1
|
Tajer BJ, Kalu G, Jay S, Wynn E, Decaux A, Gilbert P, Singer HD, Kidd MD, Nelson JA, Harake N, Lopez NJ, Souchet NR, Luong AG, Savage AM, Min S, Karabacak A, Böhm S, Kim RT, Froitzheim T, Sousounis K, Courtemanche K, Han J, Payzin-Dogru D, Blair SJ, Roy S, Fei JF, Tanaka EM, Whited JL. Optimized toolkit for the manipulation of immortalized axolotl fibroblasts. Methods 2025; 240:21-34. [PMID: 40187387 DOI: 10.1016/j.ymeth.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
The axolotl salamander model has broad utility for regeneration studies, but this model is limited by a lack of efficient cell-culture-based tools. The Axolotl Limb-1 (AL-1) fibroblast line, the only available immortalized axolotl cell line, was first published over 20 years ago, but many established molecular biology techniques, such as lipofectamine transfection, CRISPR-Cas9 mutagenesis, and antibiotic selection, work poorly or remain untested in AL-1 cells. Innovating technologies to manipulate AL-1 cells in culture and study their behavior following transplantation into the axolotl will complement in-vivo studies, decrease the number of animals used, and enable the faster, more streamlined investigation of regenerative biology questions. Here, we establish transfection, mutagenesis, antibiotic selection, and in-vivo transplantation techniques in axolotl AL-1 cells. These techniques will enable efficient culture with AL-1 cells and guide future tool development for the culture and manipulation of other salamander cell lines.
Collapse
Affiliation(s)
- Benjamin J Tajer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Glory Kalu
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sarah Jay
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Eric Wynn
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Antoine Decaux
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Paul Gilbert
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Hani D Singer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Maddeline D Kidd
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jeffery A Nelson
- Bauer Core Facility, Harvard University, Northwest Building, Room B239, 52 Oxford St., Cambridge, MA 02138, USA
| | - Noora Harake
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Noah J Lopez
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Nathan R Souchet
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Anna G Luong
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Aaron M Savage
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sangwon Min
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Alparslan Karabacak
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sebastian Böhm
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Ryan T Kim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Tim Froitzheim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Konstantinos Sousounis
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Katherine Courtemanche
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jihee Han
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Duygu Payzin-Dogru
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Steven J Blair
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Elly M Tanaka
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jessica L Whited
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Broad Institute, 415 Main St., Cambridge, MA 02142, USA; Department of Orthopedic Surgery, Brigham & Women's Hospital, Mass General Brigham, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
2
|
Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Gurrola AO, Shvartsman A, Barbieri F, Toma FA, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. Dev Cell 2025; 60:794-812.e6. [PMID: 39603234 PMCID: PMC12068381 DOI: 10.1016/j.devcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Amphibians, by virtue of their phylogenetic position, provide invaluable insights on nervous system evolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals, AAVs have never been shown to transduce amphibian cells efficiently. We screened AAVs in three amphibian species-the frogs Xenopus laevis and Pelophylax bedriagae and the salamander Pleurodeles waltl-and identified at least two AAV serotypes per species that transduce neurons. In developing amphibians, AAVs labeled groups of neurons generated at the same time during development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution.
