1
|
Mirkhani N, McNamara CG, Oliviers G, Sharott A, Duchet B, Bogacz R. Response of neuronal populations to phase-locked stimulation: model-based predictions and validation. J Neurosci 2025; 45:e2269242025. [PMID: 40068871 PMCID: PMC11984083 DOI: 10.1523/jneurosci.2269-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 04/12/2025] Open
Abstract
Modulation of neuronal oscillations holds promise for the treatment of neurological disorders. Nonetheless, conventional stimulation in a continuous open-loop manner can lead to side effects and suboptimal efficiency. Closed-loop strategies such as phase-locked stimulation aim to address these shortcomings by offering a more targeted modulation. While theories have been developed to understand the neural response to stimulation, their predictions have not been thoroughly tested using experimental data. Using a mechanistic coupled oscillator model, we elaborate on two key predictions describing the response to stimulation as a function of the phase and amplitude of ongoing neural activity. To investigate these predictions, we analyze electrocorticogram recordings from a previously conducted study in Parkinsonian rats, and extract the corresponding phase and response curves. We demonstrate that the amplitude response to stimulation is strongly correlated to the derivative of the phase response ([Formula: see text] > 0.8) in all animals except one, thereby validating a key model prediction. The second prediction postulates that the stimulation becomes ineffective when the network synchrony is high, a trend that appeared missing in the data. Our analysis explains this discrepancy by showing that the neural populations in Parkinsonian rats did not reach the level of synchrony for which the theory would predict ineffective stimulation. Our results highlight the potential of fine-tuning stimulation paradigms informed by mathematical models that consider both the ongoing phase and amplitude of the targeted neural oscillation.Significance Statement This study validates a mathematical model of coupled oscillators in predicting the response of neural activity to stimulation for the first time. Our findings also offer further insights beyond this validation. For instance, the demonstrated correlation between phase response and amplitude response is indeed a key theoretical concept within a subset of mathematical models. This prediction can bring about clinical implications in terms of predictive power for manipulation of neural activity. Additionally, while phase dependence in modulation has been previously studied, we propose a general framework for studying amplitude dependence as well. Lastly, our study reconciles the seemingly contradictory views of pathologic hypersynchrony and theoretical low synchrony in Parkinson's disease.
Collapse
Affiliation(s)
- Nima Mirkhani
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- University College Cork, Cork T12 K8AF, Ireland
| | - Gaspard Oliviers
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Benoit Duchet
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
2
|
Serranilla M, Pressey JC, Woodin MA. Restoring Compromised Cl - in D2 Neurons of a Huntington's Disease Mouse Model Rescues Motor Disability. J Neurosci 2024; 44:e0215242024. [PMID: 39500579 PMCID: PMC11638812 DOI: 10.1523/jneurosci.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with no cure, characterized by significant neurodegeneration of striatal GABAergic medium spiny neurons (MSNs). Early stages of the disease are characterized by the loss of dopamine 2 receptor-expressing MSNs (D2 MSNs) followed by degeneration of dopamine 1 receptor-expressing MSNs (D1 MSNs), leading to aberrant basal ganglia signaling. While the early degeneration of D2 MSNs and impaired GABAergic transmission are well-documented, potassium chloride cotransporter 2 (KCC2), a key regulator of intracellular chloride (Cl-), and therefore GABAergic signaling, has not been characterized in D1 and D2 MSNs in HD. We aimed to investigate whether Cl- regulation was differentially altered in D1 and D2 MSNs and may contribute to the early degeneration of D2 MSNs in male and female symptomatic R6/2 mice. We used electrophysiology to record the reversal potential for GABAA receptors (E GABA), a read-out for the efficacy of Cl- regulation, in striatal D1 and D2 MSNs and their corresponding output structures. During the early symptomatic phase (P55-P65), Cl- impairments were observed in D2 MSNs in R6/2 mice, with no change in D1 MSNs. Cl- regulation was also dysfunctional in the globus pallidus externa, resulting in GABA-mediated excitation. When we overexpressed KCC2 in D2 MSNs using AAV-mediated delivery, we delayed the onset of motor impairments in R6/2 mice. We demonstrate that Cl- homeostasis is differentially altered in D1 and D2 MSNs and may contribute to the enhanced susceptibility of D2 MSNs during HD progression.
