1
|
Wang H, Fan N, Cui X, Xie R, Tang Y, Thomas AM, Li S, Zhang JV, Liu S, Qin H. BMP5 promotes trophoblast functions upon N-glycosylation via the BMP5-SMAD1/5 signaling pathway in preeclampsia. Placenta 2024; 158:240-252. [PMID: 39520832 DOI: 10.1016/j.placenta.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the most common pregnancy-related complications worldwide and currently lacks an effective treatment. While trophoblast cell dysfunction has been identified as the fundamental cause of PE, the underlying mechanisms remain unclear. Bone morphogenetic protein 5 (BMP5) is a secreted glycoprotein highly expressed in the placenta that is involved in cell proliferation, migration, and invasion. However, the role and mechanism of BMP5 glycosylation of trophoblast cell function remain unclear. METHODS The expression of BMP5 and N-glycosylation in preeclamptic placental tissues was investigated. We predicted and validated the N-glycosylation sites of BMP5. Additionally, we evaluated the effect of BMP5 N-glycosylation on the proliferation, migration, invasion, and angiogenesis of human immortalized trophoblastic HTR-8/SVneo cells. Furthermore, the role of N-glycosylated BMP5 in activating the BMP5-SMAD1/5 signaling pathway and regulating trophoblastic cell functions was explored. RESULTS Our study reveals that PHA-E + L (recognizing branching N-glycans) reactive N-glycans and BMP5 expression levels are lower in preeclamptic villous tissues compared to normal placental tissues. Additionally, we demonstrated that BMP5 is an N-glycosylation-modified protein. Furthermore, N-glycosylated BMP5 promoted the functional trophoblastic cells (HTR-8/SVneo). We also revealed that N-glycosylation of BMP5 regulates multiple cell functions through the BMP5-SMAD1/5 signaling pathway. CONCLUSION N-glycosylated BMP5 promotes trophoblast cell proliferation, migration, invasion, and angiogenesis. This study provides mechanistic insight as to how N-glycosylation of BMP5 in trophoblast cells can contribute to the pathogenesis of preeclampsia and provides a new basis for its diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China; Sino-European Center of Biomedicine and Health, Shenzhen, China
| | - Ningning Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Northwest University, Xi'an No.1 Hospital, Xi'an, China; Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xinyuan Cui
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ru Xie
- Department of Pathology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Tang
- Department of Pathology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China; Sino-European Center of Biomedicine and Health, Shenzhen, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Huamin Qin
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Ye Y, Xu G. Construction of a new prognostic model for colorectal cancer based on bulk RNA-seq combined with The Cancer Genome Atlas data. Transl Cancer Res 2024; 13:2704-2720. [PMID: 38988915 PMCID: PMC11231782 DOI: 10.21037/tcr-23-2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths, and improving the prognosis of CRC patients is an urgent concern. The aim of this study was to explore new immunotherapy targets to improve survival in CRC patients. Methods We analyzed CRC-related single-cell data GSE201348 from the Gene Expression Omnibus (GEO) database, and identified differentially expressed genes (DEGs). Subsequently, we performed differential analysis on the rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) transcriptome sequencing data [The Cancer Genome Atlas (TCGA)-CRC queue] and clinical data downloaded from TCGA database. Subgroup analysis was performed using CIBERSORTx and cluster analysis. Finally, biomarkers were identified by one-way cox regression as well as least absolute shrinkage and selection operator (LASSO) analysis. Results In this study, we analyzed CRC-related single-cell data GSE201348, and identified 5,210 DEGs. Subsequently, we performed differential analysis on the TCGA-CRC queue database, and obtained 4,408 DEGs. Then, we categorized the cancer samples in the sequencing data into three groups (k1, k2, and k3), with significant differences observed between the k1 and k2 groups via survival analysis. Further differential analysis on the samples in the k1 and k2 groups identified 1,899 DEGs. A total of 77 DEGs were selected among those DEGs obtained from three differential analyses. Through subsequent Cox univariate analysis and LASSO analysis, seven biomarkers (RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, and ATOH1) were identified and selected to establish a risk score (RS). Conclusions To sum up, this study demonstrates the potential of the seven-gene prognostic risk model as instrumental variables for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Yu Ye