Collapse
Affiliation(s)
- Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nikol Zorin
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Akemi L Nguyen
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Georgiy Ivanian
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rebecca C Arnold
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Arik Shvartsman
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | | | - Florina A Toma
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Mark Shein-Idelson
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
3
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Rich A, Lu Z, Simone AD, Garcia L, Janssen J, Ando K, Ou J, Vergassola M, Poss KD, Talia SD. Decaying and expanding Erk gradients process memory of skeletal size during zebrafish fin regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634576. [PMID: 39896678 PMCID: PMC11785216 DOI: 10.1101/2025.01.23.634576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Regeneration of an amputated salamander limb or fish fin restores pre-injury size and structure, illustrating the phenomenon of positional memory. Although appreciated for centuries, the identity of position-dependent cues and how they control tissue growth are not resolved. Here, we quantify Erk signaling events in whole populations of osteoblasts during zebrafish fin regeneration. We find that osteoblast Erk activity is dependent on Fgf receptor signaling and organized into millimeter-long gradients that extend from the distal tip to the amputation site. Erk activity scales with the amount of tissue amputated, predicts the likelihood of osteoblast cycling, and predicts the size of regenerated skeletal structures. Mathematical modeling suggests gradients are established by the transient deposition of long-lived ligands that are transported by tissue growth. This concept is supported by the observed scaling of expression of the essential epidermal ligand fgf20a with extents of amputation. Our work provides evidence that localized, scaled expression of pro-regenerative ligands instructs long-range signaling and cycling to control skeletal size in regenerating appendages.
Collapse
Affiliation(s)
- Ashley Rich
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| | - Alessandro De Simone
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Lucas Garcia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Kazunori Ando
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris 75005, France
- Department of Physics, University of California, San Diego, CA, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Arbanas LI, Cura Costa E, Chara O, Otsuki L, Tanaka EM. Lineage tracing of Shh+ floor plate cells and dynamics of dorsal-ventral gene expression in the regenerating axolotl spinal cord. Dev Growth Differ 2024; 66:414-425. [PMID: 39387203 DOI: 10.1111/dgd.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Both development and regeneration depend on signaling centers, which are sources of locally secreted tissue-patterning molecules. As many signaling centers are decommissioned before the end of embryogenesis, a fundamental question is how signaling centers can be re-induced later in life to promote regeneration after injury. Here, we use the axolotl salamander model (Ambystoma mexicanum) to address how the floor plate is assembled for spinal cord regeneration. The floor plate is an archetypal vertebrate signaling center that secretes Shh ligand and patterns neural progenitor cells during embryogenesis. Unlike mammals, axolotls continue to express floor plate genes (including Shh) and downstream dorsal-ventral patterning genes in their spinal cord throughout life, including at steady state. The parsimonious hypothesis that Shh+ cells give rise to functional floor plate cells for regeneration had not been tested. Using HCR in situ hybridization and mathematical modeling, we first quantified the behaviors of dorsal-ventral spinal cord domains, identifying significant increases in gene expression level and floor plate size during regeneration. Next, we established a transgenic axolotl to specifically label and fate map Shh+ cells in vivo. We found that labeled Shh+ cells gave rise to regeneration floor plate, and not to other neural progenitor domains, after tail amputation. Thus, despite changes in domain size and downstream patterning gene expression, Shh+ cells retain their floor plate identity during regeneration, acting as a stable cellular source for this regeneration signaling center in the axolotl spinal cord.
Collapse
Affiliation(s)
- Laura I Arbanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Emanuel Cura Costa
- Institute of Physics of Liquids and Biological Systems (IFLYSIB), National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, Argentina
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Nottingham, UK
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires, Argentina
| | - Leo Otsuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elly M Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
6
|
Ortega Granillo A, Zamora D, Schnittker RR, Scott AR, Spluga A, Russell J, Brewster CE, Ross EJ, Acheampong DA, Zhang N, Ferro K, Morrison JA, Rubinstein BY, Perera AG, Wang W, Sánchez Alvarado A. Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration. iScience 2024; 27:110737. [PMID: 39286507 PMCID: PMC11404194 DOI: 10.1016/j.isci.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.
