1
|
Greene R. TCF4's role in sleep/wake state and sleep function. Sleep 2025; 48:zsaf049. [PMID: 39994872 PMCID: PMC12068050 DOI: 10.1093/sleep/zsaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Indexed: 02/26/2025] Open
Affiliation(s)
- Robert Greene
- Department of Psychiatry, Peter O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Menarchek BJ, Bridi MCD. Latent mechanisms of plasticity are upregulated during sleep. Curr Opin Neurobiol 2025; 93:103029. [PMID: 40267630 DOI: 10.1016/j.conb.2025.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to serve an important role in learning and memory, but the mechanisms by which sleep promotes plasticity remain unclear. Even in the absence of plastic changes in neuronal function, many molecular, cellular, and physiological processes linked to plasticity are upregulated during sleep. Therefore, sleep may be a state in which latent plasticity mechanisms are poised to respond following novel experiences during prior wake. Many of these plasticity-related processes can promote both synaptic strengthening and weakening. Signaling pathways activated during sleep may interact with complements of proteins, determined by the content of prior waking experience, to establish the polarity of plasticity. Furthermore, precise reactivation of neuronal spiking patterns during sleep may interact with ongoing neuromodulatory, dendritic, and network activity to strengthen and weaken synapses. In this review, we will discuss the idea that sleep elevates latent plasticity mechanisms, which drive bidirectional plasticity depending on prior waking experience.
Collapse
Affiliation(s)
- Benjamin J Menarchek
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Michelle C D Bridi
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
3
|
Yang S, Zhu Y, Xiao J, Yan L, Zhuang X, Li Q, Li Y, Xie J, Du G, Zhou F, Fan G, Feng C. Hippocampal MEF2C phosphorylation mediates synaptic plasticity in lead-induced learning and memory impairments. Toxicology 2025; 512:154082. [PMID: 39947421 DOI: 10.1016/j.tox.2025.154082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Lead (Pb), an ancient metallic environmental pollutant, has received widespread attention and has been strictly controlled, but current findings have found the hazards of Pb to be much higher than previously estimated. Pb exposure can lead to memory impairment. However, the underlying molecular mechanisms have not been fully elucidated. Dynamic changes in dendritic spines form the structural basis of memory, and MEF2C, a key regulator of dendritic plasticity, plays an important role in hippocampus-dependent learning and memory. This study focused on the role of ERK-induced MEF2C phosphorylation in Pb-induced learning and memory impairments. A rat model of Pb exposure from the embryo to adolescence and the model of Pb exposure in PC12 cells were established. The results showed that Pb exposure reduced the phosphorylation level of MEF2C in the rat hippocampus by affecting the expression of ERK5. In addition, it reduced the expression of MEF2C at the translation stage, which affected its transcriptional ability and led to abnormal expression of the downstream factor ARC, causing alterations in neuronal dendritic plasticity and affecting its memory ability. Further experiments showed that regulating the phosphorylation level of MEF2C could affect neurite growth in PC12 cells exposed to Pb. Our findings demonstrate that Pb exposure may contribute to memory impairment by affecting MEF2C and its phosphorylation levels, resulting in altered dendritic plasticity.
Collapse
Affiliation(s)
- Shuo Yang
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yanhui Zhu
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jinmei Xiao
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Lingyu Yan
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xuebing Zhuang
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qi Li
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yue Li
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jie Xie
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guihua Du
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fankun Zhou
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guangqin Fan
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Chang Feng
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
4
|
Vogt KE, Kulkarni A, Pandey R, Dehnad M, Konopka G, Greene RW. Sleep need driven oscillation of glutamate synaptic phenotype. eLife 2025; 13:RP98280. [PMID: 39950545 PMCID: PMC11828481 DOI: 10.7554/elife.98280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.
