of CB 1 activation. We next used RNAscope in situ hybridization to localize CB 1 mRNA to glutamatergic neurons in the medullary pre-Bötzinger Complex, a critical nucleus in controlling respiration. Our results show that, contrary to previous conventional wisdom, CB 1 mRNA is expressed in glutamatergic neurons in a brain region essential for breathing and CB 1 agonists can cause significant respiratory depression.
Collapse
|
30
|
Jansen S, Dahan A. Opioid-induced respiratory depression. BJA Educ 2024; 24:100-106. [PMID: 38375496 PMCID: PMC10874713 DOI: 10.1016/j.bjae.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- S.C. Jansen
- Leiden University Medical Centre, Leiden, The Netherlands
| | - A. Dahan
- Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
31
|
Chou GM, Bush NE, Phillips RS, Baertsch NA, Harris KD. Modeling Effects of Variable preBötzinger Complex Network Topology and Cellular Properties on Opioid-Induced Respiratory Depression and Recovery. eNeuro 2024; 11:ENEURO.0284-23.2023. [PMID: 38253582 PMCID: PMC10921262 DOI: 10.1523/eneuro.0284-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024] Open
Abstract
The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.
Collapse
Affiliation(s)
- Grant M Chou
- Department of Computer Science, Western Washington University, Bellingham, Washington 98225
| | - Nicholas E Bush
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington 90101
| | - Ryan S Phillips
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington 90101
| | - Nathan A Baertsch
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington 90101
- Department of Pediatrics, University of Washington, Seattle, Washington 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Kameron Decker Harris
- Department of Computer Science, Western Washington University, Bellingham, Washington 98225
| |
Collapse
|
32
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
33
|
Johnson SM, Gumnit MG, Johnson SM, Baker TL, Watters JJ. Disinhibition does not play a role in endomorphin-2-induced changes in inspiratory motoneuron output produced by in vitro neonatal rat preparations. Respir Physiol Neurobiol 2024; 320:104186. [PMID: 37944625 PMCID: PMC10843717 DOI: 10.1016/j.resp.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Low level activation of mu-opioid receptors (MORs) in neonatal rat brainstem-spinal cord preparations increases inspiratory burst amplitude recorded on cervical spinal roots. We tested whether: (1) MOR activation with an endogenous ligand, such as endomorphin-2, increases inspiratory burst amplitude, (2) disinhibition of GABAergic or glycinergic inhibitory synaptic transmission is involved, and (3) inflammation alters endomorphin-2 effects. Using neonatal rat (P0-P3) brainstem-spinal cord preparations, bath-applied endomorphin-2 (10-200 nM) increased inspiratory burst amplitude and decreased burst frequency. Blockade of GABAA receptors (picrotoxin), glycine receptors (strychnine), or both (picrotoxin and strychnine) did not abolish endomorphin-2-induced effects. In preparations isolated from neonatal rats injected 3 h previously with lipopolysaccharide (LPS, 0.1 mg/kg), endomorphin-2 continued to decrease burst frequency but abolished the burst amplitude increase. Collectively, these data indicate that disinhibition of inhibitory synaptic transmission is unlikely to play a role in endomorphin-2-induced changes in inspiratory motor output, and that different mechanisms underlie the endomorphin-2-induced increases in inspiratory burst amplitude and decreases in burst frequency.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Maia G Gumnit
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
John SR, Barnett WH, Abdala APL, Zoccal DB, Rubin JE, Molkov YI. Exploring the role of the Kölliker-Fuse nucleus in breathing variability by mathematical modelling. J Physiol 2024; 602:93-112. [PMID: 38063489 PMCID: PMC10847960 DOI: 10.1113/jp285158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupnoeic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. KEY POINTS: The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modelling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analysing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide testable hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.
