1
|
Li J, Dhaliwal R, Stanley M, Junca P, Gordon MD. Functional imaging and connectome analyses reveal organizing principles of taste circuits in Drosophila. Curr Biol 2025; 35:2391-2405.e4. [PMID: 40334663 DOI: 10.1016/j.cub.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/26/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
Taste is crucial for many innate and learned behaviors. In the fruit fly, Drosophila melanogaster, taste impacts processes including feeding, oviposition, locomotion, mating, and memory formation. These diverse roles may necessitate the apparent distributed nature of taste responses across different circuits in the fly brain, leading to complexity that has hindered attempts to deduce unifying principles of taste processing and coding. Here, we combine information from the whole-brain connectome with functional calcium imaging to examine the neural representation of taste at early steps of processing. We find that the majority of taste-responsive cells in the subesophageal zone (SEZ), including local interneurons (SEZ-LNs) and projection neurons (SEZ-PNs) targeting the superior protocerebrum, are predicted to encode a single taste modality. This prediction is borne out by calcium imaging of cholinergic and GABAergic cells in the SEZ, as well as five representative SEZ-PNs. Although the connectome reveals some SEZ-PNs receiving direct inputs from sensory neurons, many receive primarily indirect taste inputs via cholinergic SEZ-LNs. These cholinergic SEZ-LNs appear to function as nodes to convey feedforward information to dedicated sets of morphologically similar SEZ-PNs. Together, these studies suggest a previously unappreciated logic and structure to fly taste circuits.
Collapse
Affiliation(s)
- Jinfang Li
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Rabiah Dhaliwal
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Molly Stanley
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Pierre Junca
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
2
|
Hindmarsh Sten T, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. Cell 2025; 188:1486-1503.e25. [PMID: 39952248 PMCID: PMC11955089 DOI: 10.1016/j.cell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection-female choice and male-male competition-work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a "song" that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes-P1a and pC1x neurons-are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Shade Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
3
|
Shuai Y, Sammons M, Sterne GR, Hibbard KL, Yang H, Yang CP, Managan C, Siwanowicz I, Lee T, Rubin GM, Turner GC, Aso Y. Driver lines for studying associative learning in Drosophila. eLife 2025; 13:RP94168. [PMID: 39879130 PMCID: PMC11778931 DOI: 10.7554/elife.94168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.
Collapse
Affiliation(s)
- Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - He Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Managan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
4
|
Qin J, Yang T, Li K, Liu T, Zhang W. Pharyngeal mechanosensory neurons control food swallow in Drosophila melanogaster. eLife 2024; 12:RP88614. [PMID: 39630079 PMCID: PMC11616994 DOI: 10.7554/elife.88614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
Collapse
Affiliation(s)
- Jierui Qin
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Tingting Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Kexin Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Wei Zhang
- Tsinghua-Peking Center for Life ScienceBeijingChina
| |
Collapse
|
5
|
Stöckl A, Deora T. The Hawkmoth Proboscis: An Insect Model for Sensorimotor Control of Reaching and Exploration. Integr Comp Biol 2024; 64:1354-1370. [PMID: 39068501 DOI: 10.1093/icb/icae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Reaching and inspecting objects is an intricate part of human life, which is shared by a diversity of animals across phyla. In addition to appendages like legs and antennae, some insects use their mouthparts to reach and inspect targets. Hawkmoths of the family Sphingidae (Lepidoptera) use their extremely long and straw-like proboscis to drink nectar from flowers. As they approach flowers, hawkmoths uncoil their proboscis and explore the floral surface while hovering to target the proboscis to the nectary hole. Several sensory modalities provide feedback to control and guide these extremely versatile proboscis movements. The control task faced by the hawkmoths' nervous system during such behaviors is not unlike that of an animal guiding limbs or a robotic agent guiding a manipulator to a target. Hawkmoths perform these reaching maneuvers while simultaneously hovering, and hence require rapid and continuous coordination between the proboscis, neck, and flight motor systems, thereby providing a unique invertebrate model for studying appendage guidance and reaching. Here, we review what is known about how hawkmoths use their proboscis for floral inspection and nectar discovery, as well as the role of various sensors in proboscis guidance. We give a brief overview of the morphology and muscular apparatus of the hawkmoth proboscis, and discuss how multimodal sensory feedback might be turned into motor action for appendage guidance.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, University of Konstanz, Universitätsstr, 10, 78464 Konstanz, Germany
| | - Tanvi Deora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
6
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
7
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
8
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu SC, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K. A Drosophila computational brain model reveals sensorimotor processing. Nature 2024; 634:210-219. [PMID: 39358519 PMCID: PMC11446845 DOI: 10.1038/s41586-024-07763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Eon Systems, San Francisco, CA, USA.
