1
|
Malik TG, Tsai MT, Jarrett BJM, Sun SJ. Heat stress effects on offspring compound across parental care. Proc Biol Sci 2025; 292:20250026. [PMID: 40041959 PMCID: PMC11881022 DOI: 10.1098/rspb.2025.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 05/12/2025] Open
Abstract
Heatwaves associated with climate change threaten biodiversity by disrupting behaviours like parental care. While parental care may buffer populations from adverse environments, studies show mixed results, possibly due to heat stress affecting different care components. We investigated how heat stress impacts parental care and offspring performance in the burying beetle Nicrophorus nepalensis under control (17.8°C) and heat stress (21.8°C) conditions. We focused on two critical periods: pre-hatching care (carcass preparation) and post-hatching care (offspring provisioning). To disentangle the vulnerability of these parental care components to heat stress, we reciprocally transferred carcasses prepared under control or heat stress to females breeding under both conditions. Heatwaves affecting only one care period did not alter reproduction, but when both pre- and post-hatching periods experienced heatwaves, reproductive success declined. Females exhibited higher energy expenditure during provisioning, evidenced by greater body mass loss. Notably, heat stress had long-lasting effects on offspring via carcass preparation, resulting in smaller adult size and higher mortality. These results highlight the complexity of environmental stressors on parental care, suggesting that different care components may respond differently to heat stress, and thus need to be examined separately to better understand how parental care responds to, and buffers against, temperature stress.
Collapse
|
2
|
Bladon EK, Pascoal S, Kilner RM. Can recent evolutionary history promote resilience to environmental change? Behav Ecol 2024; 35:arae074. [PMID: 39431165 PMCID: PMC11486917 DOI: 10.1093/beheco/arae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Principles of social evolution have long been used retrospectively to interpret social interactions, but have less commonly been applied predictively to inform conservation and animal husbandry strategies. We investigate whether differences in developmental environment, facilitated by divergent social conditions, can predict resilience to environmental change. Upon exposure to harsh novel environments, populations that previously experienced more benign social environments are predicted either to suffer fitness losses (the "mutation load hypothesis" and "selection filter hypothesis") or maintain fitness (the "beneficial mutation hypothesis"). We tested these contrasting predictions using populations of burying beetles Nicrophorus vespilloides we had evolved experimentally for 45 generations under contrasting social environments by manipulating the supply of post-hatching parental care. We exposed sexually immature adults from each population to varying heat stress and measured the effect on survival and reproduction. The greater the level of parental care previously experienced by a population, the better its survival under heat stress during sexual maturation. Although this is consistent with the "beneficial mutation hypothesis," it is also possible that populations that had evolved without post-hatching care were simply more prone to dying during maturation, regardless of their thermal environment. Overall, we suggest that stochastic genetic variation, probably due to founder effects, had a stronger influence on resilience. We discuss the implications for translocation and captive breeding programs.
Collapse
Affiliation(s)
- Eleanor K Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
- Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 0PT, United Kingdom
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
3
|
Malik TG, Jarrett BJM, Sun SJ. The effect of experimental warming on reproductive performance and parental care in the burying beetle Nicrophorus nepalensis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240653. [PMID: 39386988 PMCID: PMC11461049 DOI: 10.1098/rsos.240653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Rising temperatures can adversely affect parental care and reproductive performance across a range of taxa. However, the warming impact is contingent upon understanding how temperature affects the spectrum of parental behaviours and their interplay. Here, we assessed how temperature affects parental care and reproductive success in the burying beetle, Nicrophorus nepalensis, which exhibits complex parental care behaviours. We exposed breeding pairs of N. nepalensis, to three temperature regimes (18°C, 20°C and 22°C) and assessed changes in parental care, and the subsequent development and growth of their offspring. Our findings show that 22°C disrupts carcass nest building by the parents and results in smaller clutches. Moreover, no eggs successfully hatched in the 22°C treatment. A milder increase to 20°C did not affect the hatching rate but resulted in smaller broods and lighter offspring, even when considering brood size, suggesting a change in post-hatching care quality. Our research suggests that warming may weakly affect parental care but has strong detrimental effects on offspring performance. These findings highlight the necessity of investigating the effect of ambient temperature across a diversity of traits and behaviours and across a range of life-history stages to fully assess species vulnerability in the face of future climate change.
