1
|
Chou KL, Kanel P, van Emde Boas M, Roytman S, Carli G, Albin RL, Bohnen NI. Cholinergic System Changes in Dopa-Unresponsive Freezing of Gait in Parkinson's Disease. Mov Disord 2025. [PMID: 40219650 DOI: 10.1002/mds.30196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Freezing of gait (FoG) is a debilitating mobility disturbance that becomes increasingly resistant to dopaminergic pharmacotherapies with advancing Parkinson's disease (PD). The pathophysiology underlying the response of FoG to dopaminergic treatment is poorly understood. Prior vesicular acetylcholine transporter positron emission tomography (VAChT PET) imaging studies implicate the degeneration of cholinergic pathways, including bilateral striatal and limbic archicortex deficits, as significant contributors to FoG. OBJECTIVE We aim to investigate whether specific cholinergic system changes are associated with FoG responsiveness to levodopa treatment in PD patients. METHODS Thirty six PD subjects (31M/5F) completed [18F]-fluoroethoxybenzovesamicol ([18F]FEOBV) vesicular acetylcholine transporter positron emission tomography (VAChT PET) and underwent videotaped clinical assessments for FoG on and off levodopa. RESULTS Sixteen subjects had l-dopa-unresponsive FoG. Whole brain voxel-based analyses of [18F]FEOBV PET (false discovery rate-corrected at P < 0.05 and adjusted for levodopa-equivalent dose) showed that those with l-dopa-unresponsive FoG had more severe cholinergic terminal deficits in the bilateral insula, hippocampi, fimbria, and lateral geniculate nuclei; left mid-temporal, putamen, and posterior cingulate regions; and the right mid-frontal region and anterior ventral nucleus of the thalamus compared to those with l-dopa-responsive FoG. CONCLUSION FoG unresponsive to levodopa is associated with bilateral cholinergic terminal reductions, mostly in extra-striatal regions involved in multisensory and cognitive integration of gait and postural control as well as spatial navigation. The lack of specific striatal involvement points to the disruption of widespread cerebral network functions underlying l-dopa-unresponsive FoG in PD and may explain the treatment-resistant nature of FoG to levodopa. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kelvin L Chou
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabesh Kanel
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Miriam van Emde Boas
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stiven Roytman
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Giulia Carli
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Zhai S, Cui Q, Wokosin D, Sun L, Tkatch T, Crittenden JR, Graybiel AM, Surmeier DJ. State-dependent modulation of spiny projection neurons controls levodopa-induced dyskinesia in a mouse model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631090. [PMID: 39829758 PMCID: PMC11741361 DOI: 10.1101/2025.01.02.631090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In the later stages of Parkinson's disease (PD), patients often manifest levodopa-induced dyskinesia (LID), compromising their quality of life. The pathophysiology underlying LID is poorly understood, and treatment options are limited. To move toward filling this treatment gap, the intrinsic and synaptic changes in striatal spiny projection neurons (SPNs) triggered by the sustained elevation of dopamine (DA) during dyskinesia were characterized using electrophysiological, pharmacological, molecular and behavioral approaches. Our studies revealed that the intrinsic excitability and functional corticostriatal connectivity of SPNs in dyskinetic mice oscillate between the on- and off-states of LID in a cell- and state-specific manner. Although triggered by levodopa, these rapid oscillations in SPN properties depended on both dopaminergic and cholinergic signaling. In a mouse PD model, disrupting M1 muscarinic receptor signaling specifically in iSPNs or deleting its downstream signaling partner CalDAG-GEFI blunted the levodopa-induced oscillation in functional connectivity, enhanced the beneficial effects of levodopa and attenuated LID severity.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Linqing Sun
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
3
|
Matityahu L, Hobel ZB, Berkowitz N, Malgady JM, Gilin N, Plotkin JL, Goldberg JA. Synchronous activation of striatal cholinergic interneurons induces local serotonin release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621726. [PMID: 39554102 PMCID: PMC11566013 DOI: 10.1101/2024.11.03.621726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Striatal cholinergic interneurons (CINs) activate nicotinic acetylcholine receptors on dopamine axons to extend the range of dopamine release. Here we show that synchronous activation of CINs induces and extends the range of local serotonin release via a similar mechanism. This process is exaggerated in the hypercholinergic striatum of a mouse model of OCD-like behavior, implicating CINs as critical regulators of serotonin levels in the healthy and pathological striatum.