Collapse
Affiliation(s)
- S R John
- University of Pittsburgh, Pittsburgh, PA, USA
| | - W H Barnett
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - D B Zoccal
- São Paulo State University, Araraquara, Brazil
| | - J E Rubin
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Y I Molkov
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
35
|
Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C. The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System. Curr Neuropharmacol 2024; 22:217-240. [PMID: 37563812 PMCID: PMC10788885 DOI: 10.2174/1570159x21666230810110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 02/28/2023] [Indexed: 08/12/2023] Open
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
Collapse
Affiliation(s)
- Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
36
|
Stucke AG, Levitt ES, Montandon G. Editorial: Opioid-induced respiratory depression: neural circuits and cellular pathways. Front Physiol 2023; 14:1348910. [PMID: 38179143 PMCID: PMC10766328 DOI: 10.3389/fphys.2023.1348910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Erica S. Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gaspard Montandon
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Oreskovic J, Kaufman J, Thommandram A, Fossat Y. A Radar-Based Opioid Overdose Detection Device for Public Restrooms: Design, Development, and Evaluation Study. JMIR BIOMEDICAL ENGINEERING 2023; 8:e51754. [PMID: 38875668 PMCID: PMC11041516 DOI: 10.2196/51754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The opioid epidemic is a growing crisis worldwide. While many interventions have been put in place to try to protect people from opioid overdoses, they typically rely on the person to take initiative in protecting themselves, requiring forethought, preparation, and action. Respiratory depression or arrest is the mechanism by which opioid overdoses become fatal, but it can be reversed with the timely administration of naloxone. OBJECTIVE In this study, we described the development and validation of an opioid overdose detection radar (ODR), specifically designed for use in public restroom stalls. In-laboratory testing was conducted to validate the noncontact, privacy-preserving device against a respiration belt and to determine the accuracy and reliability of the device. METHODS We used an ODR system with a high-frequency pulsed coherent radar sensor and a Raspberry Pi (Raspberry Pi Ltd), combining advanced technology with a compact and cost-effective setup to monitor respiration and detect opioid overdoses. To determine the optimal position for the ODR within the confined space of a restroom stall, iterative testing was conducted, considering the radar's bounded capture area and the limitations imposed by the stall's dimensions and layout. By adjusting the orientation of the ODR, we were able to identify the most effective placement where the device reliably tracked respiration in a number of expected positions. Experiments used a mock restroom stall setup that adhered to building code regulations, creating a controlled environment while maintaining the authenticity of a public restroom stall. By simulating different body positions commonly associated with opioid overdoses, the ODR's ability to accurately track respiration in various scenarios was assessed. To determine the accuracy of the ODR, testing was performed using a respiration belt as a reference. The radar measurements were compared with those obtained from the belt in experiments where participants were seated upright and slumped over. RESULTS The results demonstrated favorable agreement between the radar and belt measurements, with an overall mean error in respiration cycle duration of 0.0072 (SD 0.54) seconds for all recorded respiration cycles (N=204). During the simulated overdose experiments where participants were slumped over, the ODR successfully tracked respiration with a mean period difference of 0.0091 (SD 0.62) seconds compared with the reference data. CONCLUSIONS The findings suggest that the ODR has the potential to detect significant deviations in respiration patterns that may indicate an opioid overdose event. The success of the ODR in these experiments indicates the device should be further developed and implemented to enhance safety and emergency response measures in public restrooms. However, additional validation is required for unhealthy opioid-influenced respiratory patterns to guarantee the ODR's effectiveness in real-world overdose situations.
Collapse
Affiliation(s)
| | | | | | - Yan Fossat
- Klick Labs, Klick Inc, Toronto, ON, Canada
| |
Collapse
|
38
|
van Lemmen M, van der Schrier R, Dahan A, van Velzen M, Sarton E, Niesters M. Pharmacology of viable mechanism agnostic respiratory stimulants for the reversal of drug-induced respiratory depression in humans. Expert Opin Drug Metab Toxicol 2023; 19:671-679. [PMID: 37795596 DOI: 10.1080/17425255.2023.2262386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Drug-induced respiratory depression is potentially fatal and can be caused by various drugs such as synthetic opioids and tranquilizers. The only class of respiratory depressants that has a specific reversal agent are opioids, such as naloxone. These reversal agents have limited utility in situations of polysubstance ingestion with agents from multiple respiratory depressant classes. Hence, there is an unmet need for drugs that stimulate breathing irrespective of the underlying cause of respiratory depression, i.e. mechanism agnostic respiratory stimulants. AREAS COVERED In this review, we discuss agnostic respiratory stimulants, tested in humans with promising results, i.e. ampakines, drugs that act at the carotid bodies, N-methyl-D-aspartate receptor antagonist ketamine, and orexin receptor-2-agonist danavorexton, and others that demonstrated positive effects in animals but not yet in humans. EXPERT OPINION Rapid, effective rescuing of individuals who overdosed on respiratory depressants saves lives. While naloxone is the preferred drug for reversing opioid-induced respiratory depression, its effectiveness is limited in cases involving non-opioids. While several agnostic respiratory stimulants showed promise in humans, further research is needed to optimize dosing, evaluate safety and efficacy in deeper respiratory depression (apnea). Additionally, future studies should combine agnostic stimulants with naloxone, to improve rapid, effective rescue from drug overdoses.