Collapse
Affiliation(s)
- Kaspar E Vogt
- International Institute of Integrative Sleep Medicine, University of TsukubaTsukubaJapan
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Richa Pandey
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Mantre Dehnad
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Genevieve Konopka
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Robert W Greene
- International Institute of Integrative Sleep Medicine, University of TsukubaTsukubaJapan
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
5
|
Nakata S, Fujiyama T, Asano F, Komiya H, Hotta-Hirashima N, Juichi M, Komine D, Kakizaki M, Ikkyu A, Mizuno S, Takahashi S, Miyoshi C, Funato H, Yanagisawa M. Partial activation of salt-inducible kinase 3 delays the onset of wakefulness and alleviates hypersomnia due to the lack of protein kinase A-phosphorylation site. Sleep 2025; 48:zsae279. [PMID: 39656684 PMCID: PMC11807893 DOI: 10.1093/sleep/zsae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY OBJECTIVES Sleep/wakefulness is regulated by intracellular signaling pathways composed of protein kinases such as salt-inducible kinase 3 (Sik3). Sik3-deficiency in neurons decreases nonrapid eye movement (NREM) sleep time and electroencephalogram (EEG) delta power during NREM sleep, while Sik3Slp mice lacking a protein kinase A (PKA)-phosphorylation site, S551, show hypersomnia phenotype. In this study, we examined how a phosphomimetic mutation of the 221st threonine residue (T221E), which provides a partial (weak) constitutive activity of the kinase, affects sleep/wakefulness and circadian behavior. We also examined the effect of T221E substitution on the hypersomnia phenotype of Sik3Slp mice. METHODS We examined the sleep/wake behavior of heterozygous and homozygous Sik3T221E mice and Sik3T221E;Slp mice using EEG and electromyogram recording. We also examined the circadian behavior of Sik3T221E mice using a running wheel under the light-dark cycle and constant darkness. RESULTS Heterozygous and homozygous Sik3T221E mice showed normal sleep time and sleep homeostatic responses. Homozygous Sik3T221E mice exhibited a delayed onset of wakefulness at the early dark phase and longer circadian periods. Sik3T221E;Slp mice showed decreased NREM sleep time and homeostatic responses compared to Sik3Slp mice. CONCLUSIONS Our results suggest that the peak onset of wakefulness is sensitive to disturbed kinase activity of SIK3, and the relationship between phosphorylation at T221 and S551 is critical for regulating sleep need.
Collapse
Affiliation(s)
- Shinya Nakata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruna Komiya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Komine
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Bridi MCD, Peixoto L. Excitatory/Inhibitory imbalance as a mechanism linking autism and sleep problems. Curr Opin Neurobiol 2025; 90:102968. [PMID: 39754885 PMCID: PMC11839321 DOI: 10.1016/j.conb.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Sleep problems occur more frequently in individuals with autism spectrum disorder (ASD) than in typically developing individuals, and recent studies support a genetic link between ASD and sleep disturbances. However, it remains unclear how sleep problems may be mechanistically connected to ASD phenotypes. A longstanding hypothesis posits that an imbalance between excitatory and inhibitory (E/I) signaling in the brain underlies the behavioral characteristics of ASD. In recent years, emerging evidence has shown that regulation of the E/I ratio is coupled to sleep/wake states in wild-type animal models. In this review, we will explore the idea of altered E/I regulation over the sleep/wake cycle as a mechanism bridging sleep disruption and behavioral phenotypes in ASD.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University Spokane, 99202, USA.
| |
Collapse
|
7
|
Vogt K, Kulkarni A, Pandey R, Dehnad M, Konopka G, Greene R. Sleep need driven oscillation of glutamate synaptic phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578985. [PMID: 38370691 PMCID: PMC10871195 DOI: 10.1101/2024.02.05.578985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occurs mediated by sleep-dependent oscillation of glutamate-synaptic phenotypes.
Collapse
Affiliation(s)
- K.E. Vogt
- International Institute of Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - A. Kulkarni
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - R. Pandey
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - M. Dehnad
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - G. Konopka
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - R.W. Greene
- International Institute of Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
8
|
Nakata S, Iwasaki K, Funato H, Yanagisawa M, Ozaki H. Neuronal subtype-specific transcriptomic changes in the cerebral neocortex associated with sleep pressure. Neurosci Res 2024; 207:13-25. [PMID: 38537682 DOI: 10.1016/j.neures.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.