Collapse
Affiliation(s)
- Lior Matityahu
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, Faculty of the Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Zachary B Hobel
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Noa Berkowitz
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, Faculty of the Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Naomi Gilin
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, Faculty of the Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, Faculty of the Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| |
Collapse
|
4
|
Nielsen BE, Ford CP. Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors. SCIENCE ADVANCES 2024; 10:eadp6301. [PMID: 39565858 PMCID: PMC11578179 DOI: 10.1126/sciadv.adp6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
A dynamic equilibrium between dopamine and acetylcholine (ACh) is essential for striatal circuitry and motor function, as imbalances are associated with Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). Conventional theories posit that cholinergic signaling is pathologically elevated in PD as a result of increased ACh release, which contributes to motor deficits. However, using approaches to measure receptor-mediated signaling, we found that, rather than the predicted enhancement, the strength of cholinergic transmission at muscarinic M4 receptor synapses on direct pathway medium spiny neurons was decreased in dopamine-depleted mice. This adaptation was due to a reduced postsynaptic M4 receptor function, resulting from down-regulated receptors and downstream signaling. Restoring M4 transmission unexpectedly led to a partial alleviation of motor deficits and LID dyskinetic behavior, revealing an unexpected prokinetic effect in addition to the canonical antikinetic role of M4 receptors. These findings indicate that decreased M4 function differentially contributes to parkinsonian and LID pathophysiology, representing a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz E. Nielsen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
5
|
Cao X, Zhu M, Xu G, Li F, Yan Y, Zhang J, Wang J, Zeng F, Bao Y, Zhang X, Liu T, Zhang D. HCN channels in the lateral habenula regulate pain and comorbid depressive-like behaviors in mice. CNS Neurosci Ther 2024; 30:e14831. [PMID: 38961317 PMCID: PMC11222070 DOI: 10.1111/cns.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.
Collapse
Affiliation(s)
- Xue‐zhong Cao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Meng‐ye Zhu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gang Xu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Fan Li
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jin‐jin Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianbing Wang
- Department of AnesthesiologyJiangxi Cancer HospitalNanchangJiangxiChina
| | - Fei Zeng
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yang Bao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xue‐xue Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tao Liu
- Department of Pediatricsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Da‐ying Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
6
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Uribe-Cano S, Malave L, Kottmann AH. L-Dopa induced dyskinesias require Cholinergic Interneuron expression of Dopamine 2 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593604. [PMID: 38765986 PMCID: PMC11100812 DOI: 10.1101/2024.05.10.593604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Striatal Cholinergic Interneurons (CIN) are drivers of L-Dopa induced Dyskinesias (LID). However, what signaling pathways elicit aberrant CIN activity remains unclear. CIN express D2 and D5 receptors suggesting repeated activation of these receptors in response to L-Dopa could promote LID. While the role of D5 in this process has recently been probed, little is known about the role of D2. Method Mice with CIN-specific D2 ablation (D2 CIN KO) underwent unilateral 6-OHDA lesion and chronic L-Dopa dosing, throughout which LID severity was quantified. The effect of D2 CIN KO on histological markers of LID severity and CIN activity were also quantified postmortem. Results D2 CIN KO attenuated LID across L-Dopa doses, reduced expression of histological LID marker p-ERK, and prevented L-Dopa-induced increases in CIN activity marker p-rpS6 in the dorsolateral striatum. Conclusion The activation of D2 specifically on CIN is a key driver of LID.