Collapse
Affiliation(s)
- Tanzil Gaffar Malik
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei10617, Taiwan
| | - Benjamin J. M. Jarrett
- School of Environmental & Natural Sciences, Bangor University, Bangor, GwyneddLL57 2UR, UK
| | - Syuan-Jyun Sun
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
4
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
5
|
Hu G, Zhang Y, Li L, Wang Y, Guo Y, Shao S, Gao Y, Zhang R, Wang Y, Tao L. New developmental data for Dermestes maculatus (Coleoptera: Dermestidae) from the Yangtze River Delta region of China under different constant temperatures. Sci Justice 2024; 64:377-388. [PMID: 39025563 DOI: 10.1016/j.scijus.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
Necrophagous beetles are sometimes used to estimate the minimum postmortem interval (PMImin) in the decay and remains stages of a corpse. Among these, the Dermestidae is one of the most common groups used and therefore has important research and application value. In this study, the developmental events of Dermestes maculatus de Geer, 1774, were recorded at six constant temperatures, and isomorphen diagrams were established. The thermobiological parameters were estimated using linear and non-linear models, and morphological indicators such as larval body length were measured. The results showed that the developmental duration of the whole immature stage decreased from 66.13 ± 8.58 days at 19 °C to 21.9 ± 2.01 days at 34 °C. The survival rate of the immature stages, especially the egg stage, varies greatly with temperature, with the lowest survival observed at 34 °C and the highest at 22 °C. The lower developmental threshold, the intrinsic optimum temperature, and the upper lethal developmental threshold obtained by the curvilinear Optim SSI models were 15.28 °C, 28.36 °C, and 34.03 °C, respectively. The body length, head capsule width, and pronotum width showed obvious growth patterns with larval developmental duration, which were characterized by equations and isomegalen diagrams. This study provides important basic data for the application of D. maculatus to estimate the PMImin in forensic entomology in the Yangtze River Delta region of China.
Collapse
Affiliation(s)
- Gengwang Hu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yanan Zhang
- Luoyang Intermediate People's Court of Henan Province, Zhanlan Road, Luoyang 471000, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yi Guo
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Shipeng Shao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yundi Gao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Ruonan Zhang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China.
| | - Luyang Tao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| |
Collapse
|
6
|
Jarrett BJM, Mashoodh R, Issar S, Pascoal S, Rebar D, Sun SJ, Schrader M, Kilner RM. Selection on the joint actions of pairs leads to divergent adaptation and coadaptation of care-giving parents during pre-hatching care. Proc Biol Sci 2024; 291:20240876. [PMID: 38864319 DOI: 10.1098/rspb.2024.0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
The joint actions of animals in partnerships or social groups evolve under both natural selection from the wider environment and social selection imposed by other members of the pair or group. We used experimental evolution to investigate how jointly expressed actions evolve upon exposure to a new environmental challenge. Our work focused on the evolution of carrion nest preparation by pairs of burying beetles Nicrophorus vespilloides, a joint activity undertaken by the pair but typically led by the male. In previous work, we found that carrion nest preparation evolved to be faster in experimental populations without post-hatching care (No Care: NC lines) than with post-hatching care (Full Care: FC lines). Here, we investigate how this joint activity evolved. After 15 generations of experimental evolution, we created heterotypic pairs (NC females with FC males and NC males with FC females) and compared their carrion nest making with homotypic NC and FC pairs. We found that pairs with NC males prepared the nest more rapidly than pairs with FC males, regardless of the female's line of origin. We discuss how social coadaptations within pairs or groups could act as a post-mating barrier to gene flow.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Environmental and Natural Sciences, Bangor University , Bangor, UK
- Department of Zoology, University of Cambridge , Cambridge, UK