- Department of General Surgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Gang Xu
- Department of General Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
3
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Guyot B, Clément F, Drouet Y, Schmidt X, Lefort S, Delay E, Treilleux I, Foy JP, Jeanpierre S, Thomas E, Kielbassa J, Tonon L, Zhu HH, Saintigny P, Gao WQ, de la Fouchardiere A, Tirode F, Viari A, Blay JY, Maguer-Satta V. An Early Neoplasia Index (ENI10), Based on Molecular Identity of CD10 Cells and Associated Stemness Biomarkers, is a Predictor of Patient Outcome in Many Cancers. CANCER RESEARCH COMMUNICATIONS 2023; 3:1966-1980. [PMID: 37707389 PMCID: PMC10540743 DOI: 10.1158/2767-9764.crc-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells. We used epithelial primary cells and developed a breast cancer stem cell–based progressive model. The superiority of the early-transformed isolated molecular index was evaluated by large-scale analysis in solid cancers. BMP2-driven cell transformation increases CD10 expression which preserves stemness properties. Our model identified a unique set of 159 genes enriched in G2–M cell-cycle phases and spindle assembly complex. Using samples predisposed to transformation, we confirmed the value of an early neoplasia index associated to CD10 (ENI10) to discriminate premalignant status of a human tissue. Using a stratified Cox model, a large-scale analysis (>10,000 samples, The Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs reaching HR = 5.15; 95% confidence interval: 4.00–6.64) for high ENI10 levels. Through different databases, Cox regression model analyses highlighted an association between ENI10 and poor progression-free intervals for more than 50% of cancer subtypes tested, and the potential of ENI10 to predict drug efficacy. The ENI10 index constitutes a robust tool to detect pretransformed tissues and identify high-risk patients at diagnosis. Owing to its biological link with refractory cancer stem cells, the ENI10 index constitutes a unique way of identifying effective treatments to improve clinical care. SIGNIFICANCE We identified a molecular signature called ENI10 which, owing to its biological link with stem cell properties, predicts patient outcome and drugs efficiency in breast and several other cancers. ENI10 should allow early and optimized clinical management of a broad number of cancers, regardless of the stage of tumor progression.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Flora Clément
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | | | - Xenia Schmidt
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Emmanuel Delay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | | | - Jean-Philippe Foy
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Janice Kielbassa
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Laurie Tonon
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pierre Saintigny
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Arnaud de la Fouchardiere
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Franck Tirode
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Jean-Yves Blay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Yu X, Liu R, Song L, Gao W, Wang X, Zhang Y. Differences in the pathogenetic characteristics of prostate cancer in the transitional and peripheral zones and the possible molecular biological mechanisms. Front Oncol 2023; 13:1165732. [PMID: 37456243 PMCID: PMC10348634 DOI: 10.3389/fonc.2023.1165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Since the theory of modern anatomical partitioning of the prostate was proposed, the differences in the incidence and pathological parameters of prostate cancer between the peripheral zone and transition zone have been gradually revealed. It suggests that there are differences in the pathogenic pathways and molecular biology of prostate cancer between different regions of origin. Over the past decade, advances in sequencing technologies have revealed more about molecules, genomes, and cell types specific to the peripheral and transitional zones. In recent years, the innovation of spatial imaging and multiple-parameter magnetic resonance imaging has provided new technical support for the zonal study of prostate cancer. In this work, we reviewed all the research results and the latest research progress in the study of prostate cancer in the past two decades. We summarized and proposed several vital issues and focused directions for understanding the differences between peripheral and transitional zones in prostate cancer.