Collapse
Affiliation(s)
- Maarten van Lemmen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
- PainLess Foundation, Leiden, the Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elise Sarton
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
- PainLess Foundation, Leiden, the Netherlands
| |
Collapse
|
39
|
John S, Barnett W, Abdala A, Zoccal D, Rubin J, Molkov Y. The role of Kölliker-Fuse nucleus in breathing variability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545086. [PMID: 37398197 PMCID: PMC10312726 DOI: 10.1101/2023.06.15.545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apneas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupneic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. Key points The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modeling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analyzing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide plausible hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.
Collapse
|
40
|
Palkovic B, Mustapic S, Saric I, Stuth EAE, Stucke AG, Zuperku EJ. Changes in pontine and preBötzinger/Bötzinger complex neuronal activity during remifentanil-induced respiratory depression in decerebrate dogs. Front Physiol 2023; 14:1156076. [PMID: 37362432 PMCID: PMC10285059 DOI: 10.3389/fphys.2023.1156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: In vivo studies using selective, localized opioid antagonist injections or localized opioid receptor deletion have identified that systemic opioids dose-dependently depress respiratory output through effects in multiple respiratory-related brainstem areas. Methods: With approval of the subcommittee on animal studies of the Zablocki VA Medical Center, experiments were performed in 53 decerebrate, vagotomized, mechanically ventilated dogs of either sex during isocapnic hyperoxia. We performed single neuron recordings in the Pontine Respiratory Group (PRG, n = 432) and preBötzinger/Bötzinger complex region (preBötC/BötC, n = 213) before and during intravenous remifentanil infusion (0.1-1 mcg/kg/min) and then until complete recovery of phrenic nerve activity. A generalized linear mixed model was used to determine changes in Fn with remifentanil and the statistical association between remifentanil-induced changes in Fn and changes in inspiratory and expiratory duration and peak phrenic activity. Analysis was controlled via random effects for animal, run, and neuron type. Results: Remifentanil decreased Fn in most neuron subtypes in the preBötC/BötC as well as in inspiratory (I), inspiratory-expiratory, expiratory (E) decrementing and non-respiratory modulated neurons in the PRG. The decrease in PRG inspiratory and non-respiratory modulated neuronal activity was associated with an increase in inspiratory duration. In the preBötC, the decrease in I-decrementing neuron activity was associated with an increase in expiratory and of E-decrementing activity with an increase in inspiratory duration. In contrast, decreased activity of I-augmenting neurons was associated with a decrease in inspiratory duration. Discussion: While statistical associations do not necessarily imply a causal relationship, our data suggest mechanisms for the opioid-induced increase in expiratory duration in the PRG and preBötC/BötC and how inspiratory failure at high opioid doses may result from a decrease in activity and decrease in slope of the pre-inspiratory ramp-like activity in preBötC/BötC pre-inspiratory neurons combined with a depression of preBötC/BötC I-augmenting neurons. Additional studies must clarify whether the observed changes in neuronal activity are due to direct neuronal inhibition or decreased excitatory inputs.
