1
|
Oliveira ECS, Hu P, Shook DR, Wallrabe H, Townsend NN, Bingham GC, Barker TH, Hinton BT. Biomechanical properties of the capsule and extracellular matrix play a major role during the Wolffian/epididymal duct development. Andrology 2025; 13:650-659. [PMID: 38988181 PMCID: PMC11717982 DOI: 10.1111/andr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The epididymis is important for sperm maturation and without its proper development, male infertility will result. Biomechanical properties of tissues/organs play key roles during their morphogenesis, including the Wolffian duct. It is hypothesized that structural/bulk stiffness of the capsule and mesenchyme/extracellular matrix that surround the duct is a major biomechanical property that regulates Wolffian duct morphogenesis. These data will provide key information as to the mechanisms that regulate the development of this important organ. OBJECTIVES To measure the structural/bulk stiffness in Pascals (force/area) of the capsule and the capsule and mesenchyme together that surrounds the Wolffian duct during the development. To examine the relative membrane tension of mesenchymal cells during the Wolffian duct development. Since Ptk7 was previously shown to regulate ECM integrity and Wolffian duct elongation and coiling, the hypothesis that Ptk7 regulates structural/bulk stiffness and mesenchymal cell membrane tension was tested. MATERIALS AND METHODS Atomic force microscopy and a microsquisher compression apparatus were used to measure the structural stiffness. Biomechanical properties within the membranes of cells within the capsule and mesenchyme were examined using a membrane-tension fluorescent probe. RESULTS AND DISCUSSION The structural stiffness (Pascals) of the capsule and underlying mesenchyme was relatively constant during development, with a significant increase in the capsule at the later stages. However, this increase may reflect the ECM and associated mesenchyme being close to the capsule because the coiling of the duct pushed or compressed them into that space. Keeping the capsule and mesenchyme/ECM at constant stiffness would ensure that the duct will continue to coil under similar biomechanical forces throughout the development. Cells within the capsule and mesenchyme at different Wolffian duct regions during the development had varying degrees of membrane lipid tension. It is hypothesized that the dynamic changes ensure the duct is kept at a constant stiffness regardless of any external forces. Loss of Ptk7 resulted in an increase in stiffness at E18.5, which was presumable due to the loss of integrity of the ECM within the mesenchyme. CONCLUSION Biomechanical properties of the capsule and the mesenchyme/extracellular matrix that surround the Wolffian duct play an important role toward Wolffian duct morphogenesis, thereby allowing for the proper development of the epididymis and subsequent male fertility.
Collapse
Affiliation(s)
- Erika C. S. Oliveira
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ping Hu
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - David R. Shook
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Horst Wallrabe
- W.M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Natalie N. Townsend
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Grace C. Bingham
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Barry T. Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia School of Medicine, Pinn Hall, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Aslemarz A, Fagotto-Kaufmann M, Ruppel A, Fagotto-Kaufmann C, Balland M, Lasko P, Fagotto F. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells. EMBO J 2025; 44:75-106. [PMID: 39572744 PMCID: PMC11696905 DOI: 10.1038/s44318-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025] Open
Abstract
EpCAM and its close relative Trop2 are well-known cell surface markers of carcinoma, but their potential role in cancer metastasis remains unclear. They are known, however, to downregulate myosin-dependent contractility, a key parameter involved in adhesion and migration. We investigate here the morphogenetic impact of the high EpCAM and Trop2 levels typically found in epithelial breast cancer cells, using spheroids of MCF7 cells as an in vitro model. Intriguingly, EpCAM depletion stimulated spheroid cohesive spreading, while Trop2 depletion had the opposite effect. Combining cell biological and biophysical approaches, we demonstrate that while EpCAM and Trop2 both contribute to moderate cell contractility, their depletions differentially impact on the process of "wetting" a substrate, here both matrix and neighboring cells, by affecting the balance of cortical tension at cell and tissue interfaces. These distinct phenotypes can be explained by partial enrichment at specific interfaces. Our data are consistent with the EpCAM-Trop2 pair acting as a mechanostat that tunes adhesive and migratory behaviours.
Collapse
Affiliation(s)
- Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
- SGS, Mississauga, ON, L5T 1W8, Canada
| | - Marie Fagotto-Kaufmann
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Department of Neurobiology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Artur Ruppel
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
| | | | - Martial Balland
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
| | - Paul Lasko
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
| | - François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France.
| |
Collapse
|
3
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. Biol Open 2024; 13:bio060615. [PMID: 39162010 PMCID: PMC11360141 DOI: 10.1242/bio.060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.