Collapse
Affiliation(s)
- Shinya Nakata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Ward C, Sjulson L, Batista-Brito R. The function of Mef2c toward the development of excitatory and inhibitory cortical neurons. Front Cell Neurosci 2024; 18:1465821. [PMID: 39376213 PMCID: PMC11456456 DOI: 10.3389/fncel.2024.1465821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are caused by abnormal brain development, leading to altered brain function and affecting cognition, learning, self-control, memory, and emotion. NDDs are often demarcated as discrete entities for diagnosis, but empirical evidence indicates that NDDs share a great deal of overlap, including genetics, core symptoms, and biomarkers. Many NDDs also share a primary sensitive period for disease, specifically the last trimester of pregnancy in humans, which corresponds to the neonatal period in mice. This period is notable for cortical circuit assembly, suggesting that deficits in the establishment of brain connectivity are likely a leading cause of brain dysfunction across different NDDs. Regulators of gene programs that underlie neurodevelopment represent a point of convergence for NDDs. Here, we review how the transcription factor MEF2C, a risk factor for various NDDs, impacts cortical development. Cortical activity requires a precise balance of various types of excitatory and inhibitory neuron types. We use MEF2C loss-of-function as a study case to illustrate how brain dysfunction and altered behavior may derive from the dysfunction of specific cortical circuits at specific developmental times.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Ford K, Zuin E, Righelli D, Medina E, Schoch H, Singletary K, Muheim C, Frank MG, Hicks SC, Risso D, Peixoto L. A global transcriptional atlas of the effect of acute sleep deprivation in the mouse frontal cortex. iScience 2024; 27:110752. [PMID: 39280614 PMCID: PMC11402219 DOI: 10.1016/j.isci.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the molecular consequences of SD is of fundamental importance in biology. In this study, we present the first simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts. As a resource we provide extensive characterizations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.
Collapse
Affiliation(s)
- Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Elena Zuin
- Department of Biology, University of Padova, 35131 Padova, Veneto, Italy
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Hannah Schoch
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Christine Muheim
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
11
|
Squarcio F, Tononi G, Cirelli C. Effects of non-rapid eye movement sleep on the cortical synaptic expression of GluA1-containing AMPA receptors. Eur J Neurosci 2024; 60:3961-3972. [PMID: 38973508 DOI: 10.1111/ejn.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.
Collapse
Affiliation(s)
- Fabio Squarcio
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Ford K, Zuin E, Righelli D, Medina E, Schoch H, Singletary K, Muheim C, Frank MG, Hicks SC, Risso D, Peixoto L. A Global Transcriptional Atlas of the Effect of Sleep Deprivation in the Mouse Frontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569011. [PMID: 38076891 PMCID: PMC10705260 DOI: 10.1101/2023.11.28.569011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the molecular consequences of SD is of fundamental importance in neuroscience. In this study, we present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of the effects of SD in the mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of thousands of transcripts. At both the global and cell-type specific level, SD has a large repressive effect on transcription, down-regulating thousands of genes and transcripts; underscoring the importance of accounting for the effects of sleep loss in transcriptome studies of brain function. As a resource we provide extensive characterizations of cell types, genes, transcripts and pathways affected by SD; as well as tutorials for data analysis.
Collapse
Affiliation(s)
- Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Elena Zuin
- Department of Biology, University of Padova, Italy
- Department of Statistical Sciences, University of Padova, Italy
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, Italy
| | - Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Hannah Schoch
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Christine Muheim
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, MD, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Italy
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| |
Collapse
|
13
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
14
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
16
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Sleep and wake cycles dynamically modulate hippocampal inhibitory synaptic plasticity. PLoS Biol 2022; 20:e3001812. [PMID: 36318572 PMCID: PMC9624398 DOI: 10.1371/journal.pbio.3001812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 01/01/2023] Open
Abstract
Sleep is an essential process that consolidates memories by modulating synapses through poorly understood mechanisms. Here, we report that GABAergic synapses in hippocampal CA1 pyramidal neurons undergo daily rhythmic alterations. Specifically, wake inhibits phasic inhibition, whereas it promotes tonic inhibition compared to sleep. We further utilize a model of chemically induced inhibitory long-term potentiation (iLTP) to examine inhibitory plasticity. Intriguingly, while CA1 pyramidal neurons in both wake and sleep mice undergo iLTP, wake mice have a much higher magnitude. We also employ optogenetics and observe that inhibitory inputs from parvalbumin-, but not somatostatin-, expressing interneurons contribute to dynamic iLTP during sleep and wake. Finally, we demonstrate that synaptic insertion of α5-GABAA receptors underlies the wake-specific enhancement of iLTP at parvalbumin-synapses, which is independent of time of the day. These data reveal a previously unappreciated daily oscillation of inhibitory LTP in hippocampal neurons and uncover a dynamic contribution of inhibitory synapses in memory mechanisms across sleep and wake.
Collapse
|
18
|
McChesney N, Barth JL, Rumschlag JA, Tan J, Harrington AJ, Noble KV, McClaskey CM, Elvis P, Vaena SG, Romeo MJ, Harris KC, Cowan CW, Lang H. Peripheral Auditory Nerve Impairment in a Mouse Model of Syndromic Autism. J Neurosci 2022; 42:8002-8018. [PMID: 36180228 PMCID: PMC9617620 DOI: 10.1523/jneurosci.0253-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.