Collapse
Affiliation(s)
| | - Daniel Zamora
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert R Schnittker
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alessia Spluga
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Carolyn E Brewster
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Daniel A Acheampong
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Anoja G Perera
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wei Wang
- National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | | |
Collapse
|
7
|
Caliaro V, Peurichard D, Chara O. How a reaction-diffusion signal can control spinal cord regeneration in axolotls: A modeling study. iScience 2024; 27:110197. [PMID: 39021793 PMCID: PMC11253152 DOI: 10.1016/j.isci.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/07/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Axolotls are uniquely able to completely regenerate the spinal cord after amputation. The underlying governing mechanisms of this regenerative response have not yet been fully elucidated. We previously found that spinal cord regeneration is mainly driven by cell-cycle acceleration of ependymal cells, recruited by a hypothetical signal propagating from the injury. However, the nature of the signal and its propagation remain unknown. In this theoretical study, we investigated whether the regeneration-inducing signal can follow a reaction-diffusion process. We developed a computational model, validated it with experimental data, and showed that the signal dynamics can be understood in terms of reaction-diffusion mechanism. By developing a theory of the regenerating outgrowth in the limit of fast reaction-diffusion, we demonstrate that control of regenerative response solely relies on cell-to-signal sensitivity and the signal reaction-diffusion characteristic length. This study lays foundations for further identification of the signal controlling regeneration of the spinal cord.
Collapse
Affiliation(s)
- Valeria Caliaro
- Inria Paris, team MAMBA, Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR7598, 75005 Paris, France
| | - Diane Peurichard
- Inria Paris, team MAMBA, Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR7598, 75005 Paris, France
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UK
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires C1073AAO, Argentina
| |
Collapse
|
8
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Nakamura M, Kyoda T, Yoshida H, Takebayashi-Suzuki K, Koike R, Takahashi E, Moriyama Y, Wlizla M, Horb ME, Suzuki A. Injury-induced cooperation of InhibinβA and JunB is essential for cell proliferation in Xenopus tadpole tail regeneration. Sci Rep 2024; 14:3679. [PMID: 38355764 PMCID: PMC10867027 DOI: 10.1038/s41598-024-54280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinβA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-β/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinβA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinβA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.
Collapse
Affiliation(s)
- Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Tatsuya Kyoda
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hitoshi Yoshida
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryota Koike
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Eri Takahashi
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuka Moriyama
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Embryology, Charles River Laboratories, Wilmington, MA, 01887, USA
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
10
|
Kiradjiev KB, Band LR. Multiscale Asymptotic Analysis Reveals How Cell Growth and Subcellular Compartments Affect Tissue-Scale Hormone Transport. Bull Math Biol 2023; 85:101. [PMID: 37702758 PMCID: PMC10499980 DOI: 10.1007/s11538-023-01199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Determining how cell-scale processes lead to tissue-scale patterns is key to understanding how hormones and morphogens are distributed within biological tissues and control developmental processes. In this article, we use multiscale asymptotic analysis to derive a continuum approximation for hormone transport in a long file of cells to determine how subcellular compartments and cell growth and division affect tissue-scale hormone transport. Focusing our study on plant tissues, we begin by presenting a discrete multicellular ODE model tracking the hormone concentration in each cell's cytoplasm, subcellular vacuole, and surrounding apoplast, represented by separate compartments in the cell-file geometry. We allow the cells to grow at a rate that can depend both on space and time, accounting for both cytoplasmic and vacuolar expansion. Multiscale asymptotic analysis enables us to systematically derive the corresponding continuum model, obtaining an effective reaction-advection-diffusion equation and revealing how the effective diffusivity, effective advective velocity, and the effective sink term depend on the parameters in the cell-scale model. The continuum approximation reveals how subcellular compartments, such as vacuoles, can act as storage vessels, that significantly alter the effective properties of hormone transport, such as the effective diffusivity and the induced effective velocity. Furthermore, we show how cell growth and spatial variance across cell lengths affect the effective diffusivity and the induced effective velocity, and how these affect the tissue-scale hormone distribution. In particular, we find that cell growth naturally induces an effective velocity in the direction of growth, whereas spatial variance across cell lengths induces effective velocity due to the presence of an extra compartment, such as the apoplast and the vacuole, and variations in the relative sizes between the compartments across the file of cells. It is revealed that hormone transport is faster across cells of decreasing lengths than cells with increasing lengths. We also investigate the effect of cell division on transport dynamics, assuming that each cell divides as soon as it doubles in size, and find that increasing the time between successive cell divisions decreases the growth rate, which enhances the effect of cell division in slowing hormone transport. Motivated by recent experimental discoveries, we discuss particular applications for transport of gibberellic acid (GA), an important growth hormone, within the Arabidopsis root. The model reveals precisely how membrane proteins that mediate facilitated GA transport affect the effective tissue-scale transport. However, the results are general enough to be relevant to other plant hormones, or other substances that are transported in a similar way in any type of cells.