Collapse
Affiliation(s)
- Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
3
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
4
|
Aristieta A, Parker JE, Gao YE, Rubin JE, Gittis AH. Dopamine depletion weakens direct pathway modulation of SNr neurons. Neurobiol Dis 2024; 196:106512. [PMID: 38670278 PMCID: PMC11969385 DOI: 10.1016/j.nbd.2024.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Neurons in the substantia nigra reticulata (SNr) transmit information about basal ganglia output to dozens of brain regions in thalamocortical and brainstem motor networks. Activity of SNr neurons is regulated by convergent input from upstream basal ganglia nuclei, including GABAergic inputs from the striatum and the external globus pallidus (GPe). GABAergic inputs from the striatum convey information from the direct pathway, while GABAergic inputs from the GPe convey information from the indirect pathway. Chronic loss of dopamine, as occurs in Parkinson's disease, disrupts the balance of direct and indirect pathway neurons at the level of the striatum, but the question of how dopamine loss affects information propagation along these pathways outside of the striatum is less well understood. Using a combination of in vivo and slice electrophysiology, we find that dopamine depletion selectively weakens the direct pathway's influence over neural activity in the SNr due to changes in the decay kinetics of GABA-mediated synaptic currents. GABAergic signaling from GPe neurons in the indirect pathway was not affected, resulting in an inversion of the normal balance of inhibitory control over basal ganglia output through the SNr. These results highlight the contribution of cellular mechanisms outside of the striatum that impact the responses of basal ganglia output neurons to the direct and indirect pathways in disease.
Collapse
Affiliation(s)
- Asier Aristieta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ya Emma Gao
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Qi ZX, Yan Q, Fan XJ, Peng JY, Zhu HX, Jiang YM, Chen L, Zhuang QX. Role of HCN channels in the functions of basal ganglia and Parkinson's disease. Cell Mol Life Sci 2024; 81:135. [PMID: 38478096 PMCID: PMC10937777 DOI: 10.1007/s00018-024-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
- National Center for Neurological Disorders, Shanghai, 200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Qi Yan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui-Xian Zhu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yi-Miao Jiang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
- National Center for Neurological Disorders, Shanghai, 200030, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Parker JE, Aristieta A, Gittis A, Rubin JE. Introducing the STReaC (Spike Train Response Classification) toolbox. J Neurosci Methods 2024; 401:S0165-0270(23)00219-4. [PMID: 38486714 PMCID: PMC10936710 DOI: 10.1016/j.jneumeth.2023.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 03/17/2024]
Abstract
Background This work presents a toolbox that implements methodology for automated classification of diverse neural responses to optogenetic stimulation or other changes in conditions, based on spike train recordings. New Method The toolbox implements what we call the Spike Train Response Classification algorithm (STReaC), which compares measurements of activity during a baseline period with analogous measurements during a subsequent period to identify various responses that might result from an event such as introduction of a sustained stimulus. The analyzed response types span a variety of patterns involving distinct time courses of increased firing, or excitation, decreased firing, or inhibition, or combinations of these. Excitation (inhibition) is identified from a comparative analysis of the spike density function (interspike interval function) for the baseline period relative to the corresponding function for the response period. Results The STReaC algorithm as implemented in this toolbox provides a user-friendly, tunable, objective methodology that can detect a variety of neuronal response types and associated subtleties. We demonstrate this with single-unit neural recordings of rodent substantia nigra pars reticulata (SNr) during optogenetic stimulation of the globus pallidus externa (GPe). Comparison with existing methods In several examples, we illustrate how the toolbox classifies responses in situations in which traditional methods (spike counting and visual inspection) either fail to detect a response or provide a false positive. Conclusions The STReaC toolbox provides a simple, efficient approach for classifying spike trains into a variety of response types defined relative to a period of baseline spiking.