Collapse
Affiliation(s)
- Nathan McChesney
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Junying Tan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Adam J Harrington
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Carolyn M McClaskey
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Silvia G Vaena
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Martin J Romeo
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kelly C Harris
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
19
|
Jha PK, Valekunja UK, Ray S, Nollet M, Reddy AB. Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep. Commun Biol 2022; 5:846. [PMID: 35986171 PMCID: PMC9391396 DOI: 10.1038/s42003-022-03800-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus) exhibited diverse transcriptional responses to sleep need. Sleep restriction modulates astrocyte-neuron crosstalk and sleep need enhances expression of specific sets of transcription factors in different brain regions. In cortex, we also interrogated the proteome of two major cell types: astrocytes and neurons. Sleep deprivation differentially alters the expression of proteins in astrocytes and neurons. Similarly, phosphoproteomics revealed large shifts in cell-type-specific protein phosphorylation. Our results indicate that sleep need regulates transcriptional, translational, and post-translational responses in a cell-specific manner.
Collapse
Affiliation(s)
- Pawan K Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Utham K Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandipan Ray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Mathieu Nollet
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Akhilesh B Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Archer SN, Möller-Levet CS, Laing EE, Dijk DJ. Mistimed sleep and waking activity in humans disrupts glucocorticoid signalling transcripts and SP1, but not plasma cortisol rhythms. Front Physiol 2022; 13:946444. [PMID: 36060675 PMCID: PMC9428761 DOI: 10.3389/fphys.2022.946444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cortisol is a robust circadian signal that synchronises peripheral circadian clocks with the central clock in the suprachiasmatic nucleus via glucocorticoid receptors that regulate peripheral gene expression. Misalignment of the cortisol rhythm with the sleep–wake cycle, as occurs in shift work, is associated with negative health outcomes, but underlying molecular mechanisms remain largely unknown. We experimentally induced misalignment between the sleep–wake cycle and melatonin and cortisol rhythms in humans and measured time series blood transcriptomics while participants slept in-phase and out-of-phase with the central clock. The cortisol rhythm remained unchanged, but many glucocorticoid signalling transcripts were disrupted by mistimed sleep. To investigate which factors drive this dissociation between cortisol and its signalling pathways, we conducted bioinformatic and temporal coherence analyses. We found that glucocorticoid signalling transcripts affected by mistimed sleep were enriched for binding sites for the transcription factor SP1. Furthermore, changes in the timing of the rhythms of SP1 transcripts, a major regulator of transcription, and changes in the timing of rhythms in transcripts of the glucocorticoid signalling pathways were closely associated. Associations between the rhythmic changes in factors that affect SP1 expression and its activity, such as STAT3, EP300, HSP90AA1, and MAPK1, were also observed. We conclude that plasma cortisol rhythms incompletely reflect the impact of mistimed sleep on glucocorticoid signalling pathways and that sleep–wake driven changes in SP1 may mediate disruption of these pathways. These results aid understanding of mechanisms by which mistimed sleep affects health.
Collapse
Affiliation(s)
- Simon N. Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: Simon N. Archer,
| | - Carla S. Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Emma E. Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| |
Collapse
|
21
|
Bjorness TE, Greene RW. Arousal-Mediated Sleep Disturbance Persists During Cocaine Abstinence in Male Mice. Front Neurosci 2022; 16:868049. [PMID: 35812231 PMCID: PMC9260276 DOI: 10.3389/fnins.2022.868049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute cocaine disturbs sleep on a dose-dependent basis; however, the consequences of chronic cocaine remain unclear. While the arousal promotion following cocaine has been well-established, effects of cocaine on sleep after termination of chronic cocaine exposure appear variable in human subjects with few studies in non-human subjects. Here, a within-subjects design (outcomes normalized to baseline, undisturbed behavior) and between-subjects design (repeated experimenter-administered cocaine vs. experimenter-administered saline) was used to investigate sleep homeostasis and sleep/waking under repeated cocaine/saline exposure and prolonged forced abstinence conditions in mice. Overall, during the forced abstinence period increases in arousal, as determined by sleep latency and gamma energy, persisted for 2 weeks. However, the sleep response to externally enforced sleep deprivation was unchanged suggesting that sleep disruptions during the forced abstinence period were driven by enhancement of arousal in the absence of changes in sleep homeostatic responses.