Collapse
Affiliation(s)
- Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine and Beijing Municipal Health Commission, Beijing, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lianying Song
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenfeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yaosheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine and Beijing Municipal Health Commission, Beijing, China
| |
Collapse
|
6
|
Yu X, Liu R, Gao W, Wang X, Zhang Y. Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment. Cell Mol Biol Lett 2023; 28:38. [PMID: 37161356 PMCID: PMC10170780 DOI: 10.1186/s11658-023-00450-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Prostate cancer is one of the more heterogeneous tumour types. In recent years, with the rapid development of single-cell sequencing and spatial transcriptome technologies, researchers have gained a more intuitive and comprehensive understanding of the heterogeneity of prostate cancer. Tumour-associated epithelial cells; cancer-associated fibroblasts; the complexity of the immune microenvironment, and the heterogeneity of the spatial distribution of tumour cells and other cancer-promoting molecules play a crucial role in the growth, invasion, and metastasis of prostate cancer. Single-cell multi-omics biotechnology, especially single-cell transcriptome sequencing, reveals the expression level of single cells with higher resolution and finely dissects the molecular characteristics of different tumour cells. We reviewed the recent literature on prostate cancer cells, focusing on single-cell RNA sequencing. And we analysed the heterogeneity and spatial distribution differences of different tumour cell types. We discussed the impact of novel single-cell omics technologies, such as rich omics exploration strategies, multi-omics joint analysis modes, and deep learning models, on future prostate cancer research. In this review, we have constructed a comprehensive catalogue of single-cell omics studies in prostate cancer. This article aimed to provide a more thorough understanding of the diagnosis and treatment of prostate cancer. We summarised and proposed several key issues and directions on applying single-cell multi-omics and spatial transcriptomics to understand the heterogeneity of prostate cancer. Finally, we discussed single-cell omics trends and future directions in prostate cancer.
Collapse
Affiliation(s)
- Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing Tumour Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing, 101121, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenfeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Yaosheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Beijing Tumour Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing, 101121, China.
| |
Collapse
|
7
|
Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, Yin J, Liang X, Liu Z. Interferon-dependent SLC14A1 + cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell 2022; 40:1550-1565.e7. [PMID: 36459995 DOI: 10.1016/j.ccell.2022.11.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a role in response to cancer treatment and patient prognosis. CAFs show phenotypic and functional heterogeneity and differ widely in tumors of different tissue origin. Here, we use single-cell RNA sequencing of bladder cancer (BC) patient samples and report a CAF subpopulation characterized by overexpression of the urea transporter SLC14A1. This population is induced by interferon signaling and confers stemness to BC cells via the WNT5A paracrine pathway. Activation of cGAS-STING signaling in tumor cells drives interferon production, thereby revealing a link between cGAS-STING signaling and SLC14A1+ CAF differentiation. Furthermore, the inhibition of SLC14A1+ CAF formation via targeting of STAT1 or STING sensitizes tumor cells to chemotherapy. More important, BC patients with high proportions of intratumoral SLC14A1+ CAFs show cancer stage-independent poor outcome and a worse response rate to neoadjuvant chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Zikun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China
| | - Xiangdong Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China
| | - Yize Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Guangzhou 510060, China
| | - Chen Wei
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoli Huang
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibo Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Xiaoyu Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China.
