1
|
Majeed M, Liao CP, Hobert O. Nervous system-wide analysis of all C. elegans cadherins reveals neuron-specific functions across multiple anatomical scales. SCIENCE ADVANCES 2025; 11:eads2852. [PMID: 39983000 PMCID: PMC11844738 DOI: 10.1126/sciadv.ads2852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Differential expression of cell adhesion proteins is a hallmark of cell-type diversity across the animal kingdom. Gene family-wide characterization of their organismal expression and function is, however, lacking. Using genome-engineered reporter alleles, we established an atlas of expression of the entire set of 12 cadherin gene family members in the nematode Caenorhabditis elegans, revealing differential expression across neuronal classes, a dichotomy between broadly and narrowly expressed cadherins, and several context-dependent temporal transitions in expression across development. Engineered mutant null alleles of cadherins were analyzed for defects in morphology, behavior, neuronal soma positions, neurite neighborhood topology and fasciculation, and localization of synapses in many parts of the nervous system. This analysis revealed a restricted pattern of neuronal differentiation defects at discrete subsets of anatomical scales, including a novel role of cadherins in experience-dependent electrical synapse formation. In total, our analysis results in previously little explored perspectives on cadherin deployment and function.
Collapse
Affiliation(s)
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. eLife 2024; 13:RP96893. [PMID: 39565353 DOI: 10.7554/elife.96893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Basak Rosti
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Kyla Rose Hamling
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Paige Leary
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Harsh Panchal
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Marlyn Li
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Hannah Gelnaw
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Stephanie Huang
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Cheryl Quainoo
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - David Schoppik
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
3
|
McArthur KL, Ho WJ. Structure and Topography of Facial Branchiomotor Neuron Dendrites in Larval Zebrafish (Danio rerio). J Comp Neurol 2024; 532:e25682. [PMID: 39497493 PMCID: PMC11575941 DOI: 10.1002/cne.25682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Motor circuits in the vertebrate hindbrain need to become functional early in development. What are the fundamental mechanisms that establish early synaptic inputs to motor neurons? Previous evidence is consistent with the hypothesis that motor neuron dendrite positioning serves a causal role in early spinal motor circuit development, with initial connectivity determined by the overlap between premotor axons and motor neuron dendrites (perhaps without the need for molecular recognition). Does motor neuron dendrite topography serve a similar role in the hindbrain? In the current study, we provide the first quantitative analysis of the dendrites of facial branchiomotor neurons (FBMNs) in larval zebrafish. We previously demonstrated that FBMNs exhibit functional topography along the dorsoventral axis, with the most ventral cell bodies most likely to exhibit early rhythmic activity-suggesting that FBMNs with ventral cell bodies are most likely to receive inputs from premotor neurons carrying rhythmic respiratory signals. We hypothesized that this functional topography can be explained by differences in dendrite positioning, giving ventral FBMNs preferential access to premotor axons carrying rhythmic signals. If this hypothesis is true, we predicted that FBMN cell body position would be correlated with dendrite position along the dorsoventral axis. To test this prediction, we used single-cell labeling to trace the dendritic arbors of FBMNs in larval zebrafish at 5-days post-fertilization (dpf). FBMN dendrites varied in complexity, and this variation could not be attributed to differences in the relative age of neurons. Most dendrites grew caudally, laterally, and ventrally from the cell body-though FBMN dendrites could extend their dendrites dorsally. Across our sample, FBMN cell body position correlated with dendrite position along the dorsoventral axis, consistent with our hypothesis that differences in dendrite positioning serve as the substrate for differences in activity patterns across neurons. Future studies will build on this foundational data, testing additional predictions of the central hypothesis-to further investigate the mechanisms of early motor circuit development.
