1
|
Espinoza ME, Swing AM, Elghraoui A, Modlin SJ, Valafar F. Interred mechanisms of resistance and host immune evasion revealed through network-connectivity analysis of M. tuberculosis complex graph pangenome. mSystems 2025; 10:e0049924. [PMID: 40261029 PMCID: PMC12013269 DOI: 10.1128/msystems.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/16/2024] [Indexed: 04/24/2025] Open
Abstract
Mycobacterium tuberculosis complex successfully adapts to environmental pressures through mechanisms of rapid adaptation which remain poorly understood despite knowledge gained through decades of research. In this study, we used 110 reference-quality, complete de novo assembled, long-read sequenced clinical genomes to study patterns of structural adaptation through a graph-based pangenome analysis, elucidating rarely studied mechanisms that enable enhanced clinical phenotypes offering a novel perspective to the species' adaptation. Across isolates, we identified a pangenome of 4,325 genes (3,767 core and 558 accessory), revealing 290 novel genes, and a substantially more complete account of difficult-to-sequence esx/pe/pgrs/ppe genes. Seventy-four percent of core genes were deemed non-essential in vitro, 38% of which support the pathogen's survival in vivo, suggesting a need to broaden current perspectives on essentiality. Through information-theoretic analysis, we reveal the ppe genes that contribute most to the species' diversity-several with known consequences for antigenic variation and immune evasion. Construction of a graph pangenome revealed topological variations that implicate genes known to modulate host immunity (Rv0071-73, Rv2817c, cas2), defense against phages/viruses (cas2, csm6, and Rv2817c-2821c), and others associated with host tissue colonization. Here, the prominent trehalose transport pathway stands out for its involvement in caseous granuloma catabolism and the development of post-primary disease. We show paralogous duplications of genes implicated in bedaquiline (mmpL5 in all L1 isolates) and ethambutol (embC-A) resistance, with a paralogous duplication of its regulator (embR) in 96 isolates. We provide hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can escape detection by molecular diagnostics.IMPORTANCEM. tuberculosis complex (MTBC) has killed over a billion people in the past 200 years alone and continues to kill nearly 1.5 million annually. The pathogen has a versatile ability to diversify under immune and drug pressure and survive, even becoming antibiotic persistent or resistant in the face of harsh chemotherapy. For proper diagnosis and design of an appropriate treatment regimen, a full understanding of this diversification and its clinical consequences is desperately needed. A mechanism of diversification that is rarely studied systematically is MTBC's ability to structurally change its genome. In this article, we have de novo assembled 110 clinical genomes (the largest de novo assembled set to date) and performed a pangenomic analysis. Our pangenome provides structural variation-based hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can compromise molecular diagnostics and lead to further emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Monica E. Espinoza
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Ashley M. Swing
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- San Diego State University/University of California, San Diego | Joint Doctoral Program in Public Health (Global Health), San Diego, California, USA
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California, USA
| | - Samuel J. Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Patel L, Ailloud F, Suerbaum S, Josenhans C. Single-base resolution quantitative genome methylation analysis in the model bacterium Helicobacter pylori by enzymatic methyl sequencing (EM-Seq) reveals influence of strain, growth phase, and methyl homeostasis. BMC Biol 2024; 22:125. [PMID: 38807090 PMCID: PMC11134628 DOI: 10.1186/s12915-024-01921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Bacterial epigenetics is a rapidly expanding research field. DNA methylation by diverse bacterial methyltransferases (MTases) contributes to genomic integrity and replication, and many recent studies extended MTase function also to global transcript regulation and phenotypic variation. Helicobacter pylori is currently one of those bacterial species which possess the highest number and the most variably expressed set of DNA MTases. Next-generation sequencing technologies can directly detect DNA base methylation. However, they still have limitations in their quantitative and qualitative performance, in particular for cytosine methylation. RESULTS As a complementing approach, we used enzymatic methyl sequencing (EM-Seq), a technology recently established that has not yet been fully evaluated for bacteria. Thereby, we assessed quantitatively, at single-base resolution, whole genome cytosine methylation for all methylated cytosine motifs in two different H. pylori strains and isogenic MTase mutants. EM-Seq reliably detected both m5C and m4C methylation. We demonstrated that three different active cytosine MTases in H. pylori provide considerably different levels of average genome-wide single-base methylation, in contrast to isogenic mutants which completely lost specific motif methylation. We found that strain identity and changed environmental conditions, such as growth phase and interference with methyl donor homeostasis, significantly influenced quantitative global and local genome-wide methylation in H. pylori at specific motifs. We also identified significantly hyper- or hypo-methylated cytosines, partially linked to overlapping MTase target motifs. Notably, we revealed differentially methylated cytosines in genome-wide coding regions under conditions of methionine depletion, which can be linked to transcript regulation. CONCLUSIONS This study offers new knowledge on H. pylori global and local genome-wide methylation and establishes EM-Seq for quantitative single-site resolution analyses of bacterial cytosine methylation.