| |
Collapse
|
8
|
Man YG, Mannion C, Jewett A, Hsiao YH, Liu A, Semczuk A, Zarogoulidis P, Gapeev AB, Cimadamore A, Lee P, Lopez-Beltran A, Montironi R, Massari F, Lu X, Cheng L. The most effective but largely ignored target for prostate cancer early detection and intervention. J Cancer 2022; 13:3463-3475. [PMID: 36313040 PMCID: PMC9608211 DOI: 10.7150/jca.72973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the global efforts for the early detection and intervention of prostate cancer seem to have made significant progresses in the basic researches, but the clinic outcomes have been disappointing: (1) prostate cancer is still the most common non-cutaneous cancer in Europe in men, (2) the age-standardized prostate cancer rate has increased in nearly all Asian and African countries, (3) the proportion of advanced cancers at the diagnosis has increased to 8.2% from 3.9% in the USA, (4) the worldwide use of PSA testing and digital rectal examination have failed to reduce the prostate cancer mortality, and (5) there is still no effective preventive method to significantly reduce the development, invasion, and metastasis of prostate cancer… Together, these facts strongly suggest that the global efforts during the past appear to be not in a correlated target with markedly inconsistent basic research and clinic outcomes. The most likely cause for the inconsistence appears due to the fact that basic scientific studies are traditionally conducted on the cell lines and animal models, where it is impossible to completely reflect or replicate the in vivo status. Thus, we would like to propose the human prostate basal cell layer (PBCL) as “the most effective target for the early detection and intervention of prostate cancer”. Our proposal is based on the morphologic, immunohistochemical and molecular evidence from our recent studies of normal and cancerous human prostate tissues with detailed clinic follow-up data. We believe that the human tissue-derived basic research data may provide a more realistic roadmap to guide the clinic practice and to avoid the potential misleading from in vitro and animal studies.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| | - Ciaran Mannion
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Anahid Jewett
- Tumor Immunology Laboratory, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Yi-Hsuan Hsiao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Aijun Liu
- Department of Pathology, Chinese PLA General Hospital 7 th Medical Center, Beijing, China
| | - Andrzej Semczuk
- II ND Department of Gynecology, Lublin Medical University, Lublin, Poland
| | - Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Andrei B. Gapeev
- Laboratory of Biological Effects of Non-Ionizing Radiation, Institute of Cell Biophysics, Russian Academy of Sciences, Russian Federation
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Pathology, New York Harbor Healthcare System, New York, NY, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical & Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.,Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Medical School
- Lifespan Academic Medical Center, RI, USA.,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| |
Collapse
|
9
|
Liu X, Li WJ, Puzanov I, Goodrich DW, Chatta G, Tang DG. Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stemness. Essays Biochem 2022; 66:291-303. [PMID: 35866337 PMCID: PMC9484140 DOI: 10.1042/ebc20220003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer progression is characterized and driven by gradual loss of a differentiated phenotype and gain of stem cell-like features. In prostate cancer (PCa), androgen receptor (AR) signaling is important for cancer growth, progression, and emergence of therapy resistance. Targeting the AR signaling axis has been, over the decades, the mainstay of PCa therapy. However, AR signaling at the transcription level is reduced in high-grade cancer relative to low-grade PCa and loss of AR expression promotes a stem cell-like phenotype, suggesting that emergence of resistance to AR-targeted therapy may be associated with loss of AR signaling and gain of stemness. In the present mini-review, we first discuss PCa from the perspective of an abnormal organ with increasingly deregulated differentiation, and discuss the role of AR signaling during PCa progression. We then focus on the relationship between prostate cancer stem cells (PCSCs) and AR signaling. We further elaborate on the current methods of using transcriptome-based stemness-enriched signature to evaluate the degree of oncogenic dedifferentiation (cancer stemness) in pan-cancer datasets, and present the clinical significance of scoring transcriptome-based stemness across the spectrum of PCa development. Our discussions highlight the importance to evaluate the dynamic changes in both stem cell-like features (stemness score) and AR signaling activity across the PCa spectrum.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - Wen Jess Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| |