Collapse
Affiliation(s)
- Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Dubrava, Zagreb, Croatia
| | - Ivana Saric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Split, Split, Croatia
| | - Eckehard A. E. Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Edward J. Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
41
|
Lynch N, Lima JD, Spinieli RL, Kaur S. Opioids, sleep, analgesia and respiratory depression: Their convergence on Mu (μ)-opioid receptors in the parabrachial area. Front Neurosci 2023; 17:1134842. [PMID: 37090798 PMCID: PMC10117663 DOI: 10.3389/fnins.2023.1134842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Opioids provide analgesia, as well as modulate sleep and respiration, all by possibly acting on the μ-opioid receptors (MOR). MOR's are ubiquitously present throughout the brain, posing a challenge for understanding the precise anatomical substrates that mediate opioid induced respiratory depression (OIRD) that ultimately kills most users. Sleep is a major modulator not only of pain perception, but also for changing the efficacy of opioids as analgesics. Therefore, sleep disturbances are major risk factors for developing opioid overuse, withdrawal, poor treatment response for pain, and addiction relapse. Despite challenges to resolve the neural substrates of respiratory malfunctions during opioid overdose, two main areas, the pre-Bötzinger complex (preBötC) in the medulla and the parabrachial (PB) complex have been implicated in regulating respiratory depression. More recent studies suggest that it is mediation by the PB that causes OIRD. The PB also act as a major node in the upper brain stem that not only receives input from the chemosensory areas in medulla, but also receives nociceptive information from spinal cord. We have previously shown that the PB neurons play an important role in mediating arousal from sleep in response to hypercapnia by its projections to the forebrain arousal centers, and it may also act as a major relay for the pain stimuli. However, due to heterogeneity of cells in the PB, their precise roles in regulating, sleep, analgesia, and respiratory depression, needs addressing. This review sheds light on interactions between sleep and pain, along with dissecting the elements that adversely affects respiration.
Collapse
Affiliation(s)
| | | | | | - Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Xu Y, Chen Q, Li P, Song X. Safety and efficacy of esketamine for postoperative analgesia in pediatric patients with hypospadias. Front Surg 2023; 10:1131137. [PMID: 37082363 PMCID: PMC10110919 DOI: 10.3389/fsurg.2023.1131137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveTo explore the safety and efficacy of the combination of continuous intravenous infusion of esketamine with sacral block for postoperative analgesia in pediatric patients undergoing surgery for hypospadiasMethodsPediatric patients (n = 77) undergoing surgery for hypospadias were randomized into two groups: a hydromorphone group (H group, initial dose, 0.02 mg/kg; maintenance dose, 0.01 mg/kg/h) or an esketamine group (E group, initial dose, 0.3 mg/kg; maintenance dose 0.15 mg/kg/h). Caudal epidural block involved injection of 0.2% ropivacaine 1 ml/kg through the sacral hiatus. Age, weight, grade of hypospadias, intraoperative blood loss, operative time, and awaking time of patients were recorded. The Face, Legs, Activity, Cry and Consolability (FLACC) scale and Ramsay sedation scores were recorded when leaving the PACU (0 h) and at postoperative 2, 6, 12, 24, 36, and 48 h. The Pediatric Anesthesia Emergence Delirium Scale (PAED), incidence of hypotension, respiratory depression, nausea and vomiting and pruritus, and the time to first bowel movement after surgery were recorded.ResultsThere were no significant differences in demographic and clinical characteristics between the H group and the E group. There were no significant differences in FLACC scores at postoperative 0, 2, 6, 12, 24, 36, and 48 h in intra-group and inter-group comparisons. There were no significant differences in Ramsay sedation scores at postoperative 0, 2, 6, 12, 24, 36, and 48 h in the intra-group comparisons. Ramsay sedation scores were significantly lower at postoperative 2, 12, and 36 h in the H group compared to the E group. There were no significant differences in the PAED scale or incidence of nausea and vomiting or pruritus between the H group and the E group. The incidence of hypotension and respiratory depression was significantly lower, and the time to first bowel movement was significantly shorter in the E group compared to the H group. Urinary tryptophan, 5-hydroxytryptamine and substance P levels were significantly lower but arginine was significantly higher in the E group compared to the H group.ConclusionsThe combination of continuous intravenous infusion of esketamine with sacral block provided safe and effective postoperative analgesia for pediatric patients undergoing surgery for hypospadias.Trial registrationChinese Clinical Trial Register ChiCTR2200066967. Clinical trial registry URL: http://www.chictr.org.cn/edit.aspx?pid=185042&htm=4
Collapse
Affiliation(s)
- Yong Xu
- Department of Anesthesiology, The First School of Clinical Medicine of Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xingrong Song
- Department of Anesthesiology, The First School of Clinical Medicine of Jinan University, Guangzhou, China
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Correspondence: Xingrong Song
| |
Collapse
|
43
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Chen J, Gannot N, Li X, Zhu R, Zhang C, Li P. Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus. Neurosci Bull 2023; 39:589-601. [PMID: 36522525 PMCID: PMC10073397 DOI: 10.1007/s12264-022-00994-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/04/2022] [Indexed: 12/23/2022] Open