Collapse
Affiliation(s)
- Theresa E. Bjorness
- Research Service, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Theresa E. Bjorness,
| | - Robert W. Greene
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
23
|
Fu X, Yao T, Chen X, Li H, Wu J. MEF2C gene variations are associated with ADHD in the Chinese Han population: a case-control study. J Neural Transm (Vienna) 2022; 129:431-439. [PMID: 35357565 DOI: 10.1007/s00702-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Myocyte enhancer factor 2C (MEF2C) is associated with hyperactivity and might be a novel risk gene for susceptibility to attention deficit hyperactivity disorder (ADHD). Therefore, this study aimed to explore the association between MEF2C genetic variants and ADHD in the Chinese Han population. A total of 215 patients with ADHD and 233 controls were recruited for this study. The Swanson, Nolan, and Pelham version IV questionnaire was used to evaluate the clinical features of ADHD. In silico analysis was used to annotate the biological functions of the promising single nucleotide polymorphisms. Our findings indicated that MEF2C rs587490 was significantly associated with ADHD in the multiplicative model (OR = 0.640, p = 0.002). Participants with the rs587490 TT allele exhibited less hyperactivity/impulsivity than those with the rs587490 CC allele. Furthermore, the expression quantitative trait loci analysis suggested that rs587490 could regulate the gene expression of MEF2C in the hippocampus, putamen, thalamus, and frontal white matter. Our study concluded that the MEF2C rs587490 T allele is significantly associated with a reduced risk of ADHD in the Chinese Han population, which provides new insight into the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
24
|
Lohmann S, Grigoletto J, Bernis ME, Pesch V, Ma L, Reithofer S, Tamgüney G. Ischemic stroke causes Parkinson's disease-like pathology and symptoms in transgenic mice overexpressing alpha-synuclein. Acta Neuropathol Commun 2022; 10:26. [PMID: 35209932 PMCID: PMC8867857 DOI: 10.1186/s40478-022-01327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The etiology of Parkinson's disease is poorly understood and is most commonly associated with advancing age, genetic predisposition, or environmental toxins. Epidemiological findings suggest that patients have a higher risk of developing Parkinson's disease after ischemic stroke, but this potential causality lacks mechanistic evidence. We investigated the long-term effects of ischemic stroke on pathogenesis in hemizygous TgM83 mice, which express human α-synuclein with the familial A53T mutation without developing any neuropathology or signs of neurologic disease for more than 600 days. We induced transient focal ischemia by middle cerebral artery occlusion in 2-month-old TgM83+/- mice and monitored their behavior and health status for up to 360 days post surgery. Groups of mice were sacrificed at 14, 30, 90, 180, and 360 days after surgery for neuropathological analysis of their brains. Motor deficits first appeared 6 months after focal ischemia and worsened until 12 months afterward. Immunohistochemical analysis revealed ischemia-induced neuronal loss in the infarct region and astrogliosis and microgliosis indicative of an inflammatory response, which was most pronounced at 14 days post surgery. Infarct volume and inflammation gradually decreased in size and severity until 180 days post surgery. Surprisingly, neuronal loss and inflammation were increased again by 360 days post surgery. These changes were accompanied by a continuous increase in α-synuclein aggregation, its neuronal deposition, and a late loss of dopaminergic neurons in the substantia nigra, which we detected at 360 days post surgery. Control animals that underwent sham surgery without middle cerebral artery occlusion showed no signs of disease or neuropathology. Our results establish a mechanistic link between ischemic stroke and Parkinson's disease and provide an animal model for studying possible interventions.