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics, New York, NY, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jinseop S Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Boto T, Tomchik SM. Imaging Olfactory Learning-Induced Plasticity in Vivo in the Drosophila Brain. Cold Spring Harb Protoc 2024; 2024:pdb.prot108135. [PMID: 37197829 DOI: 10.1101/pdb.prot108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In vivo imaging of brain activity in Drosophila allows the dissection of numerous types of biologically important neuronal events. A common paradigm involves imaging neuronal Ca2+ transients, often in response to sensory stimuli. These Ca2+ transients correlate with neuronal spiking activity, which generates voltage-sensitive Ca2+ influx. In addition, there is a range of genetically encoded reporters of membrane voltage and of other signaling molecules, such as second-messenger signaling cascade enzymes and neurotransmitters, enabling optical access to a range of cellular processes. Moreover, sophisticated gene expression systems enable access to virtually any single neuron or neuronal group in the fly brain. The in vivo imaging approach enables the study of these processes and how they change during salient sensory-driven events such as olfactory associative learning, when an animal (fly) is presented an odor (a conditioned stimulus) paired with an unconditioned stimulus (an aversive or appetitive stimulus) and forms an associative memory of this pairing. Optical access to neuronal events in the brain allows one to image learning-induced plasticity following the formation of associative memory, dissecting the mechanisms of memory formation, maintenance, and recall.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
10
|
Kim H, Zhong Z, Cui X, Sung H, Agrawal N, Jiang T, Dus M, Yapici N. HisCl1 regulates gustatory habituation in sweet taste neurons and mediates sugar ingestion in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592591. [PMID: 38765964 PMCID: PMC11100615 DOI: 10.1101/2024.05.06.592591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Similar to other animals, the fly, Drosophila melanogaster, reduces its responsiveness to tastants with repeated exposure, a phenomenon called gustatory habituation. Previous studies have focused on the circuit basis of gustatory habituation in the fly chemosensory system1,2. However, gustatory neurons reduce their firing rate during repeated stimulation3, suggesting that cell-autonomous mechanisms also contribute to habituation. Here, we used deep learning-based pose estimation and optogenetic stimulation to demonstrate that continuous activation of sweet taste neurons causes gustatory habituation in flies. We conducted a transgenic RNAi screen to identify genes involved in this process and found that knocking down Histamine-gated chloride channel subunit 1 (HisCl1) in the sweet taste neurons significantly reduced gustatory habituation. Anatomical analysis showed that HisCl1 is expressed in the sweet taste neurons of various chemosensory organs. Using single sensilla electrophysiology, we showed that sweet taste neurons reduced their firing rate with prolonged exposure to sucrose. Knocking down HisCl1 in sweet taste neurons suppressed gustatory habituation by reducing the spike frequency adaptation observed in these neurons during high-concentration sucrose stimulation. Finally, we showed that flies lacking HisCl1 in sweet taste neurons increased their consumption of high-concentration sucrose solution at their first meal bout compared to control flies. Together, our results demonstrate that HisCl1 tunes spike frequency adaptation in sweet taste neurons and contributes to gustatory habituation and food intake regulation in flies. Since HisCl1 is highly conserved across many dipteran and hymenopteran species, our findings open a new direction in studying insect gustatory habituation.
