1
|
Bouheraoua S, Cleeves S, Preusse M, Müsken M, Braubach P, Fuchs M, Falk C, Sewald K, Häussler S. Establishment and characterization of persistent Pseudomonas aeruginosa infections in air-liquid interface cultures of human airway epithelial cells. Infect Immun 2025; 93:e0060324. [PMID: 39964154 PMCID: PMC11895474 DOI: 10.1128/iai.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 03/12/2025] Open
Abstract
Bacteria exhibit distinct behaviors in laboratory settings compared to infection environments. The presence of host cells induces changes in bacterial activity, while pathogens trigger immune responses that shape the microenvironment. Studying infection dynamics by microscopy, cytokine screening, and dual RNA sequencing in an air-liquid interface model, we found that prolonged Pseudomonas aeruginosa colonization of airway epithelium led to a pro-inflammatory response, consistent across P. aeruginosa strains, despite differences in the dynamics of this response. Concurrently, P. aeruginosa formed non-attached aggregates on the apical side of the cell layer and upregulated genes involved in biofilm formation and virulence. Notably, there was remarkable resemblance between the P. aeruginosa transcriptional profile in our model and that previously reported upon host cell contact. Developing a platform that replicates host microenvironments is vital not only for gaining deeper insights into the interplay between host and pathogen but also for evaluating therapeutic strategies in conditions that closely mirror clinical environments.
Collapse
Affiliation(s)
- Safaa Bouheraoua
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Li B, Liang J, Baniasadi HR, Kurihara S, Phillips MA, Michael AJ. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N 1-aminopropylagmatine synthases. J Biol Chem 2024; 300:107281. [PMID: 38588807 PMCID: PMC11107197 DOI: 10.1016/j.jbc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Hasan CM, Pottenger S, Green AE, Cox AA, White JS, Jones T, Winstanley C, Kadioglu A, Wright MH, Neill DR, Fothergill JL. Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance. JCI Insight 2022; 7:158879. [PMID: 36194492 PMCID: PMC9746822 DOI: 10.1172/jci.insight.158879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Adrienne A. Cox
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jack S. White
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Trevor Jones
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan H. Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Transcriptional Profiling of Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:303-323. [DOI: 10.1007/978-3-031-08491-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Lammens EM, Boon M, Grimon D, Briers Y, Lavigne R. SEVAtile: a standardised DNA assembly method optimised for Pseudomonas. Microb Biotechnol 2021; 15:370-386. [PMID: 34651450 PMCID: PMC8719830 DOI: 10.1111/1751-7915.13922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
To meet the needs of synthetic biologists, DNA assembly methods have transformed from simple 'cut-and-paste' procedures to highly advanced, standardised assembly techniques. Implementing these standardised DNA assembly methods in biotechnological research conducted in non-model hosts, including Pseudomonas putida and Pseudomonas aeruginosa, could greatly benefit reproducibility and predictability of experimental results. SEVAtile is a Type IIs-based assembly approach, which enables the rapid and standardised assembly of genetic parts - or tiles - to create genetic circuits in the established SEVA-vector backbone. Contrary to existing DNA assembly methods, SEVAtile is an easy and straightforward method, which is compatible with any vector, both SEVA- and non-SEVA. To prove the efficiency of the SEVAtile method, a three-vector system was successfully generated to independently co-express three different proteins in P. putida and P. aeruginosa. More specifically, one of the vectors, pBGDes, enables genomic integration of assembled circuits in the Tn7 landing site, while self-replicatory vectors pSTDesX and pSTDesR enable inducible expression from the XylS/Pm and RhaRS/PrhaB expression systems, respectively. Together, we hope these vector systems will support research in both the microbial SynBio and Pseudomonas field.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| | - Dennis Grimon
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| |
Collapse
|
6
|
Alford MA, Baquir B, An A, Choi KYG, Hancock REW. NtrBC Selectively Regulates Host-Pathogen Interactions, Virulence, and Ciprofloxacin Susceptibility of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:694789. [PMID: 34249781 PMCID: PMC8264665 DOI: 10.3389/fcimb.2021.694789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile opportunistic pathogen capable of infecting distinct niches of the human body, including skin wounds and the lungs of cystic fibrosis patients. Eradication of P. aeruginosa infection is becoming increasingly difficult due to the numerous resistance mechanisms it employs. Adaptive resistance is characterized by a transient state of decreased susceptibility to antibiotic therapy that is distinct from acquired or intrinsic resistance, can be triggered by various environmental stimuli and reverted by removal of the stimulus. Further, adaptive resistance is intrinsically linked to lifestyles such as swarming motility and biofilm formation, both of which are important in infections and lead to multi-drug adaptive resistance. Here, we demonstrated that NtrBC, the master of nitrogen control, had a selective role in host colonization and a substantial role in determining intrinsic resistance to ciprofloxacin. P. aeruginosa mutant strains (ΔntrB, ΔntrC and ΔntrBC) colonized the skin but not the respiratory tract of mice as well as WT and, unlike WT, could be reduced or eradicated from the skin by ciprofloxacin. We hypothesized that nutrient availability contributed to these phenomena and found that susceptibility to ciprofloxacin was impacted by nitrogen source in laboratory media. P. aeruginosa ΔntrB, ΔntrC and ΔntrBC also exhibited distinct host interactions, including modestly increased cytotoxicity toward human bronchial epithelial cells, reduced virulence factor production and 10-fold increased uptake by macrophages. These data might explain why NtrBC mutants were less adept at colonizing the upper respiratory tract of mice. Thus, NtrBC represents a link between nitrogen metabolism, adaptation and virulence of the pathogen P. aeruginosa, and could represent a target for eradication of recalcitrant infections in situ.
Collapse
Affiliation(s)
- Morgan A Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Ka-Yee G Choi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Felgner S, Preusse M, Beutling U, Stahnke S, Pawar V, Rohde M, Brönstrup M, Stradal T, Häussler S. Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. eLife 2020; 9:e55744. [PMID: 32960172 PMCID: PMC7538158 DOI: 10.7554/elife.55744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Exploring the complexity of host-pathogen communication is vital to understand why microbes persist within a host, while others are cleared. Here, we employed a dual-sequencing approach to unravel conversational turn-taking of dynamic host-pathogen communications. We demonstrate that upon hitting a host cell, motile Pseudomonas aeruginosa induce a specific gene expression program. This results in the expression of spermidine on the surface, which specifically activates the PIP3-pathway to induce phagocytic uptake into primary or immortalized murine cells. Non-motile bacteria are more immunogenic due to a lower expression of arnT upon host-cell contact, but do not produce spermidine and are phagocytosed less. We demonstrate that not only the presence of pathogen inherent molecular patterns induces immune responses, but that bacterial motility is linked to a host-cell-induced expression of additional immune modulators. Our results emphasize on the value of integrating microbiological and immunological findings to unravel complex and dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
- Department of Molecular Bacteriology, TwincoreHannoverGermany
- Department of Clinical Microbiology, RigshospitaletCopenhagenDenmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical SchoolHannoverGermany
| |
Collapse
|