Collapse
|
8
|
Qi ZX, Yan Q, Fan XJ, Peng JY, Zhu HX, Jiang YM, Chen L, Zhuang QX. Role of HCN channels in the functions of basal ganglia and Parkinson's disease. Cell Mol Life Sci 2024; 81:135. [PMID: 38478096 PMCID: PMC10937777 DOI: 10.1007/s00018-024-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
- National Center for Neurological Disorders, Shanghai, 200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Qi Yan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui-Xian Zhu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yi-Miao Jiang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
- National Center for Neurological Disorders, Shanghai, 200030, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
9
|
Cenci MA, Kumar A. Cells, pathways, and models in dyskinesia research. Curr Opin Neurobiol 2024; 84:102833. [PMID: 38184982 DOI: 10.1016/j.conb.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
L-DOPA-induced dyskinesia (LID) is the most common form of hyperkinetic movement disorder resulting from altered information processing in the cortico-basal ganglia network. We here review recent advances clarifying the altered interplay between striatal output pathways in this movement disorder. We also review studies revealing structural and synaptic changes to the striatal microcircuitry and altered cortico-striatal activity dynamics in LID. We furthermore highlight the recent progress made in understanding the involvement of cerebellar and brain stem nuclei. These recent developments illustrate that dyskinesia research continues to provide key insights into cellular and circuit-level plasticity within the cortico-basal ganglia network and its interconnected brain regions.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Arvind Kumar
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden. https://twitter.com/arvin_neuro
| |
Collapse
|
10
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
12
|
Krok AC, Maltese M, Mistry P, Miao X, Li Y, Tritsch NX. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 2023; 621:543-549. [PMID: 37558873 PMCID: PMC11577287 DOI: 10.1038/s41586-023-05995-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/22/2023] [Indexed: 08/11/2023]
Abstract
External rewards such as food and money are potent modifiers of behaviour1,2. Pioneering studies established that these salient sensory stimuli briefly interrupt the tonic discharge of neurons that produce the neuromodulators dopamine (DA) and acetylcholine (ACh): midbrain DA neurons (DANs) fire a burst of action potentials that broadly elevates DA in the striatum3,4 at the same time that striatal cholinergic interneurons (CINs) produce a characteristic pause in firing5,6. These phasic responses are thought to create unique, temporally limited conditions that motivate action and promote learning7-11. However, the dynamics of DA and ACh outside explicitly rewarded situations remain poorly understood. Here we show that extracellular DA and ACh levels fluctuate spontaneously and periodically at a frequency of approximately 2 Hz in the dorsal striatum of mice and maintain the same temporal relationship relative to one another as that evoked by reward. We show that this neuromodulatory coordination does not arise from direct interactions between DA and ACh within the striatum. Instead, we provide evidence that periodic fluctuations in striatal DA are inherited from midbrain DANs, while striatal ACh transients are driven by glutamatergic inputs, which act to locally synchronize the spiking of CINs. Together, our findings show that striatal neuromodulatory dynamics are autonomously organized by distributed extra-striatal afferents. The dominance of intrinsic rhythms in DA and ACh offers new insights for explaining how reward-associated neural dynamics emerge and how the brain motivates action and promotes learning from within.
Collapse
Affiliation(s)
- Anne C Krok
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Marta Maltese
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Pratik Mistry
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Xiaolei Miao
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
13
|
Lamanna J, Ferro M, Spadini S, Racchetti G, Malgaroli A. The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behav Sci (Basel) 2023; 13:668. [PMID: 37622808 PMCID: PMC10451670 DOI: 10.3390/bs13080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Psychology, Sigmund Freud University, 20143 Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
14
|
Acosta-Mejia MT, Villalobos N. Neurophysiology of Brain Networks Underlies Symptoms of Parkinson's Disease: A Basis for Diagnosis and Management. Diagnostics (Basel) 2023; 13:2394. [PMID: 37510138 PMCID: PMC10377975 DOI: 10.3390/diagnostics13142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is one of the leading neurodegenerative disorders. It is considered a movement disorder, although it is accepted that many nonmotor symptoms accompany the classic motor symptoms. PD exhibits heterogeneous and overlaying clinical symptoms, and the overlap of motor and nonmotor symptoms complicates the clinical diagnosis and management. Loss of modulation secondary to the absence of dopamine due to degeneration of the substantia nigra compacta produces changes in firing rates and patterns, oscillatory activity, and higher interneuronal synchronization in the basal ganglia-thalamus-cortex and nigrovagal network involvement in motor and nonmotor symptoms. These neurophysiological changes can be monitored by electrophysiological assessment. The purpose of this review was to summarize the results of neurophysiological changes, especially in the network oscillation in the beta-band level associated with parkinsonism, and to discuss the use of these methods to optimize the diagnosis and management of PD.