- Department of Biology, Lund University , Lund, Sweden
| | - Rahia Mashoodh
- Department of Zoology, University of Cambridge , Cambridge, UK
| | - Swastika Issar
- Department of Zoology, University of Cambridge , Cambridge, UK
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge , Cambridge, UK
| | - Darren Rebar
- Department of Biological Sciences, Emporia State University , Emporia, KS, USA
| | - Syuan-Jyun Sun
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University , Taipei, Taiwan
| | - Matthew Schrader
- Department of Biology, University of the South , Sewanee, TN, USA
| | | |
Collapse
|
7
|
Sun S, Kilner RM. Competition among host-specific lineages of Poecilochirus carabi mites influences the extent of co-adaptation with their Nicrophorus vespilloides burying beetle hosts. Ecol Evol 2024; 14:e10837. [PMID: 38192905 PMCID: PMC10771929 DOI: 10.1002/ece3.10837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Reciprocal selection between symbiotic organisms and their hosts can generate variations in local adaptation between them. Symbionts often form species complexes with lineages partially adapted to various hosts. However, it is unclear how interactions among these lineages influences geographic variation in the extent of host-symbiont local adaptation. We addressed this shortcoming with experiments on burying beetles Nicrophorus vespilloides and their specialist phoretic mite Poecilochirus carabi in two adjacent woodlands. Burying beetles transport these mites to vertebrate carrion upon which they both reproduce. P. carabi appears to be a species complex, with distinct lineages that specialise on breeding alongside different Nicrophorus species. We found that in one wood (Gamlingay Woods), N. vespilloides carries a mixture of mite lineages, with each lineage corresponding to one of the four Nicrophorus species that inhabits this wood. However, two burying beetle species coexist in neighbouring Waresley Woods and here N. vespilloides predominantly carries the mite lineage that favours N. vespilloides. Mite lineage mixing alters the degree of local adaptation for both N. vespilloides and the P. carabi mites, affecting reproductive success variably across different woodlands. In Gamlingay, mite lineage mixing reduced N. vespilloides reproductive success, while experimentally purifying mites lineage enhanced it. The near pure lineage of vespilloides mites negligibly affected Waresley N. vespilloides. Mite reproductive success varied with host specificity: Gamlingay mites had greatest reproductive success on Gamlingay beetles, and performed less well with Waresley beetles. By contrast, Waresley mites had consistent reproductive success, regardless of beetle's woodland of origin. We conclude that there is some evidence that N. vespilloides and its specific mite lineage have coadapted. However, neither N. vespilloides nor its mite lineage adapted to breed alongside other mite lineages. This, we suggest, causes variation between Waresley and Gaminglay Woods in the extent of local adaptation between N. vespilloides beetles and their P. carabi mites.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of ZoologyUniversity of CambridgeCambridgeUK
- International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipeiTaiwan
| | | |
Collapse
|
8
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Seeman OD, Walter DE. Phoresy and Mites: More Than Just a Free Ride. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:69-88. [PMID: 36170643 DOI: 10.1146/annurev-ento-120220-013329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mites are masters at attaching to larger animals, often insects, in a temporary symbiosis called phoresy that allows these tiny animals to exploit patchy resources. In this article, we examine phoresy in the Acari, including those that feed on their carriers in transit, from a broad perspective. From a phylogenetic perspective, phoresy has evolved several times from free-living ancestors but also has been lost frequently. Rotting logs appear to be the first patchy resource exploited by phoretic mites, but the evolution of rapid life cycles later permitted exploitation of short-lived resources. As phoresy is a temporary symbiosis, most species have off-host interactions with their carrier. These relationships can be highly complex and context dependent but often are exploitative of the carrier's resources or progeny. Transitions from phoresy to parasitism seem widespread, but evidence for transitions from obligate phoretic parasitism to permanent parasitism is weak.