Collapse
Affiliation(s)
- Lubna Patel
- Max von Pettenkofer Institute, Chair for Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Florent Ailloud
- Max von Pettenkofer Institute, Chair for Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Chair for Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Chair for Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
3
|
Roodsant TJ, van der Putten B, Brizuela J, Coolen JPM, Baltussen TJH, Schipper K, Pannekoek Y, van der Ark KCH, Schultsz C. The streptococcal phase-variable type I restriction modification system SsuCC20p dictates the methylome of Streptococcus suis impacting the transcriptome and virulence in a zebrafish larvae infection model. mBio 2024; 15:e0225923. [PMID: 38063379 PMCID: PMC10790761 DOI: 10.1128/mbio.02259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Phase variation allows a single strain to produce phenotypic diverse subpopulations. Phase-variable restriction modification (RM) systems are systems that allow for such phase variation via epigenetic regulation of gene expression levels. The phase-variable RM system SsuCC20p was found in multiple streptococcal species and was acquired by an emerging zoonotic lineage of Streptococcus suis. We show that the phase variability of SsuCC20p is dependent on a recombinase encoded within the SsuCC20p locus. We characterized the genome methylation profiles of the different phases of SsuCC20p and demonstrated the consequential impact on the transcriptome and virulence in a zebrafish infection model. Acquiring mobile genetic elements containing epigenetic regulatory systems, like phase-variable RM systems, enables bacterial pathogens to produce diverse phenotypic subpopulations that are better adapted to specific (host) environments encountered during infection.
Collapse
Affiliation(s)
- Thomas J. Roodsant
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Boas van der Putten
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaime Brizuela
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kees C. H. van der Ark
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Conkle-Gutierrez D, Ramirez-Busby SM, Gorman BM, Elghraoui A, Hoffner S, Elmaraachli W, Valafar F. Novel and reported compensatory mutations in rpoABC genes found in drug resistant tuberculosis outbreaks. Front Microbiol 2024; 14:1265390. [PMID: 38260909 PMCID: PMC10800992 DOI: 10.3389/fmicb.2023.1265390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Rifampicin (RIF) is a key first-line drug used to treat tuberculosis, a primarily pulmonary disease caused by Mycobacterium tuberculosis. RIF resistance is caused by mutations in rpoB, at the cost of slower growth and reduced transcription efficiency. Antibiotic resistance to RIF is prevalent despite this fitness cost. Compensatory mutations in rpoABC genes have been shown to alleviate the fitness cost of rpoB:S450L, explaining how RIF resistant strains harbor this mutation can spread so rapidly. Unfortunately, the full set of RIF compensatory mutations is still unknown, particularly those compensating for rarer RIF resistance mutations. Objectives We performed an association study on a globally representative set of 4,309 whole genome sequenced clinical M. tuberculosis isolates to identify novel putative compensatory mutations, determine the prevalence of known and previously reported putative compensatory mutations, and determine which RIF resistance markers associate with these compensatory mutations. Results and conclusions Of the 1,079 RIF resistant isolates, 638 carried previously reported putative and high-probability compensatory mutations. Our strict criteria identified 46 additional mutations in rpoABC for which no strong prior evidence of their compensatory role exists. Of these, 35 have previously been reported. As such, our independent corroboration adds to the mounting evidence that these 35 also carry a compensatory role. The remaining 11 are novel putative compensatory markers, reported here for the first time. Six of these 11 novel putative compensatory mutations had two or more mutation events. Most compensatory mutations appear to be specifically compensating for the fitness loss due to rpoB:S450L. However, an outbreak of 22 closely related isolates each carried three rpoB mutations, the rare RIFR markers D435G and L452P and the putative compensatory mutation I1106T. This suggests compensation may require specific combinations of rpoABC mutations. Here, we report only mutations that met our very strict criteria. It is highly likely that many additional rpoABC mutations compensate for rare resistance-causing mutations and therefore did not carry the statistical power to be reported here. These findings aid in the identification of RIF resistant M. tuberculosis strains with restored fitness, which pose a greater risk of causing resistant outbreaks.