Collapse
Affiliation(s)
- John E. Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Center for the Neural Basis of Cognition, Pittsburgh, PA, U.S.A
| | - Asier Aristieta
- Center for the Neural Basis of Cognition, Pittsburgh, PA, U.S.A
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, U.S.A
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, Pittsburgh, PA, U.S.A
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, U.S.A
| | - Jonathan E. Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Center for the Neural Basis of Cognition, Pittsburgh, PA, U.S.A
| |
Collapse
|
7
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. ARXIV 2023:arXiv:2312.14267v2. [PMID: 38196745 PMCID: PMC10775352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
For decades the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity, and functional role of the GPe in behavior. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behavior.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
8
|
Cruikshank A, Nijhout HF, Best J, Reed M. Dynamical questions in volume transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2269986. [PMID: 37876112 DOI: 10.1080/17513758.2023.2269986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
In volume transmission (or neuromodulation) neurons do not make one-to-one connections to other neurons, but instead simply release neurotransmitter into the extracellular space from numerous varicosities. Many well-known neurotransmitters including serotonin (5HT), dopamine (DA), histamine (HA), Gamma-Aminobutyric Acid (GABA) and acetylcholine (ACh) participate in volume transmission. Typically, the cell bodies are in one volume and the axons project to a distant volume in the brain releasing the neurotransmitter there. We introduce volume transmission and describe mathematically two natural homeostatic mechanisms. In some brain regions several neurotransmitters in the extracellular space affect each other's release. We investigate the dynamics created by this comodulation in two different cases: serotonin and histamine; and the comodulation of 4 neurotransmitters in the striatum and we compare to experimental data. This kind of comodulation poses new dynamical questions as well as the question of how these biochemical networks influence the electrophysiological networks in the brain.
Collapse
Affiliation(s)
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Currin CB, Raimondo JV. Computational models reveal how chloride dynamics determine the optimal distribution of inhibitory synapses to minimise dendritic excitability. PLoS Comput Biol 2022; 18:e1010534. [PMID: 36149893 PMCID: PMC9534446 DOI: 10.1371/journal.pcbi.1010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/05/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Many neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses combines at an encircled branch junction. The extent of this inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This inhibitory accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising–but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to–but not at–a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- by loading that occurs when inhibitory synapses are co-located. Dendritic branches allow for a rich repertoire of computational capabilities for neurons within the brain. Inhibitory synaptic inputs, which utilise the neurotransmitter GABA, refine and enhance dendritic computations. They are traditionally viewed with regards to their inhibitory effect on action potential generation at the neuronal cell body. Here, we studied the local effects of inhibitory synapses on excitability in dendrites. We also considered the dynamic nature of inhibition that deteriorates the longer it is active due to intracellular chloride ion loading. The central goal of our investigation was to find the best locations for multiple inhibitory synapses to maximise their combined inhibitory effectiveness on nearby excitation in the dendritic tree. We found that the optimal distribution is when inhibitory synapses closely encircle a branch junction, without being co-located at the junction itself. This maximises how their inhibitory influence combines whilst minimising the deleterious effects of chloride loading.
Collapse
Affiliation(s)
- Christopher Brian Currin
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Whalen TC, Parker JE, Gittis AH, Rubin JE. Transmission of delta band (0.5-4 Hz) oscillations from the globus pallidus to the substantia nigra pars reticulata in dopamine depletion. J Comput Neurosci 2022; 51:361-380. [PMID: 37266768 PMCID: PMC10527635 DOI: 10.1007/s10827-023-00853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown to lead oscillations in motor cortex (M1) and persist under M1 lesion, but it is not clear where these oscillations are initially generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillating GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving new insight into the dynamics of SNr oscillations.