Collapse
|
10
|
Wang Z, Zhu X, Zhai H, Wang Y, Hao G. Integrated analysis of mRNA-single nucleotide polymorphism-microRNA interaction network to identify biomarkers associated with prostate cancer. Front Genet 2022; 13:922712. [PMID: 35957689 PMCID: PMC9358224 DOI: 10.3389/fgene.2022.922712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Prostate cancer is one of the most common malignancies among men worldwide currently. However, specific mechanisms of prostate cancer were still not fully understood due to lack of integrated molecular analyses. We performed this study to establish an mRNA-single nucleotide polymorphism (SNP)-microRNA (miRNA) interaction network by comprehensive bioinformatics analysis, and search for novel biomarkers for prostate cancer. Materials and methods: mRNA, miRNA, and SNP data were acquired from Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to identify differentially expressed genes (DEGs) and miRNAs (DEMs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, protein-protein interaction (PPI) analysis and expression quantitative trait loci (eQTL) analysis of DEGs were conducted. SNPs related to DEMs (miRSNPs) were downloaded from the open-source website MirSNP and PolymiRTS 3.0. TargetScan and miRDB databases were used for the target mRNA prediction of miRNA. The mRNA-SNP-miRNA interaction network was then constructed and visualized by Cytoscape 3.9.0. Selected key biomarkers were further validated using the Cancer Genome Atlas (TCGA) database. A nomogram model was constructed to predict the risk of prostate cancer. Results: In our study, 266 DEGs and 11 DEMs were identified. KEGG pathway analysis showed that DEGs were strikingly enriched in focal adhesion and PI3K-Akt signaling pathway. A total of 60 mRNA-SNP-miRNAs trios were identified to establish the mRNA-SNP-miRNA interaction network. Seven mRNAs in mRNA-SNP-miRNA network were consistent with the predicted target mRNAs of miRNA. These results were largely validated by the TCGA database analysis. A nomogram was constructed that contained four variables (ITGB8, hsa-miR-21, hsa-miR-30b and prostate-specific antigen (PSA) value) for predicting the risk of prostate cancer. Conclusion: Our study established the mRNA-SNP-miRNA interaction network in prostate cancer. The interaction network showed that hsa-miR-21, hsa-miR-30b, and ITGB8 may be utilized as new biomarkers for prostate cancer.
Collapse
|
11
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
12
|
Yang L, He YT, Dong S, Wei XW, Chen ZH, Zhang B, Chen WD, Yang XR, Wang F, Shang XM, Zhong WZ, Wu YL, Zhou Q. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J Immunother Cancer 2022; 10:jitc-2021-003534. [PMID: 35140113 PMCID: PMC8830346 DOI: 10.1136/jitc-2021-003534] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Backgrounds Immunotherapy is less effective in patients with epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC). Lower programmed cell death-ligand 1 (PD-L1) expression and tumor mutation burden (TMB) are reported to be the underlying mechanism. Being another important factor to affect the efficacy of immunotherapy, tumor microenvironment (TME) characteristics of this subgroup of NSCLC are not comprehensively understood up to date. Hence, we initiated this study to describe the specific TME of EGFR-mutant lung adenocarcinoma (LUAD) from cellular compositional and functional perspectives to better understand the immune landscape of this most common subtype of NSCLC. Methods We used single-cell transcriptome sequencing and multiplex immunohistochemistry to investigate the immune microenvironment of EGFR-mutant and EGFR wild-type LUADs and determined the efficacy of immunotherapy. We analyzed single cells from nine treatment-naïve samples and compared them to three post-immunotherapy samples previously reported from single cell perspective using bioinformatics methods. Results We found that EGFR-mutant malignant epithelial cells had similar characteristics to the epithelial cells in non-responders. EGFR-mutant LUAD lacked CD8+ tissue-resident memory (TRM) cells, which could promote tertiary lymphoid structure generation by secreting CXCL13. In addition, other cell types, including tumor-associated macrophages and cancer-associated fibroblasts, which are capable of recruiting, retaining, and expanding CD8+ TRM cells in the TME, were also deficient in EGFR-mutant LUAD. Furthermore, EGFR-mutant LUAD had significantly less crosstalk between T cells and other cell types via programmed cell death-1 (PD-1) and PD-L1 or other immune checkpoints compared with EGFR wild-type LUAD. Conclusions Our findings provide a comprehensive understanding of the immune landscape of EGFR-mutant LUAD at the single-cell level. Based on the results, many cellular components might have negative impact on the specific TME of EGFR-mutant LUAD through influencing CD8+ TRM. Lack of CD8+ TRM might be a key factor responsible for the suppressive TME of EGFR-mutant LUAD.