Collapse
Affiliation(s)
- Tien Comlekoglu
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Bette J. Dzamba
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Gustavo G. Pacheco
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Shook
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - James A. Glazier
- Department of Intelligent Systems Engineering and The Biocomplexity Institute, Indiana University, Bloomington, IN 47408, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W. DeSimone
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Nakazato Y, Otaki JM. Socket Array Irregularities and Wing Membrane Distortions at the Eyespot Foci of Butterfly Wings Suggest Mechanical Signals for Color Pattern Determination. INSECTS 2024; 15:535. [PMID: 39057268 PMCID: PMC11276954 DOI: 10.3390/insects15070535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
6
|
Davidson LA. Gears of life: A primer on the simple machines that shape the embryo. Curr Top Dev Biol 2024; 160:87-109. [PMID: 38937032 DOI: 10.1016/bs.ctdb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A simple machine is a basic of device that takes mechanical advantage to apply force. Animals and plants self-assemble through the operation of a wide variety of simple machines. Embryos of different species actuate these simple machines to drive the geometric transformations that convert a disordered mass of cells into organized structures with discrete identities and function. These transformations are intrinsically coupled to sequential and overlapping steps of self-organization and self-assembly. The processes of self-organization have been explored through the molecular composition of cells and tissues and their information networks. By contrast, efforts to understand the simple machines underlying self-assembly must integrate molecular composition with the physical principles of mechanics. This primer is concerned with effort to elucidate the operation of these machines, focusing on the "problem" of morphogenesis. Advances in understanding self-assembly will ultimately connect molecular-, subcellular-, cellular- and meso-scale functions of plants and animals and their ability to interact with larger ecologies and environmental influences.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Luu O, Barua D, Winklbauer R. Cell contacts and pericellular matrix in the Xenopus gastrula chordamesoderm. PLoS One 2024; 19:e0297420. [PMID: 38346069 PMCID: PMC10861091 DOI: 10.1371/journal.pone.0297420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Convergent extension of the chordamesoderm is the best-examined gastrulation movement in Xenopus. Here we study general features of cell-cell contacts in this tissue by combining depletion of adhesion factors C-cadherin, Syndecan-4, fibronectin, and hyaluronic acid, the analysis of respective contact width spectra and contact angles, and La3+ staining of the pericellular matrix. We provide evidence that like in other gastrula tissues, cell-cell adhesion in the chordamesoderm is largely mediated by different types of pericellular matrix. Specific glycocalyx structures previously identified in Xenopus gastrula tissues are absent in chordamesoderm but other contact types like 10-20 nm wide La3+ stained structures are present instead. Knockdown of any of the adhesion factors reduces the abundance of cell contacts but not the average relative adhesiveness of the remaining ones: a decrease of adhesiveness at low contact widths is compensated by an increase of contact widths and an increase of adhesiveness proportional to width. From the adhesiveness-width relationship, we derive a model of chordamesoderm cell adhesion that involves the interdigitation of distinct pericellular matrix units. Quantitative description of pericellular matrix deployment suggests that reduced contact abundance upon adhesion factor depletion is correlated with excessive accumulation of matrix material in non-adhesive gaps and the loss of some contact types.
Collapse
Affiliation(s)
- Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562601. [PMID: 37904937 PMCID: PMC10614848 DOI: 10.1101/2023.10.16.562601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce an agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the relative contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism to increase migratory speed of the tissue. Summary Statement We present a novel Cellular-Potts model of collective cell migration to investigate the relative roles of cohesotaxis, tissue geometry, and cell intercalation on migration velocity of Xenopus mesendoderm.
Collapse
|
9
|
Kato S, Inomata H. Blastopore gating mechanism to regulate extracellular fluid excretion. iScience 2023; 26:106585. [PMID: 37192977 PMCID: PMC10182286 DOI: 10.1016/j.isci.2023.106585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
Fluid uptake and efflux play roles in early embryogenesis as well as in adult homeostasis. Multicellular organisms have two main pathways for fluid movement: cellular-level, such as transcellular and paracellular pathways, and tissue-level, involving muscle contraction. Interestingly, early Xenopus embryos with immature functional muscles excrete archenteron fluid via a tissue-level mechanism that opens the blastopore through a gating mechanism that is unclear. Using microelectrodes, we show that the archenteron has a constant fluid pressure and as development progress the blastopore pressure resistance decreases. Combining physical perturbations and imaging analyses, we found that the pushing force exerted by the circumblastoporal collars (CBCs) at the slit periphery regulates pressure resistance. We show that apical constriction at the blastopore dorsoventral ends contributes to this pushing force, and relaxation of ventral constriction causes fluid excretion. These results indicate that actomyosin contraction mediates temporal control of tissue-level blastopore opening and fluid excretion in early Xenopus embryos.
Collapse
Affiliation(s)
- Soichiro Kato
- Laboratory for Axial Pattern Dynamics, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Developmental Morphogeometry, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Corresponding author
| | - Hidehiko Inomata
- Laboratory for Axial Pattern Dynamics, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Corresponding author
| |
Collapse
|
10
|
Van Itallie ES, Field CM, Mitchison TJ, Kirschner MW. Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands. Dev Biol 2023; 493:67-79. [PMID: 36334838 PMCID: PMC10194025 DOI: 10.1016/j.ydbio.2022.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Wnt11 family proteins are ligands that activate a type of Dishevelled-mediated, non-canonical Wnt signaling pathway. Loss of function causes defects in gastrulation and/or anterior-posterior axis extension in all vertebrates. Non-mammalian vertebrate genomes encode two Wnt11 family proteins whose distinct functions have been unclear. We knocked down Wnt11b and Wnt11, separately and together, in Xenopus laevis. Single morphants exhibited very similar phenotypes of delayed blastopore closure, but they had different phenotypes during the tailbud period. In response to their very similar gastrulation phenotypes, we chose to characterize dual morphants. Using dark field illuminated time-lapse imaging and kymograph analysis, we identified a failure of dorsal blastopore lip maturation that correlated with slower blastopore closure and failure to internalize the endoderm at the dorsal blastopore lip. We connected these externally visible phenotypes to cellular events in the internal tissues by imaging intact fixed embryos stained for anillin and microtubules. We found that the initial extension of the archenteron is correlated with blastopore lip maturation, and archenteron extension is dramatically disrupted by decreased Wnt11 family signaling. We were aided in our interpretation of the immunofluorescence by the novel, membrane proximal location of the cleavage furrow protein anillin in the epithelium of the blastopore lip and early archenteron.
Collapse
Affiliation(s)
| | - Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|