Collapse
Affiliation(s)
- Timothy C Whalen
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Design Interactive, Inc., Orlando, FL, United States
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Identifying control ensembles for information processing within the cortico-basal ganglia-thalamic circuit. PLoS Comput Biol 2022; 18:e1010255. [PMID: 35737720 PMCID: PMC9258830 DOI: 10.1371/journal.pcbi.1010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/06/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
In situations featuring uncertainty about action-reward contingencies, mammals can flexibly adopt strategies for decision-making that are tuned in response to environmental changes. Although the cortico-basal ganglia thalamic (CBGT) network has been identified as contributing to the decision-making process, it features a complex synaptic architecture, comprised of multiple feed-forward, reciprocal, and feedback pathways, that complicate efforts to elucidate the roles of specific CBGT populations in the process by which evidence is accumulated and influences behavior. In this paper we apply a strategic sampling approach, based on Latin hypercube sampling, to explore how variations in CBGT network properties, including subpopulation firing rates and synaptic weights, map to variability of parameters in a normative drift diffusion model (DDM), representing algorithmic aspects of information processing during decision-making. Through the application of canonical correlation analysis, we find that this relationship can be characterized in terms of three low-dimensional control ensembles within the CBGT network that impact specific qualities of the emergent decision policy: responsiveness (a measure of how quickly evidence evaluation gets underway, associated with overall activity in corticothalamic and direct pathways), pliancy (a measure of the standard of evidence needed to commit to a decision, associated largely with overall activity in components of the indirect pathway of the basal ganglia), and choice (a measure of commitment toward one available option, associated with differences in direct and indirect pathways across action channels). These analyses provide mechanistic predictions about the roles of specific CBGT network elements in tuning the way that information is accumulated and translated into decision-related behavior.
Collapse
|
12
|
Abed Zadeh A, Turner BD, Calakos N, Brunel N. Non-monotonic effects of GABAergic synaptic inputs on neuronal firing. PLoS Comput Biol 2022; 18:e1010226. [PMID: 35666719 PMCID: PMC9203025 DOI: 10.1371/journal.pcbi.1010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/16/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.
Collapse
Affiliation(s)
- Aghil Abed Zadeh
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brandon D. Turner
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| | - Nicolas Brunel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
- Department of Physics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
14
|
Zhang L, Meng S, Chen W, Chen Y, Huang E, Zhang G, Liang Y, Ding Z, Xue Y, Chen Y, Shi J, Shi Y. High-Frequency Deep Brain Stimulation of the Substantia Nigra Pars Reticulata Facilitates Extinction and Prevents Reinstatement of Methamphetamine-Induced Conditioned Place Preference. Front Pharmacol 2021; 12:705813. [PMID: 34276387 PMCID: PMC8277946 DOI: 10.3389/fphar.2021.705813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persistent and stable drug memories lead to a high rate of relapse among addicts. A number of studies have found that intervention in addiction-related memories can effectively prevent relapse. Deep brain stimulation (DBS) exhibits distinct therapeutic effects and advantages in the treatment of neurological and psychiatric disorders. In addition, recent studies have also found that the substantia nigra pars reticulata (SNr) could serve as a promising target in the treatment of addiction. Therefore, the present study aimed to investigate the effect of DBS of the SNr on the reinstatement of drug-seeking behaviors. Electrodes were bilaterally implanted into the SNr of rats before training of methamphetamine-induced conditioned place preference (CPP). High-frequency (HF) or low-frequency (LF) DBS was then applied to the SNr during the drug-free extinction sessions. We found that HF DBS, during the extinction sessions, facilitated extinction of methamphetamine-induced CPP and prevented drug-primed reinstatement, while LF DBS impaired the extinction. Both HF and LF DBS did not affect locomotor activity or induce anxiety-like behaviors of rats. Finally, HF DBS had no effect on the formation of methamphetamine-induced CPP. In conclusion, our results suggest that HF DBS of the SNr could promote extinction and prevent reinstatement of methamphetamine-induced CPP, and the SNr may serve as a potential therapeutic target in the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yisen Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jie Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yu Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Dong J, Hawes S, Wu J, Le W, Cai H. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Front Neural Circuits 2021; 15:645287. [PMID: 33737869 PMCID: PMC7960779 DOI: 10.3389/fncir.2021.645287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.
Collapse
Affiliation(s)
- Jie Dong
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Hawes
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Junbing Wu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases & Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Medical School of University of Electronic Science and Technology of China, Institute of Neurology, Sichuan Provincial Hospital, Sichuan Academy of Medical Science, Chengdu, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021; 44:378-392. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.
Collapse
Affiliation(s)
- Mari A Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland; Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jean Christophe Poncer
- INSERM, UMRS 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|