Collapse
Affiliation(s)
| | - Winnie J Ho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
5
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577261. [PMID: 38328255 PMCID: PMC10849732 DOI: 10.1101/2024.01.25.577261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of general principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Başak Rosti
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Kyla R Hamling
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Paige Leary
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Harsh Panchal
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Marlyn Li
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Hannah Gelnaw
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Stephanie Huang
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Cheryl Quainoo
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Lead Contact
| |
Collapse
|
6
|
McArthur KL, Tovar VM, Griffin-Baldwin E, Tovar BD, Astad EK. Early development of respiratory motor circuits in larval zebrafish (Danio rerio). J Comp Neurol 2023; 531:838-852. [PMID: 36881713 PMCID: PMC10081962 DOI: 10.1002/cne.25467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Rhythm-generating circuits in the vertebrate hindbrain form synaptic connections with cranial and spinal motor neurons, to generate coordinated, patterned respiratory behaviors. Zebrafish provide a uniquely tractable model system to investigate the earliest stages in respiratory motor circuit development in vivo. In larval zebrafish, respiratory behaviors are carried out by muscles innervated by cranial motor neurons-including the facial branchiomotor neurons (FBMNs), which innervate muscles that move the jaw, buccal cavity, and operculum. However, it is unclear when FBMNs first receive functional synaptic input from respiratory pattern-generating neurons, and how the functional output of the respiratory motor circuit changes across larval development. In the current study, we used behavior and calcium imaging to determine how early FBMNs receive functional synaptic inputs from respiratory pattern-generating networks in larval zebrafish. Zebrafish exhibited patterned operculum movements by 3 days postfertilization (dpf), though this behavior became more consistent at 4 and 5 dpf. Also by 3dpf, FBMNs fell into two distinct categories ("rhythmic" and "nonrhythmic"), based on patterns of neural activity. These two neuron categories were arranged differently along the dorsoventral axis, demonstrating that FBMNs have already established dorsoventral topography by 3 dpf. Finally, operculum movements were coordinated with pectoral fin movements at 3 dpf, indicating that the operculum behavioral pattern was driven by synaptic input. Taken together, this evidence suggests that FBMNs begin to receive initial synaptic input from a functional respiratory central pattern generator at or prior to 3 dpf. Future studies will use this model to study mechanisms of normal and abnormal respiratory circuit development.
Collapse
Affiliation(s)
| | | | | | - Bria D. Tovar
- Biology Department, Southwestern University, Georgetown, TX 78626
| | - Emma K. Astad
- Biology Department, Southwestern University, Georgetown, TX 78626
| |
Collapse
|
7
|
Vagnozzi AN, Moore MT, Lin M, Brozost EM, KC R, Agarwal A, Schwarz LA, Duan X, Zampieri N, Landmesser LT, Philippidou P. Coordinated cadherin functions sculpt respiratory motor circuit connectivity. eLife 2022; 11:e82116. [PMID: 36583530 PMCID: PMC9910829 DOI: 10.7554/elife.82116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Breathing, and the motor circuits that control it, is essential for life. At the core of respiratory circuits are Dbx1-derived interneurons, which generate the rhythm and pattern of breathing, and phrenic motor neurons (MNs), which provide the final motor output that drives diaphragm muscle contractions during inspiration. Despite their critical function, the principles that dictate how respiratory circuits assemble are unknown. Here, we show that coordinated activity of a type I cadherin (N-cadherin) and type II cadherins (Cadherin-6, -9, and -10) is required in both MNs and Dbx1-derived neurons to generate robust respiratory motor output. Both MN- and Dbx1-specific cadherin inactivation in mice during a critical developmental window results in perinatal lethality due to respiratory failure and a striking reduction in phrenic MN bursting activity. This combinatorial cadherin code is required to establish phrenic MN cell body and dendritic topography; surprisingly, however, cell body position appears to be dispensable for the targeting of phrenic MNs by descending respiratory inputs. Our findings demonstrate that type I and II cadherins function cooperatively throughout the respiratory circuit to generate a robust breathing output and reveal novel strategies that drive the assembly of motor circuits.
Collapse
Affiliation(s)
- Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Matthew T Moore
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Elyse M Brozost
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Ritesh KC
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Xin Duan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
8
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|