Collapse
Affiliation(s)
- Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sarah M. Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Bria M. Gorman
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sven Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Wael Elmaraachli
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, CA, United States
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| |
Collapse
|
5
|
Budzinski L, von Goetze V, Chang HD. Single-cell phenotyping of bacteria combined with deep sequencing for improved contextualization of microbiome analyses. Eur J Immunol 2024; 54:e2250337. [PMID: 37863831 DOI: 10.1002/eji.202250337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
Great effort was made to characterize the bacterial communities inhabiting the human body as a factor in disease, resulting in the realization that a wide spectrum of diseases is associated with an altered composition of the microbiome. However, the identification of disease-relevant bacteria has been hindered by the high cross-sectional diversity of individual microbiomes, and in most cases, it remains unclear whether the observed alterations are cause or consequence of disease. Hence, innovative analysis approaches are required that enable inquiries of the microbiome beyond mere taxonomic cataloging. This review highlights the utility of microbiota flow cytometry, a single-cell analysis platform to directly interrogate cellular interactions, cell conditions, and crosstalk with the host's immune system within the microbiome to take into consideration the role of microbes as critical interaction partners of the host and the spectrum of microbiome alterations, beyond compositional changes. In conjunction with advanced sequencing approaches it could reveal the genetic potential of target bacteria and advance our understanding of taxonomic diversity and gene usage in the context of the microenvironment. Single-cell bacterial phenotyping has the potential to change our perspective on the human microbiome and empower microbiome research for the development of microbiome-based therapy approaches and personalized medicine.
Collapse
Affiliation(s)
- Lisa Budzinski
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| | - Victoria von Goetze
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| |
Collapse
|
6
|
Mvubu NE, Jacoby K. Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon 2023; 9:e22611. [PMID: 38046135 PMCID: PMC10686871 DOI: 10.1016/j.heliyon.2023.e22611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Kieran Jacoby
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
7
|
Tisza MJ, Smith DDN, Clark AE, Youn JH, Khil PP, Dekker JP. Roving methyltransferases generate a mosaic epigenetic landscape and influence evolution in Bacteroides fragilis group. Nat Commun 2023; 14:4082. [PMID: 37429841 DOI: 10.1038/s41467-023-39892-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Three types of DNA methyl modifications have been detected in bacterial genomes, and mechanistic studies have demonstrated roles for DNA methylation in physiological functions ranging from phage defense to transcriptional control of virulence and host-pathogen interactions. Despite the ubiquity of methyltransferases and the immense variety of possible methylation patterns, epigenomic diversity remains unexplored for most bacterial species. Members of the Bacteroides fragilis group (BFG) reside in the human gastrointestinal tract as key players in symbiotic communities but also can establish anaerobic infections that are increasingly multi-drug resistant. In this work, we utilize long-read sequencing technologies to perform pangenomic (n = 383) and panepigenomic (n = 268) analysis of clinical BFG isolates cultured from infections seen at the NIH Clinical Center over four decades. Our analysis reveals that single BFG species harbor hundreds of DNA methylation motifs, with most individual motif combinations occurring uniquely in single isolates, implying immense unsampled methylation diversity within BFG epigenomes. Mining of BFG genomes identified more than 6000 methyltransferase genes, approximately 1000 of which were associated with intact prophages. Network analysis revealed substantial gene flow among disparate phage genomes, implying a role for genetic exchange between BFG phages as one of the ultimate sources driving BFG epigenome diversity.