Collapse
Affiliation(s)
- Martha Teresa Acosta-Mejia
- Área Académica de Nutrición, Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda La Concepción, Sn Agustin Tlaxiaca, Estado de Hidalgo 42160, Mexico
| | - Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico, Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
15
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
16
|
Manz KM, Brady LJ, Calipari ES, Grueter BA. Accumbal Histamine Signaling Engages Discrete Interneuron Microcircuits. Biol Psychiatry 2023; 93:1041-1052. [PMID: 34953589 PMCID: PMC9012818 DOI: 10.1016/j.biopsych.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Central histamine (HA) signaling modulates diverse cortical and subcortical circuits throughout the brain, including the nucleus accumbens (NAc). The NAc, a key striatal subregion directing reward-related behavior, expresses diverse HA receptor subtypes that elicit cellular and synaptic plasticity. However, the neuromodulatory capacity of HA within interneuron microcircuits in the NAc remains unknown. METHODS We combined electrophysiology, pharmacology, voltammetry, and optogenetics in male transgenic reporter mice to determine how HA influences microcircuit motifs controlled by parvalbumin-expressing fast-spiking interneurons (PV-INs) and tonically active cholinergic interneurons (CINs) in the NAc shell. RESULTS HA enhanced CIN output through an H2 receptor (H2R)-dependent effector pathway requiring Ca2+-activated small-conductance K+ channels, with a small but discernible contribution from H1Rs and synaptic H3Rs. While PV-IN excitability was unaffected by HA, presynaptic H3Rs decreased feedforward drive onto PV-INs via AC-cAMP-PKA (adenylyl cyclase-cyclic adenosine monophosphate-protein kinase A) signaling. H3R-dependent plasticity was differentially expressed at mediodorsal thalamus and prefrontal cortex synapses onto PV-INs, with mediodorsal thalamus synapses undergoing HA-induced long-term depression. These effects triggered downstream shifts in PV-IN- and CIN-controlled microcircuits, including near-complete collapse of mediodorsal thalamus-evoked feedforward inhibition and increased mesoaccumbens dopamine release. CONCLUSIONS HA targets H1R, H2R, and H3Rs in the NAc shell to engage synapse- and cell type-specific mechanisms that bidirectionally regulate PV-IN and CIN microcircuit activity. These findings extend the current conceptual framework of HA signaling and offer critical insight into the modulatory potential of HA in the brain.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
17
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
18
|
Codianni MG, Rubin JE. A spiking computational model for striatal cholinergic interneurons. Brain Struct Funct 2023; 228:589-611. [PMID: 36653544 DOI: 10.1007/s00429-022-02604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Cholinergic interneurons in the striatum, also known as tonically active interneurons or TANs, are thought to have a strong effect on corticostriatal plasticity and on striatal activity and outputs, which in turn play a critical role in modulating downstream basal ganglia activity and movement. Striatal TANs can exhibit a variety of firing patterns and responses to synaptic inputs; furthermore, they have been found to display various surges and pauses in activity associated with sensory cues and reward delivery in learning as well as with motor tic production. To help explain the factors that contribute to TAN activity patterns and to provide a resource for future studies, we present a novel conductance-based computational model of a striatal TAN. We show that this model produces the various characteristic firing patterns observed in recordings of TANs. With a single baseline tuning associated with tonic firing, the model also captures a wide range of TAN behaviors found in previous experiments involving a variety of manipulations. In addition to demonstrating these results, we explain how various ionic currents in the model contribute to them. Finally, we use this model to explore the contributions of the acetylcholine released by TANs to the production of surges and pauses in TAN activity in response to strong excitatory inputs. These results provide predictions for future experimental testing that may help with efforts to advance our understanding of the role of TANs in reinforcement learning and in motor disorders such as Tourette's syndrome.