Abstract
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Collapse
Affiliation(s)
- Jingwen Chen
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rongrong Zhu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Beyeler SA, Naidoo R, Morrison NR, McDonald EA, Albarrán D, Huxtable AG. Maternal opioids age-dependently impair neonatal respiratory control networks. Front Physiol 2023; 14:1109754. [PMID: 37008014 PMCID: PMC10060555 DOI: 10.3389/fphys.2023.1109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Infants exposed to opioids in utero are an increasing clinical population and these infants are often diagnosed with Neonatal Abstinence Syndrome (NAS). Infants with NAS have diverse negative health consequences, including respiratory distress. However, many factors contribute to NAS, confounding the ability to understand how maternal opioids directly impact the neonatal respiratory system. Breathing is controlled centrally by respiratory networks in the brainstem and spinal cord, but the impact of maternal opioids on developing perinatal respiratory networks has not been studied. Using progressively more isolated respiratory network circuitry, we tested the hypothesis that maternal opioids directly impair neonatal central respiratory control networks. Fictive respiratory-related motor activity from isolated central respiratory networks was age-dependently impaired in neonates after maternal opioids within more complete respiratory networks (brainstem and spinal cords), but unaffected in more isolated networks (medullary slices containing the preBötzinger Complex). These deficits were due, in part, to lingering opioids within neonatal respiratory control networks immediately after birth and involved lasting impairments to respiratory pattern. Since opioids are routinely given to infants with NAS to curb withdrawal symptoms and our previous work demonstrated acute blunting of opioid-induced respiratory depression in neonatal breathing, we further tested the responses of isolated networks to exogenous opioids. Isolated respiratory control networks also demonstrated age-dependent blunted responses to exogenous opioids that correlated with changes in opioid receptor expression within a primary respiratory rhythm generating region, the preBötzinger Complex. Thus, maternal opioids age-dependently impair neonatal central respiratory control and responses to exogenous opioids, suggesting central respiratory impairments contribute to neonatal breathing destabilization after maternal opioids and likely contribute to respiratory distress in infants with NAS. These studies represent a significant advancement of our understanding of the complex effects of maternal opioids, even late in gestation, contributing to neonatal breathing deficits, necessary first steps in developing novel therapeutics to support breathing in infants with NAS.
Collapse
Affiliation(s)
- Sarah A. Beyeler
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Robyn Naidoo
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Nina R. Morrison
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Emilee A. McDonald
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - David Albarrán
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Adrianne G. Huxtable
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
- *Correspondence: Adrianne G. Huxtable,
| |
Collapse
|
46
|
|
47
|
Arthurs JW, Bowen AJ, Palmiter RD, Baertsch NA. Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control. Nat Commun 2023; 14:963. [PMID: 36810601 PMCID: PMC9944916 DOI: 10.1038/s41467-023-36603-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Breathing is regulated automatically by neural circuits in the medulla to maintain homeostasis, but breathing is also modified by behavior and emotion. Mice have rapid breathing patterns that are unique to the awake state and distinct from those driven by automatic reflexes. Activation of medullary neurons that control automatic breathing does not reproduce these rapid breathing patterns. By manipulating transcriptionally defined neurons in the parabrachial nucleus, we identify a subset of neurons that express the Tac1, but not Calca, gene that exerts potent and precise conditional control of breathing in the awake, but not anesthetized, state via projections to the ventral intermediate reticular zone of the medulla. Activating these neurons drives breathing to frequencies that match the physiological maximum through mechanisms that differ from those that underlie the automatic control of breathing. We postulate that this circuit is important for the integration of breathing with state-dependent behaviors and emotions.
Collapse
Affiliation(s)
- Joseph W Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Pulmonary Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
48
|
Abstract
The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
49
|
Purnell BS, Thompson S, Bowman T, Bhasin J, George S, Rust B, Murugan M, Fedele D, Boison D. The role of adenosine in alcohol-induced respiratory suppression. Neuropharmacology 2023; 222:109296. [PMID: 36377091 PMCID: PMC10208026 DOI: 10.1016/j.neuropharm.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Sydney Thompson
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Tenise Bowman
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
50
|
Misawa T, Tsuji G, Kurohara T, Ito T, Yokoo H, Kawamura M, Shoda T, Hanajiri-kikura R, Demizu Y. Comprehensive Synthesis of 20 Fentanyl Derivatives for Their Rapid Differentiation by GC-MS Analysis. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|