Collapse
Affiliation(s)
- Michael J Tisza
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiol, Baylor College of Medicine, Houston, TX, USA
| | - Derek D N Smith
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Wildlife Toxicology Research Section, Ottawa, ON, Canada
| | - Andrew E Clark
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 (BETHESDA, MD.) 2022; 13:6858946. [PMID: 36454087 PMCID: PMC9911048 DOI: 10.1093/g3journal/jkac310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
DNA methylation in bacteria frequently serves as a simple immune system, allowing recognition of DNA from foreign sources, such as phages or selfish genetic elements. However, DNA methylation also affects other cell phenotypes in a heritable manner (i.e. epigenetically). While there are several examples of methylation affecting transcription in an epigenetic manner in highly localized contexts, it is not well-established how frequently methylation serves a more general epigenetic function over larger genomic scales. To address this question, here we use Oxford Nanopore sequencing to profile DNA modification marks in three natural isolates of Escherichia coli. We first identify the DNA sequence motifs targeted by the methyltransferases in each strain. We then quantify the frequency of methylation at each of these motifs across the entire genome in different growth conditions. We find that motifs in specific regions of the genome consistently exhibit high or low levels of methylation. Furthermore, we show that there are replicable and consistent differences in methylated regions across different growth conditions. This suggests that during growth, E. coli transiently differentiate into distinct methylation states that depend on the growth state, raising the possibility that measuring DNA methylation alone can be used to infer bacterial growth states without additional information such as transcriptome or proteome data. These results show the utility of using Oxford Nanopore sequencing as an economic means to infer DNA methylation status. They also provide new insights into the dynamics of methylation during bacterial growth and provide evidence of differentiated cell states, a transient analog to what is observed in the differentiation of cell types in multicellular organisms.
Collapse
Affiliation(s)
- Georgia L Breckell
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| | - Olin K Silander
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| |
Collapse
|
9
|
DNA Methyltransferase Regulates Nitric Oxide Homeostasis and Virulence in a Chronically Adapted Pseudomonas aeruginosa Strain. mSystems 2022; 7:e0043422. [PMID: 36106744 PMCID: PMC9600465 DOI: 10.1128/msystems.00434-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Opportunistic pathogens such as Pseudomonas aeruginosa adapt their genomes rapidly during chronic infections. Understanding their epigenetic regulation may provide biomarkers for diagnosis and reveal novel regulatory mechanisms. We performed single-molecule real-time sequencing (SMRT-seq) to characterize the methylome of a chronically adapted P. aeruginosa clinical strain, TBCF10839. Two N6-methyladenine (6mA) methylation recognition motifs (RCCANNNNNNNTGAR and TRGANNNNNNTGC [modification sites are in bold]) were identified and predicted as new type I methylation sites using REBASE analysis. We confirmed that the motif TRGANNNNNNTGC was methylated by the methyltransferase (MTase) M.PaeTBCFII, according to methylation sensitivity assays in vivo and vitro. Transcriptomic analysis showed that a ΔpaeTBCFIIM knockout mutant significantly downregulated nitric oxide reductase (NOR) regulation and expression of coding genes such as nosR and norB, which contain methylated motifs in their promoters or coding regions. The ΔpaeTBCFIIM strain exhibited reduced intercellular survival capacity in NO-producing RAW264.7 macrophages and attenuated virulence in a Galleria mellonella infection model; the complemented strain recovered these defective phenotypes. Further phylogenetic analysis demonstrated that homologs of M.PaeTBCFII occur frequently in P. aeruginosa as well as other bacterial species. Our work therefore provided new insights into the relationship between DNA methylation, NO detoxification, and bacterial virulence, laying a foundation for further exploring the molecular mechanism of DNA methyltransferase in regulating the pathogenicity of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen which causes acute and chronic infections that are difficult to treat. Comparative genomic analysis has showed broad genome diversity among P. aeruginosa clinical strains and revealed their different regulatory traits compared to the laboratory strains. While current investigation of the epigenetics of P. aeruginosa is still lacking, understanding epigenetic regulation may provide biomarkers for diagnosis and facilitate development of novel therapies. Denitrification capability is critical for microbial versatility in response to different environmental stress conditions, including the bacterial infection process, where nitric oxide (NO) can be generated by phagocytic cells. The denitrification regulation mechanisms have been studied intensively at genetic and biochemical levels. However, there is very little evidence about the epigenetic regulation of bacterial denitrification mechanism. P. aeruginosa TBCF10839 is a chronically host-adapted strain isolated from a cystic fibrosis (CF) patient with special antiphagocytosis characteristics. Here, we investigated the regulatory effect of an orphan DNA MTase, M.PaeTBCFII, in P. aeruginosa TBCF10839. We demonstrated that the DNA MTase regulates the transcription of denitrification genes represented by NOR and affects antiphagocytic ability in bacteria. In silico analysis suggested that DNA methylation modification may enhance gene expression by affecting the binding of transacting factors such as DNR and RpoN. Our findings not only deepen the understanding of the role of DNA MTase in transcriptional regulation in P. aeruginosa but also provide a theoretical foundation for the in-depth study of the molecular mechanism of the epigenetic regulation on denitrification, virulence, and host-pathogen interaction.