Collapse
Affiliation(s)
- Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ziqing Zhong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
- Current address: Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Hayeon Sung
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Monica Dus
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Gorko B, Siwanowicz I, Close K, Christoforou C, Hibbard KL, Kabra M, Lee A, Park JY, Li SY, Chen AB, Namiki S, Chen C, Tuthill JC, Bock DD, Rouault H, Branson K, Ihrke G, Huston SJ. Motor neurons generate pose-targeted movements via proprioceptive sculpting. Nature 2024; 628:596-603. [PMID: 38509371 DOI: 10.1038/s41586-024-07222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Motor neurons are the final common pathway1 through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically2 suppress a single class of proprioceptive neuron3 that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.
Collapse
Affiliation(s)
- Benjamin Gorko
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kari Close
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mayank Kabra
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Allen Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Si Ying Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Alex B Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Chenghao Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Hervé Rouault
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gudrun Ihrke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen J Huston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Szi-chieh Y, McKellar CE, Sterling A, Costa M, Eichler K, Jefferis GS, Murthy M, Bates AS, Eckstein N, Funke J, Bidaye SS, Hampel S, Seeds AM, Scott K. A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539144. [PMID: 37205514 PMCID: PMC10187186 DOI: 10.1101/2023.05.02.539144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K. Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gabriella R. Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinseop S. Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Yu Szi-chieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E. McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge
| | | | - Gregory S.X.E. Jefferis
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
- Centre for Neural Circuits and Behaviour, The University of Oxford
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M. Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Court R, Costa M, Pilgrim C, Millburn G, Holmes A, McLachlan A, Larkin A, Matentzoglu N, Kir H, Parkinson H, Brown NH, O’Kane CJ, Armstrong JD, Jefferis GSXE, Osumi-Sutherland D. Virtual Fly Brain-An interactive atlas of the Drosophila nervous system. Front Physiol 2023; 14:1076533. [PMID: 36776967 PMCID: PMC9908962 DOI: 10.3389/fphys.2023.1076533] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
As a model organism, Drosophila is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, via text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.
Collapse
Affiliation(s)
- Robert Court
- School of Informatics, University of Edinburgh, Edinburgh, United Kingtom
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, United Kingtom
- Department of Genetics, University of Cambridge, Cambridge, United Kingtom
| | - Clare Pilgrim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom
| | - Alex Holmes
- Department of Genetics, University of Cambridge, Cambridge, United Kingtom
| | - Alex McLachlan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom
| | - Aoife Larkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom
| | | | - Huseyin Kir
- European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom
| | - Nicolas H. Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingtom
| | | | | | | |
Collapse
|
14
|
Yu J, Guo X, Zheng S, Zhang W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet 2023; 19:e1010562. [PMID: 36649336 PMCID: PMC9882754 DOI: 10.1371/journal.pgen.1010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shen Zheng
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 2022; 11:e79887. [PMID: 35791902 PMCID: PMC9292995 DOI: 10.7554/elife.79887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust the behavioral outcomes. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.
Collapse
Affiliation(s)
- Philip K Shiu
- University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Sterne
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
16
|
Jasek S, Verasztó C, Brodrick E, Shahidi R, Kazimiers T, Kerbl A, Jékely G. Desmosomal connectomics of all somatic muscles in an annelid larva. eLife 2022; 11:71231. [PMID: 36537659 PMCID: PMC9876572 DOI: 10.7554/elife.71231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Cells form networks in animal tissues through synaptic, chemical, and adhesive links. Invertebrate muscle cells often connect to other cells through desmosomes, adhesive junctions anchored by intermediate filaments. To study desmosomal networks, we skeletonised 853 muscle cells and their desmosomal partners in volume electron microscopy data covering an entire larva of the annelid Platynereis. Muscle cells adhere to each other, to epithelial, glial, ciliated, and bristle-producing cells and to the basal lamina, forming a desmosomal connectome of over 2000 cells. The aciculae - chitin rods that form an endoskeleton in the segmental appendages - are highly connected hubs in this network. This agrees with the many degrees of freedom of their movement, as revealed by video microscopy. Mapping motoneuron synapses to the desmosomal connectome allowed us to infer the extent of tissue influenced by motoneurons. Our work shows how cellular-level maps of synaptic and adherent force networks can elucidate body mechanics.