Collapse
Affiliation(s)
- Owen D Seeman
- Queensland Museum, South Brisbane, Queensland, Australia;
| | - David Evans Walter
- University of the Sunshine Coast, School of Science, Technology and Engineering, Sippy Downs, Queensland, Australia
| |
Collapse
|
10
|
Sun SJ. A framework for using phoresy to assess ecological transition into parasitism and mutualism. Symbiosis 2022. [DOI: 10.1007/s13199-022-00830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Matuszewski S, MĄdra-Bielewicz A. Competition of insect decomposers over large vertebrate carrion: Necrodes beetles (Silphidae) vs. blow flies (Calliphoridae). Curr Zool 2021; 68:645-656. [PMID: 36743221 PMCID: PMC9892793 DOI: 10.1093/cz/zoab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Large carrion is inhabited by highly variable and interactive communities of insects. Positive interactions in carrion insect communities have been recently the focus in carrion ecology. In contrast, competition between carrion insects is rather undervalued. Here we provide evidence that blow flies (Calliphoridae) and Necrodes beetles (Silphidae), dominant decomposers of large carcasses in terrestrial habitats, compete over carrion. By reanalyzing the results from 90 pig carcasses, we demonstrated that the contribution of the flies and the beetles to the decay was negatively related. The greater part of the large carrion pool was monopolized by blow flies, whereas Necrodes beetles abundantly colonized carcasses, on which blow flies were less effective as decomposers. In behavioral assays, we found that adult beetles killed 4 times more frequently feeding than postfeeding third instar larvae of the flies, with the large decrease in the killing frequency after the larvae reached the age of early third instar. Therefore, adult Necrodes beetles preferentially killed the larvae that were before or in their peak feeding. The study provides evidence that the interaction between blow flies and Necrodes beetles is a combination of indirect exploitative effects of the flies and direct interference effects of the beetles (the mixed competition).
Collapse
Affiliation(s)
| | - Anna MĄdra-Bielewicz
- Laboratory of Criminalistics, Adam Mickiewicz University,
Poznań 61-809, Poland,Wielkopolska Centre for Advanced Technologies, Adam Mickiewicz
University, Poznań 61-614, Poland
| |
Collapse
|
12
|
Evolutionary change in the construction of the nursery environment when parents are prevented from caring for their young directly. Proc Natl Acad Sci U S A 2021; 118:2102450118. [PMID: 34819363 PMCID: PMC8640939 DOI: 10.1073/pnas.2102450118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Parental care can be partitioned into traits that involve direct engagement with offspring and traits that are expressed as an extended phenotype and influence the developmental environment, such as constructing a nursery. Here, we use experimental evolution to test whether parents can evolve modifications in nursery construction when they are experimentally prevented from supplying care directly to offspring. We exposed replicate experimental populations of burying beetles (Nicrophorus vespilloides) to different regimes of posthatching care by allowing larvae to develop in the presence (Full Care) or absence of parents (No Care). After only 13 generations of experimental evolution, we found an adaptive evolutionary increase in the pace at which parents in the No Care populations converted a dead body into a carrion nest for larvae. Cross-fostering experiments further revealed that No Care larvae performed better on a carrion nest prepared by No Care parents than did Full Care larvae. We conclude that parents construct the nursery environment in relation to their effectiveness at supplying care directly, after offspring are born. When direct care is prevented entirely, they evolve to make compensatory adjustments to the nursery in which their young will develop. The rapid evolutionary change observed in our experiments suggests there is considerable standing genetic variation for parental care traits in natural burying beetle populations-for reasons that remain unclear.
Collapse
|
13
|
Trumbo ST, Sikes DS. Resource concealment and the evolution of parental care in burying beetles. J Zool (1987) 2021. [DOI: 10.1111/jzo.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. T. Trumbo
- Department of Ecology and Evolutionary Biology University of Connecticut Waterbury CT USA
| | - D. S. Sikes
- Department of Biology and Wildlife University of Alaska Museum University of Alaska Fairbanks Fairbanks AK USA
| |
Collapse
|
14
|
Sun SJ, Kilner RM. Temperature stress induces mites to help their carrion beetle hosts by eliminating rival blowflies. eLife 2020; 9:e55649. [PMID: 32755542 PMCID: PMC7431131 DOI: 10.7554/elife.55649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Ecological conditions are known to change the expression of mutualisms though the causal agents driving such changes remain poorly understood. Here we show that temperature stress modulates the harm threatened by a common enemy, and thereby induces a phoretic mite to become a protective mutualist. Our experiments focus on the interactions between the burying beetle Nicrophorus vespilloides, an associated mite species Poecilochirus carabi and their common enemy, blowflies, when all three species reproduce on the same small vertebrate carrion. We show that mites compete with beetle larvae for food in the absence of blowflies, and reduce beetle reproductive success. However, when blowflies breed on the carrion too, mites enhance beetle reproductive success by eating blowfly eggs. High densities of mites are especially effective at promoting beetle reproductive success at higher and lower natural ranges in temperature, when blowfly larvae are more potent rivals for the limited resources on the carcass.
Collapse
Affiliation(s)
- Syuan-Jyun Sun
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Rebecca M Kilner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|