Collapse
Affiliation(s)
- Stephanie Lohmann
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Jessica Grigoletto
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Maria Eugenia Bernis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Verena Pesch
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Liang Ma
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Sara Reithofer
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Weiss JT, Donlea JM. Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss. Front Behav Neurosci 2022; 15:777799. [PMID: 35126067 PMCID: PMC8810646 DOI: 10.3389/fnbeh.2021.777799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep is a vital physiological state that has been broadly conserved across the evolution of animal species. While the precise functions of sleep remain poorly understood, a large body of research has examined the negative consequences of sleep loss on neural and behavioral plasticity. While sleep disruption generally results in degraded neural plasticity and cognitive function, the impact of sleep loss can vary widely with age, between individuals, and across physiological contexts. Additionally, several recent studies indicate that sleep loss differentially impacts distinct neuronal populations within memory-encoding circuitry. These findings indicate that the negative consequences of sleep loss are not universally shared, and that identifying conditions that influence the resilience of an organism (or neuron type) to sleep loss might open future opportunities to examine sleep's core functions in the brain. Here, we discuss the functional roles for sleep in adaptive plasticity and review factors that can contribute to individual variations in sleep behavior and responses to sleep loss.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Jeffrey M. Donlea
| |
Collapse
|
26
|
Loschky SS, Spano GM, Marshall W, Schroeder A, Nemec KM, Schiereck SS, de Vivo L, Bellesi M, Banningh SW, Tononi G, Cirelli C. Ultrastructural effects of sleep and wake on the parallel fiber synapses of the cerebellum. eLife 2022; 11:84199. [PMID: 36576248 PMCID: PMC9797193 DOI: 10.7554/elife.84199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.
Collapse
Affiliation(s)
- Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - William Marshall
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States,Department of Mathematics and Statistics, Brock UniversitySt. CatharinesCanada
| | - Andrea Schroeder
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey Marie Nemec
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
27
|
Renormalizing synapses in sleep: The clock is ticking. Biochem Pharmacol 2021; 191:114533. [PMID: 33771494 DOI: 10.1016/j.bcp.2021.114533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Sleep has been hypothesized to renormalize synapses potentiated in wakefulness. This is proposed to lead to a net reduction in synaptic strength after sleep in brain areas like the cortex and hippocampus. Biological clocks, however, exert independent effects on these synapses that may explain some of the reported differences after wake and sleep. These include changes in synaptic morphology, molecules and efficacy. In this commentary, I discuss why no firm conclusions should be drawn concerning the role of sleep in synaptic renormalization until the role of circadian rhythms are isolated and determined.
Collapse
|
28
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
29
|
Sleep Deprivation Enhances Cocaine Conditioned Place Preference in an Orexin Receptor-Modulated Manner. eNeuro 2020; 7:ENEURO.0283-20.2020. [PMID: 33139319 PMCID: PMC7768278 DOI: 10.1523/eneuro.0283-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022] Open
Abstract
Drug addiction and withdrawal are characterized by sleep disruption, but the effects of sleep disruption on these states are not well characterized. Sleep deprivation (SD) immediately before the cocaine conditioning trials enhanced cocaine conditioned place preference (CPP) in a dose-dependent manner (3, 8 mg/kg but not 15 mg/kg) in mice. SD immediately before the postconditioning test also enhanced cocaine CPP preference in a dose-dependent manner (8 mg/kg, but not 3, 15 mg/kg). Exposure to orexin-receptor antagonism (1 mg/kg SB 334867, an orexin 1 receptor antagonist; OX1R) just before cocaine-conditioning trials or the postconditioning test attenuated SD-enhanced preference. This suggests a potential therapeutic role for the manipulation of the orexin system to mitigate drug seeking, especially in the context of sleep loss before drug exposure.
Collapse
|
30
|
Bjorness TE, Kulkarni A, Rybalchenko V, Suzuki A, Bridges C, Harrington AJ, Cowan CW, Takahashi JS, Konopka G, Greene RW. An essential role for MEF2C in the cortical response to loss of sleep in mice. eLife 2020; 9:e58331. [PMID: 32851972 PMCID: PMC7490011 DOI: 10.7554/elife.58331] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal activity and gene expression in response to the loss of sleep can provide a window into the enigma of sleep function. Sleep loss is associated with brain differential gene expression, an increase in pyramidal cell mEPSC frequency and amplitude, and a characteristic rebound and resolution of slow wave sleep-slow wave activity (SWS-SWA). However, the molecular mechanism(s) mediating the sleep-loss response are not well understood. We show that sleep-loss regulates MEF2C phosphorylation, a key mechanism regulating MEF2C transcriptional activity, and that MEF2C function in postnatal excitatory forebrain neurons is required for the biological events in response to sleep loss in C57BL/6J mice. These include altered gene expression, the increase and recovery of synaptic strength, and the rebound and resolution of SWS-SWA, which implicate MEF2C as an essential regulator of sleep function.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Research Service, North Texas VA Health Care SystemDallasUnited States
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Volodymyr Rybalchenko
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ayako Suzuki
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Catherine Bridges
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Adam J Harrington
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Genevieve Konopka
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Robert W Greene
- Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- International Institute of Integrative Sleep Medicine, University of TsukubaTsukubaJapan
| |
Collapse
|