Collapse
Affiliation(s)
- Marcello G Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15260, USA. .,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
19
|
McGuirt A, Pigulevskiy I, Sulzer D. Developmental regulation of thalamus-driven pauses in striatal cholinergic interneurons. iScience 2022; 25:105332. [PMID: 36325074 PMCID: PMC9619292 DOI: 10.1016/j.isci.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
In response to salient sensory cues, the tonically active striatal cholinergic interneuron (ChI) exhibits a characteristic synchronized "pause" thought to facilitate learning and the execution of motivated behavior. We report that thalamostriatal-driven ChI pauses are enhanced in ex vivo brain slices from infantile (P10) mice, with decreasing expression in preadolescent (P28) and adult (P100) mice concurrent with waning excitatory input to ChIs. Our data are consistent with previous reports that the adult ChI pause is dependent on dopamine signaling, but we find that the robust pausing at P10 is dopamine independent. Instead, elevated expression of the noninactivating delayed rectifier Kv7.2/3 current promotes pausing in infantile ChIs. Because this current decreases over development, a parallel increase in Ih further attenuates pause expression. These findings demonstrate that cell intrinsic and circuit mechanisms of ChI pause expression are developmentally determined and may underlie changes in learning properties as the nervous system matures.
Collapse
Affiliation(s)
- Avery McGuirt
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Irena Pigulevskiy
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
20
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
21
|
Oz O, Matityahu L, Mizrahi-Kliger A, Kaplan A, Berkowitz N, Tiroshi L, Bergman H, Goldberg JA. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. eLife 2022; 11:76039. [PMID: 35815934 PMCID: PMC9302969 DOI: 10.7554/elife.76039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/09/2022] [Indexed: 11/13/2022] Open
Abstract
The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs’ capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.
Collapse
Affiliation(s)
- Osnat Oz
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Matityahu
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mizrahi-Kliger
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Kaplan
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Berkowitz
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Tiroshi
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Paz RM, Stahl AM, Rela L, Murer MG, Tubert C. D1/D5 Inverse Agonists Restore Striatal Cholinergic Interneuron Physiology in Dyskinetic Mice. Mov Disord 2022; 37:1693-1706. [PMID: 35535012 DOI: 10.1002/mds.29055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In advanced stages of Parkinson's disease (PD), dyskinesia and motor fluctuations become seriously debilitating and therapeutic options become scarce. Aberrant activity of striatal cholinergic interneurons (SCIN) has been shown to be critical to PD and dyskinesia, but the systemic administration of cholinergic medications can exacerbate extrastriatal-related symptoms. Thus, targeting the mechanisms causing pathological SCIN activity in severe PD with motor fluctuations and dyskinesia is a promising therapeutic alternative. METHODS We used ex vivo electrophysiological recordings combined with pharmacology to study the alterations in intracellular signaling that contribute to the altered SCIN physiology observed in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS The altered phenotypes of SCIN of parkinsonian mice during the "off levodopa" state resulting from aberrant Kir/leak and Kv1.3 currents can be rapidly reverted by acute inhibition of cAMP-ERK1/2 signaling. Inverse agonists that inhibit the ligand-independent activity of D5 receptors, like clozapine, restore Kv1.3 and Kir/leak currents and SCIN normal physiology in dyskinetic mice. CONCLUSION Our work unravels a signaling pathway involved in the dysregulation of membrane currents causing SCIN hyperexcitability and burst-pause activity in parkinsonian mice treated with levodopa (l-dopa). These changes persist during off-medication periods due to tonic mechanisms that can be acutely reversed by pharmacological interventions. Thus, targeting the D5-cAMP-ERK1/2 signaling pathway selectively in SCIN may have therapeutic effects in PD and dyskinesia by restoring the normal SCIN function. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Agostina Mónica Stahl
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Del Rey NLG, Trigo-Damas I, Obeso JA, Cavada C, Blesa J. Neuron types in the primate striatum: stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys. Neuropathol Appl Neurobiol 2022; 48:e12812. [PMID: 35274336 DOI: 10.1111/nan.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