Collapse
Affiliation(s)
- Lei Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yun-Ting He
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Wu Wei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Zhang
- Novel Bioinformatics Co, Shanghai, China
| | | | - Xiao-Rong Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Heller IS, Guenther CA, Meireles AM, Talbot WS, Kingsley DM. Characterization of mouse Bmp5 regulatory injury element in zebrafish wound models. Bone 2022; 155:116263. [PMID: 34826632 PMCID: PMC9007314 DOI: 10.1016/j.bone.2021.116263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.
Collapse
Affiliation(s)
- Ian S Heller
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America.
| |
Collapse
|
14
|
Interruption of Klf5 acetylation in basal progenitor cells promotes luminal commitment by activating Notch signaling. J Genet Genomics 2021; 49:579-582. [PMID: 34952235 DOI: 10.1016/j.jgg.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
|
15
|
Liu D, Liu J, Li Y, Liu H, Hassan HM, He W, Li M, Zhou Y, Fu X, Zhan J, Wang Z, Yang S, Chen P, Xu D, Wang X, DiSanto ME, Zeng G, Zhang X. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate 2021; 81:1435-1449. [PMID: 34553788 DOI: 10.1002/pros.24241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Collapse
Affiliation(s)
- Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hassan M Hassan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Pediatric Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Chen S, Huang H, Liu Y, Wang C, Chen X, Chang Y, Li Y, Guo Z, Han Z, Han ZC, Zhao Q, Chen XM, Li Z. Renal subcapsular delivery of PGE 2 promotes kidney repair by activating endogenous Sox9 + stem cells. iScience 2021; 24:103243. [PMID: 34746706 PMCID: PMC8554536 DOI: 10.1016/j.isci.2021.103243] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy. PGE2 exhibits an adequate long-term release by being covalently cross-linked to collagen The renal subcapsular space serves as a reservoir for the delivery of PGE2 Sox9+ renal progenitor cells can be lineage traced intravitally by microscopy PGE2 activates the endogenous renal progenitor Sox9+ cells through the YAP pathway
Collapse
Affiliation(s)
- Shang Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Haoyan Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yue Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yuhao Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| |
Collapse
|
17
|
Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu Y, Li Z, Lin Z, Li M. S100A14 inhibits cell growth and epithelial-mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell 2021; 34:1215-1226. [PMID: 33890248 DOI: 10.1007/s13577-021-00538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Prostate cancer (PCA) is an epithelial malignant tumor occurring in the prostate gland. It is the second most common male cancer in the world and one of the top five cancer deaths in men. To combat this disease, it is needed to identify important tumor suppressor genes and elucidate the molecular mechanisms. S100 calcium-binding protein A14 (S100A14), a member of the S100 family, is located on chromosome 1q21.3 and contains an EF-hand motif that binds calcium. S100A14 is involved in a variety of tumor biological processes in several types of cancers. Its expression level and related biological functions are tissue or tumor specific. However, its possible effects on prostate cancer are still unclear. Herein, we found the low expression of S100A14 in human prostate cancer tissues and cell lines. S100A14 suppressed the proliferation of prostate cancer cells and promoted cell apoptosis. Additionally, S100A14 suppressed the motility and EMT processes of prostate cancer cells. We further found S100A14 promoted the expression of FAT1 and activated the Hippo pathway, which, therefore, suppressed the prostate cancer progression. The in vivo assays confirmed that S100A14 suppressed tumor growth of prostate cancer cells through FAT1-mediated Hippo pathway in mice. In conclusion, we clarified the mechanism underlying S100A14 suppressing prostate cancer progression and, therefore, we thought S100A14 could serve as a tumor suppressor protein.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yaru Zhu
- Intensive Care Unit, Fujian Provincial Governmental Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenlin Chen
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Bingqiao Liu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yue Xu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhihao Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zequn Lin
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
18
|