Collapse
Affiliation(s)
- K B Kiradjiev
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - L R Band
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
11
|
Lavalle NG, Chara O, Grigera TS. Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230871. [PMID: 37711142 PMCID: PMC10498046 DOI: 10.1098/rsos.230871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales.
Collapse
Affiliation(s)
- Natalia G. Lavalle
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Universidad Nacional de La Plata and CONICET, Calle 59 n. 789, La Plata B1900BTE, Argentina
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UK
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires C1073AAO, Argentina
| | - Tomás S. Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Universidad Nacional de La Plata and CONICET, Calle 59 n. 789, La Plata B1900BTE, Argentina
- CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Rome 00185, Italy
| |
Collapse
|
12
|
Tanaka EM. Now that We Got There, What Next? Methods Mol Biol 2023; 2562:471-479. [PMID: 36272095 DOI: 10.1007/978-1-0716-2659-7_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As seen in the protocols in this book, the opportunities to pursue work at the cellular and molecular work in salamanders have considerably broadened over the last years. The availability of genomic information and genome editing, and the possibility to image tissues live and other methods enhance the spectrum of biological questions accessible to all researchers. Here I provide a personal perspective on what I consider exciting future questions open for investigation.
Collapse
Affiliation(s)
- Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
13
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
14
|
Miranda-Negrón Y, García-Arrarás JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci 2022; 16:1006037. [PMID: 36466166 PMCID: PMC9708897 DOI: 10.3389/fnins.2022.1006037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2024] Open
Abstract
Radial glia is a cell type traditionally associated with the developing nervous system, particularly with the formation of cortical layers in the mammalian brain. Nonetheless, some of these cells, or closely related types, called radial glia-like cells are found in adult central nervous system structures, functioning as neurogenic progenitors in normal homeostatic maintenance and in response to injury. The heterogeneity of radial glia-like cells is nowadays being probed with molecular tools, primarily by the expression of specific genes that define cell types. Similar markers have identified radial glia-like cells in the nervous system of non-vertebrate organisms. In this review, we focus on adult radial glia-like cells in neurogenic processes during homeostasis and in response to injury. We highlight our results using a non-vertebrate model system, the echinoderm Holothuria glaberrima where we have described a radial glia-like cell that plays a prominent role in the regeneration of the holothurian central nervous system.
Collapse
Affiliation(s)
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
15
|
Walker SE, Echeverri K. Spinal cord regeneration - the origins of progenitor cells for functional rebuilding. Curr Opin Genet Dev 2022; 75:101917. [PMID: 35623298 PMCID: PMC9878350 DOI: 10.1016/j.gde.2022.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
The spinal cord is one of the most important structures for all vertebrate animals as it connects almost all parts of the body to the brain. Injury to the mammalian spinal cord has devastating consequences, resulting in paralysis with little to no hope of recovery. In contrast, other vertebrate animals have been known for centuries to be capable of functionally regenerating large lesions in the spinal cord. Here, we will review the current knowledge of spinal cord regeneration and recent work in different proregenerative animals that has begun to shed light on the cellular and molecular mechanisms these animals use to direct cells to rebuild a complex, functional spinal cord.