AIMS The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. METHODS Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. RESULTS In control monkeys, the projection neurons, which express the Dopamine-and-cAMP-Regulated-Phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing Calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18 %; 2.6%), Dinucleotide Phosphate-Diaphorase (NADPH+: ~13 %; 1.8%), Choline Acetyltransferase (ChAT+: ~11%; 1.5%) and Tyrosine Hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. CONCLUSIONS These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implications.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain.,PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - J A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Carmen Cavada
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, School of Medicine, Autónoma de Madrid University, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
25
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
26
|
Mercuri NB, Federici M, Rizzo FR, Maugeri L, D'Addario SL, Ventura R, Berretta N. Long-Term Depression of Striatal DA Release Induced by mGluRs via Sustained Hyperactivity of Local Cholinergic Interneurons. Front Cell Neurosci 2021; 15:798464. [PMID: 34924961 PMCID: PMC8674918 DOI: 10.3389/fncel.2021.798464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms regulating dopamine (DA) release in the striatum have attracted much interest in recent years. By in vitro amperometric recordings in mouse striatal slices, we show that a brief (5 min) exposure to the metabotropic glutamate receptor agonist DHPG (50 μM) induces a profound depression of synaptic DA release, lasting over 1 h from DHPG washout. This long-term depression is sensitive to glycine, which preferentially inhibits local cholinergic interneurons, as well as to drugs acting on nicotinic acetylcholine receptors and to the pharmacological depletion of released acetylcholine. The same DHPG treatment induces a parallel long-lasting enhancement in the tonic firing of presumed striatal cholinergic interneurons, measured with multi-electrode array recordings. When DHPG is bilaterally infused in vivo in the mouse striatum, treated mice display an anxiety-like behavior. Our results demonstrate that metabotropic glutamate receptors stimulation gives rise to a prolonged depression of the striatal dopaminergic transmission, through a sustained enhancement of released acetylcholine, due to the parallel long-lasting potentiation of striatal cholinergic interneurons firing. This plastic interplay between dopamine, acetylcholine, and glutamate in the dorsal striatum may be involved in anxiety-like behavior typical of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Mauro Federici
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | | | - Lorenzo Maugeri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | - Sebastian L D'Addario
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy
| | - Nicola Berretta
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| |
Collapse
|
27
|
Malave L, Zuelke DR, Uribe-Cano S, Starikov L, Rebholz H, Friedman E, Qin C, Li Q, Bezard E, Kottmann AH. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Commun Biol 2021; 4:1071. [PMID: 34552196 PMCID: PMC8458306 DOI: 10.1038/s42003-021-02567-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson’s Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson’s Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson’s Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa. Lauren Malave et al. examine the impact of sonic hedgehog signaling in the dorsal striatum in L-Dopa induced dyskinesia (LID) animal models. Their results suggest that increasing sonic hedgehog signaling can reduce the severity of LID and abnormal involuntary movements, suggesting future therapeutic approaches to mitigate dyskinetic comorbidities of long-term treatment with L-Dopa.
Collapse
Affiliation(s)
- Lauren Malave
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Dustin R Zuelke
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Santiago Uribe-Cano
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.,Blue Rock Therapeutics, Inc, New York, NY, USA
| | - Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,GHU Psychiatrie et Neurosciences, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Universite de Paris, Paris, France.,Center of Neurodegeneration, Danube Private University, Krems, Austria
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK.,Universite de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA. .,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA. .,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.
| |
Collapse
|
28
|
Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience 2021; 467:201-217. [PMID: 34048797 DOI: 10.1016/j.neuroscience.2021.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023]
Abstract
Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.