Zhao Y, Peng X, Baldwin H, Zhang C, Liu Z, Lu X. Anti-androgen therapy induces transcriptomic reprogramming in metastatic castration-resistant prostate cancer in a murine model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166151. [PMID: 33892077 DOI: 10.1016/j.bbadis.2021.166151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Despite recent development of next-generation androgen receptor (AR) antagonists, metastatic castration-resistant prostate cancer (CRPC) remains incurable and requires deeper understanding through studies in suitable animal models. Prostate-specific deletion of Pten and Smad4 in mice recapitulated the disease progression of human prostate adenocarcinoma, including metastasis to lymph nodes and lung. Moreover, Pten/Smad4 tumors fostered an immunosuppressive microenvironment dominated by myeloid-derived suppressor cells (MDSCs). However, the response of Pten/Smad4 tumors to androgen deprivation and anti-androgen therapies has not been described. Here, we report that the combination of surgical castration and enzalutamide treatment in Pten/Smad4 mice slowed down the tumor growth and prolonged the median survival of the mice for 8 weeks. Treatment-naïve and castration-resistant primary tumors exhibited comparable levels of immune infiltrations with the exception of reduced monocytic MDSCs in CRPC. RNA profiling of treatment-naïve and castration-resistant primary tumors revealed largely preserved transcriptome with modest expressional alterations of collagen-related and immune-related genes, among which CC chemokine receptor type 2 (Ccr2) downregulation and predicted negative activation in CRPC was consistent with reduced monocytic MDSC infiltration. Importantly, significant transcriptomic reprograming was observed in lung metastatic CRPC compared with primary CRPC and enriched for immune-related and coagulation-related pathways. At the individual gene level, we validated the expression changes of some of the most upregulated (Cd36, Bmp5, Bmp6, Etv5, Prex2, Ptprb, Egfl6, Itga8 and Cxcl12) and downregulated genes (Cxcl9 and Adamts5). Together, this study uncovers the inherent activity of Pten/Smad4 tumors to progress to CRPC and highlights potentially targetable transcriptomic signatures associated with CRPC metastasis.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hope Baldwin
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Qiu YY, Zhang HS, Tang Y, Liu FY, Pang JQ, Zhang XY, Xiong H, Liang YS, Zhao HY, Chen SJ. Mitochondrial dysfunction resulting from the down-regulation of bone morphogenetic protein 5 may cause microtia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:418. [PMID: 33842639 PMCID: PMC8033356 DOI: 10.21037/atm-21-831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Bone morphogenetic protein 5 (BMP5) has been identified as one of the important risk factors for microtia; however, the link between them has yet to be clarified. In this study, we aimed to demonstrate the relationship of BMP5 with mitochondrial function and investigate the specific role of mitochondria in regulating microtia development. Methods BMP5 expression was measured in auricular cartilage tissues from patients with and without microtia. The effects of BMP5 knockdown on cellular function and mitochondrial function were also analyzed in vitro. Changes in genome-wide expression profiles were measured in BMP5-knockdown cells. Finally, the specific impact of BMP5 down-regulation on mitochondrial fat oxidation was analyzed in vitro. Results BMP5 expression was down-regulated in the auricular cartilage tissues of microtia patients. BMP5 down-regulation inhibited various cellular functions in vitro, including cell proliferation, mobility, and cytoactivity. The functional integrity of mitochondria was also damaged, accompanied by a decrease in mitochondrial membrane potential, reactive oxygen species (ROS) neutralization, and reduced adenosine triphosphate (ATP) production. Carnitine O-palmitoyltransferase 2 and diacylglycerol acyltransferase 2, two of the key regulators of mitochondrial lipid oxidation, were also found to be decreased by BMP5 down-regulation. Conclusions Down-regulation of BMP5 affects glycerolipid metabolism and fatty acid degradation, leading to mitochondrial dysfunction, reduced ATP production, and changes in cell function, and ultimately resulting in microtia. This research provides supporting evidence for an important role of BMP5 down-regulation in affecting mitochondrial metabolism in cells, and sheds new light on the mechanisms underlying the pathogenesis of microtia.
Collapse
Affiliation(s)
- Yin-Yi Qiu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua-Song Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Yuan Tang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei-Yi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Jia-Qi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue-Yuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Shuang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Hui-Ying Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Sui-Jun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|