Collapse
Affiliation(s)
- Sanja Jasek
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Csaba Verasztó
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Emelie Brodrick
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Réza Shahidi
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Tom Kazimiers
- Janelia Research CampusAshburnUnited States,kazmos GmbHDresdenGermany
| | - Alexandra Kerbl
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| |
Collapse
|
17
|
Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021; 37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Swallowing is an essential step of eating and drinking. However, how the quality of a food bolus is sensed by pharyngeal neurons is largely unknown. Here we find that mechanical receptors along the Drosophila pharynx are required for control of meal size, especially for food of high viscosity. The mechanical force exerted by the bolus passing across the pharynx is detected by neurons expressing the mechanotransduction channel NOMPC (no mechanoreceptor potential C) and is relayed, together with gustatory information, to IN1 neurons in the subesophageal zone (SEZ) of the brain. IN1 (ingestion neurons) neurons act directly upstream of a group of peptidergic neurons that encode satiety. Prolonged activation of IN1 neurons suppresses feeding. IN1 neurons receive inhibition from DSOG1 (descending subesophageal neurons) neurons, a group of GABAergic neurons that non-selectively suppress feeding. Our results reveal the function of pharyngeal mechanoreceptors and their downstream neural circuits in the control of food ingestion.
Collapse
Affiliation(s)
- Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zixuan Yuan
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
18
|
Sakurai A, Littleton JT, Kojima H, Yoshihara M. Alteration in information flow through a pair of feeding command neurons underlies a form of Pavlovian conditioning in the Drosophila brain. Curr Biol 2021; 31:4163-4171.e3. [PMID: 34352215 PMCID: PMC9022044 DOI: 10.1016/j.cub.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Pavlovian conditioning1 is a broadly used learning paradigm where defined stimuli are associated to induce behavioral switching. To define a causal relationship between activity change in a single neuron and behavioral switching, we took advantage of a "command neuron" that connects cellular function to behavior.2 To examine the cellular and molecular basis of Pavlovian conditioning, we previously identified a pair of feeding command neurons termed "feeding neurons" in the adult Drosophila brain3 using genetic screening4 and opto- and thermo-genetic techniques.5-7 The feeding neuron is activated by sweet signals like sucrose and induces the full complement of feeding behaviors, such as proboscis extension and food pumping. Ablation or inactivation of the pair of feeding neurons abolishes feeding behavior, suggesting that this single pair of neurons is indispensable for natural feeding behaviors.2,3 Here, we describe a novel conditioning protocol to associate a signal-mediating rod removal from legs (conditioned stimulus [CS]) to feeding behavior induced by sucrose stimulation (unconditioned stimulus [US]). Calcium imaging of the feeding neuron demonstrated it acquires responsiveness to CS during conditioning, with inactivation of the feeding neuron during conditioning suppressing plasticity. These results suggest conditioning alters signals flowing from the CS into the feeding circuit, with the feeding neuron functioning as a key integrative hub for Hebbian plasticity.
Collapse
Affiliation(s)
- Akira Sakurai
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hiroaki Kojima
- Protein Biophysics Project, National Institute of Information and Communications Technology, Kobe, Japan
| | - Motojiro Yoshihara
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Sterne GR, Otsuna H, Dickson BJ, Scott K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 2021; 10:e71679. [PMID: 34473057 PMCID: PMC8445619 DOI: 10.7554/elife.71679] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.
Collapse
Affiliation(s)
- Gabriella R Sterne
- University of California BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandQueenslandAustralia
| | - Kristin Scott
- University of California BerkeleyBerkeleyUnited States
| |
Collapse
|