Collapse
|
29
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Yang K, Zhao X, Wang C, Zeng C, Luo Y, Sun T. Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Front Neurosci 2021; 15:614412. [PMID: 33776634 PMCID: PMC7988225 DOI: 10.3389/fnins.2021.614412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Cheng Zeng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yan Luo
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
31
|
Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron 2021; 109:1137-1149.e5. [PMID: 33600762 DOI: 10.1016/j.neuron.2021.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Progressive loss of dopamine inputs in Parkinson's disease leads to imbalances in coordinated signaling of dopamine and acetylcholine (ACh) in the striatum, which is thought to contribute to parkinsonian motor symptoms. As reciprocal interactions between dopamine inputs and cholinergic interneurons (ChIs) control striatal dopamine and ACh transmission, we examined how partial dopamine depletion in an early-stage mouse model for Parkinson's disease alters nigral regulation of cholinergic activity. We found region-specific alterations in how remaining dopamine inputs regulate cholinergic excitability that differ between the dorsomedial (DMS) and dorsolateral (DLS) striatum. Specifically, we found that dopamine depletion downregulates metabotropic glutamate receptors (mGluR1) on DLS ChIs at synapses where dopamine inputs co-release glutamate, abolishing the ability of dopamine inputs to drive burst firing. This loss underlies parkinsonian motor impairments, as viral rescue of mGluR1 signaling in DLS ChIs was sufficient to restore circuit function and attenuate motor deficits in early-stage parkinsonian mice.
Collapse
|
32
|
Paz RM, Tubert C, Stahl AM, Amarillo Y, Rela L, Murer MG. Levodopa Causes Striatal Cholinergic Interneuron Burst-Pause Activity in Parkinsonian Mice. Mov Disord 2021; 36:1578-1591. [PMID: 33547844 DOI: 10.1002/mds.28516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Enhanced striatal cholinergic interneuron activity contributes to the striatal hypercholinergic state in Parkinson's disease (PD) and to levodopa-induced dyskinesia. In severe PD, dyskinesia and motor fluctuations become seriously debilitating, and the therapeutic strategies become scarce. Given that the systemic administration of anticholinergics can exacerbate extrastriatal-related symptoms, targeting cholinergic interneurons is a promising therapeutic alternative. Therefore, unraveling the mechanisms causing pathological cholinergic interneuron activity in severe PD with motor fluctuations and dyskinesia may provide new molecular therapeutic targets. METHODS We used ex vivo electrophysiological recordings combined with pharmacological and morphological studies to investigate the intrinsic alterations of cholinergic interneurons in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS Cholinergic interneurons exhibit pathological burst-pause activity in the parkinsonian "off levodopa" state. This is mediated by a persistent ligand-independent activity of dopamine D1/D5 receptor signaling, involving a cyclic adenosine monophosphate (cAMP) pathway. Dysregulation of membrane ion channels that results in increased inward-rectifier potassium type 2 (Kir2) and decreased leak currents causes the burst pause activity, which can be dampened by pharmacological inhibition of intracellular cAMP. A single challenge with a dyskinetogenic dose of levodopa is sufficient to induce persistent cholinergic interneuron burst-pause firing. CONCLUSION Our data unravel a mechanism causing aberrant cholinergic interneuron burst-pause activity in parkinsonian mice treated with levodopa. Targeting D5-cAMP signaling and the regulation of Kir2 and leak channels may alleviate parkinsonism and dyskinesia by restoring normal cholinergic interneuron function. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Agostina Monica Stahl
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Yimy Amarillo
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, CONICET, 9500 Ezequiel Bustillo Avenue, San Carlos de Bariloche, Rio Negro, 8402, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay Street, Buenos Aires, 1121, Argentina
| |
Collapse
|