Collapse
Affiliation(s)
- Sarah E Walker
- Corresponding author: Karen Echeverri (), Twitter account: S.E. Walker (@EcheverriLab), K. Echeverri (@MBLScience)
| | - Karen Echeverri
- Corresponding author: Karen Echeverri (), Twitter account: S.E. Walker (@EcheverriLab), K. Echeverri (@MBLScience)
| |
Collapse
|
16
|
Martinez MAQ, Matus DQ. CDK activity sensors: genetically encoded ratiometric biosensors for live analysis of the cell cycle. Biochem Soc Trans 2022; 50:1081-1090. [PMID: 35674434 PMCID: PMC9661961 DOI: 10.1042/bst20211131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023]
Abstract
Cyclin-dependent kinase (CDK) sensors have facilitated investigations of the cell cycle in living cells. These genetically encoded fluorescent biosensors change their subcellular location upon activation of CDKs. Activation is primarily regulated by their association with cyclins, which in turn trigger cell-cycle progression. In the absence of CDK activity, cells exit the cell cycle and become quiescent, a key step in stem cell maintenance and cancer cell dormancy. The evolutionary conservation of CDKs has allowed for the rapid development of CDK activity sensors for cell lines and several research organisms, including nematodes, fish, and flies. CDK activity sensors are utilized for their ability to visualize the exact moment of cell-cycle commitment. This has provided a breakthrough in understanding the proliferation-quiescence decision. Further adoption of these biosensors will usher in new discoveries focused on the cell-cycle regulation of development, ageing, and cancer.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| |
Collapse
|
17
|
Otsuki L, Tanaka EM. Positional Memory in Vertebrate Regeneration: A Century's Insights from the Salamander Limb. Cold Spring Harb Perspect Biol 2022; 14:a040899. [PMID: 34607829 PMCID: PMC9248832 DOI: 10.1101/cshperspect.a040899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salamanders, such as axolotls and newts, can regenerate complex tissues including entire limbs. But what mechanisms ensure that an amputated limb regenerates a limb, and not a tail or unpatterned tissue? An important concept in regeneration is positional memory-the notion that adult cells "remember" spatial identities assigned to them during embryogenesis (e.g., "head" or "hand") and use this information to restore the correct body parts after injury. Although positional memory is well documented at a phenomenological level, the underlying cellular and molecular bases are just beginning to be decoded. Herein, we review how major principles in positional memory were established in the salamander limb model, enabling the discovery of positional memory-encoding molecules, and advancing insights into their pattern-forming logic during regeneration. We explore findings in other amphibians, fish, reptiles, and mammals and speculate on conserved aspects of positional memory. We consider the possibility that manipulating positional memory in human cells could represent one route toward improved tissue repair or engineering of patterned tissues for therapeutic purposes.
Collapse
Affiliation(s)
- Leo Otsuki
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| |
Collapse
|
18
|
Masselink W, Sandoval-Guzmán T, Yun MH. Meeting report: Salamander Models in Cross-disciplinary Biological Research Meeting. Dev Dyn 2022; 251:906-910. [PMID: 35451159 DOI: 10.1002/dvdy.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
The 3rd annual meeting on 'Salamander Models in Cross-disciplinary Biological Research' took place online on August 2021, bringing together over 200 international researchers using salamanders as research models and encompassing diverse fields, ranging from Development and Regeneration through to Immunology, Pathogenesis and Evolution. The event was organized by Maximina H. Yun (Center for Regenerative Therapies Dresden, Germany) and Tatiana Sandoval-Guzmán (TU Dresden, Germany) with the generous support of the Deutsche Forschungsgemeinschaft, the Center for Regenerative Therapies Dresden, Technische Universität Dresden, and the Company of Biologists. Showcasing a number of emerging salamander models, innovative techniques and resources, and providing a platform for sharing both published and ongoing research, this meeting proved to be an excellent forum for exchanging ideas and moving research forwards. Here, we discuss the highlights stemming from this exciting scientific event. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wouter Masselink
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030, Vienna, Austria
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
19
|
Adamson CJ, Morrison-Welch N, Rogers CD. The amazing and anomalous axolotls as scientific models. Dev Dyn 2022; 251:922-933. [PMID: 35322911 PMCID: PMC9536427 DOI: 10.1002/dvdy.470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
Ambystoma mexicanum (axolotl) embryos and juveniles have been used as model organisms for developmental and regenerative research for many years. This neotenic aquatic species maintains the unique capability to regenerate most, if not all, of its tissues well into adulthood. With large externally developing embryos, axolotls were one of the original model species for developmental biology. However, increased access to, and use of, organisms with sequenced and annotated genomes, such as Xenopus laevis and tropicalis and Danio rerio, reduced the prevalence of axolotls as models in embryogenesis studies. Recent sequencing of the large axolotl genome opens up new possibilities for defining the recipes that drive the formation and regeneration of tissues like the limbs and spinal cord. However, to decode the large Ambystoma mexicanum genome will take a herculean effort, community resources, and the development of novel techniques. Here, we provide an updated axolotl-staging chart ranging from 1-cell stage to immature adult paired with a perspective on both historical and current axolotl research that spans from their use in early studies of development to the recent cutting-edge research, employment of transgenesis, high resolution imaging, and study of mechanisms deployed in regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carly J Adamson
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| | | | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| |
Collapse
|
20
|
Duerr TJ, Jeon EK, Wells KM, Villanueva A, Seifert AW, McCusker CD, Monaghan JR. A constitutively expressed fluorescent ubiquitination-based cell-cycle indicator (FUCCI) in axolotls for studying tissue regeneration. Development 2022; 149:dev199637. [PMID: 35266986 PMCID: PMC8977096 DOI: 10.1242/dev.199637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5 mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals.
Collapse
Affiliation(s)
- Timothy J. Duerr
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Eun Kyung Jeon
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Kaylee M. Wells
- University of Massachusetts Boston, Department of Biology, Boston, MA 02125, USA
| | | | - Ashley W. Seifert
- University of Kentucky, Department of Biology, Lexington, KY 40506, USA
| | | | - James R. Monaghan
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| |
Collapse
|
21
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
22
|
Pelzer D, Phipps LS, Thuret R, Gallardo-Dodd CJ, Baker SM, Dorey K. Foxm1 regulates neural progenitor fate during spinal cord regeneration. EMBO Rep 2021; 22:e50932. [PMID: 34427977 PMCID: PMC8419688 DOI: 10.15252/embr.202050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Xenopus tadpoles have the ability to regenerate their tails upon amputation. Although some of the molecular and cellular mechanisms that globally regulate tail regeneration have been characterised, tissue‐specific response to injury remains poorly understood. Using a combination of bulk and single‐cell RNA sequencing on isolated spinal cords before and after amputation, we identify a number of genes specifically expressed in the spinal cord during regeneration. We show that Foxm1, a transcription factor known to promote proliferation, is essential for spinal cord regeneration. Surprisingly, Foxm1 does not control the cell cycle length of neural progenitors but regulates their fate after division. In foxm1−/− tadpoles, we observe a reduction in the number of neurons in the regenerating spinal cord, suggesting that neuronal differentiation is necessary for the regenerative process. Altogether, our data uncover a spinal cord‐specific response to injury and reveal a new role for neuronal differentiation during regeneration.
Collapse
Affiliation(s)
- Diane Pelzer
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Lauren S Phipps
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Raphael Thuret
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Carlos J Gallardo-Dodd
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Syed Murtuza Baker
- Division of Informatics, Imaging & Data Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Cura Costa E, Otsuki L, Rodrigo Albors A, Tanaka EM, Chara O. Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration. eLife 2021; 10:e55665. [PMID: 33988504 PMCID: PMC8205487 DOI: 10.7554/elife.55665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Collapse
Affiliation(s)
- Emanuel Cura Costa
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET) and University of La Plata (UNLP)La PlataArgentina
| | - Leo Otsuki
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC)ViennaAustria
| | - Aida Rodrigo Albors
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC)ViennaAustria
| | - Osvaldo Chara
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET) and University of La Plata (UNLP)La PlataArgentina
- Center for Information Services and High Performance Computing, Technische Universität DresdenDresdenGermany
| |
Collapse
|