Collapse
|
10
|
Integration of the Salmonella Typhimurium Methylome and Transcriptome Reveals That DNA Methylation and Transcriptional Regulation Are Largely Decoupled under Virulence-Related Conditions. mBio 2022; 13:e0346421. [PMID: 35658533 PMCID: PMC9239280 DOI: 10.1128/mbio.03464-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite being in a golden age of bacterial epigenomics, little work has systematically examined the plasticity and functional impacts of the bacterial DNA methylome. Here, we leveraged single-molecule, real-time sequencing (SMRT-seq) to examine the m6A DNA methylome of two Salmonella enterica serovar Typhimurium strains: 14028s and a ΔmetJ mutant with derepressed methionine metabolism, grown in Luria broth or medium that simulates the intracellular environment. We found that the methylome is remarkably static: >95% of adenosine bases retain their methylation status across conditions. Integration of methylation with transcriptomic data revealed limited correlation between changes in methylation and gene expression. Further, examination of the transcriptome in ΔyhdJ bacteria lacking the m6A methylase with the most dynamic methylation pattern in our data set revealed little evidence of YhdJ-mediated gene regulation. Curiously, despite G(m6A)TC motifs being particularly resistant to change across conditions, incorporating dam mutants into our analyses revealed two examples where changes in methylation and transcription may be linked across conditions. This includes the novel finding that the ΔmetJ motility defect may be partially driven by hypermethylation of the chemotaxis gene tsr. Together, these data redefine the S. Typhimurium epigenome as a highly stable system that has rare but important roles in transcriptional regulation. Incorporating these lessons into future studies will be critical as we progress through the epigenomic era.
Collapse
|
11
|
Smith TM, Youngblom MA, Kernien JF, Mohamed MA, Fry SS, Bohr LL, Mortimer TD, O'Neill MB, Pepperell CS. Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis. eLife 2022; 11:e78454. [PMID: 35726854 PMCID: PMC9213004 DOI: 10.7554/elife.78454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a leading cause of death due to infectious disease. TB is not traditionally associated with biofilms, but M. tb biofilms are linked with drug and immune tolerance and there is increasing recognition of their contribution to the recalcitrance of TB infections. Here, we used M. tb experimental evolution to investigate this complex phenotype and identify candidate loci controlling biofilm formation. We identified novel candidate loci, adding to our understanding of the genetic architecture underlying M. tb biofilm development. Under selective pressure to grow as a biofilm, regulatory mutations rapidly swept to fixation and were associated with changes in multiple traits, including extracellular matrix production, cell size, and growth rate. Genetic and phenotypic paths to enhanced biofilm growth varied according to the genetic background of the parent strain, suggesting that epistatic interactions are important in M. tb adaptation to changing environments.
Collapse
Affiliation(s)
| | - Madison A Youngblom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - John F Kernien
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Mohamed A Mohamed
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Sydney S Fry
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Mary B O'Neill
- Laboratoire de Biochimie (LBC), Chimie Biologie et Innovation, ESPCI Paris, PSL UniversitéParisFrance
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
12
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
13
|
Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc Natl Acad Sci U S A 2022; 119:2112608119. [PMID: 35193958 PMCID: PMC8872769 DOI: 10.1073/pnas.2112608119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis (Mtb) ESX-3 type VII secretion system plays a critical role in iron acquisition. Infection of mice with highly attenuated Mtb deletion mutants lacking esxG or esxH, genes encoding key ESX-3 substrates, unexpectedly yielded suppressor mutants with restored capacity to grow in vivo and in vitro in the absence of iron supplementation. Whole-genome sequencing identified two mechanisms of suppression, the disruption of a transcriptional repressor that regulates expression of an ESX-3 paralogous region encoding EsxR and EsxS, and a massive 38- to 60-fold gene amplification of this same region. These data are significant because they reveal a previously unrecognized iron acquisition regulon and inform mechanisms of Mtb chromosome evolution. Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving “accordion-type” amplification.
Collapse
|
14
|
Chu H, Hu Y, Zhang B, Sun Z, Zhu B. DNA Methyltransferase HsdM Induce Drug Resistance on Mycobacterium tuberculosis via Multiple Effects. Antibiotics (Basel) 2021; 10:antibiotics10121544. [PMID: 34943756 PMCID: PMC8698436 DOI: 10.3390/antibiotics10121544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Besides the genomic variants, epigenetic mechanisms such as DNA methylation also have an effect on drug resistance. This study aimed to investigate the methylomes of totally/extensively drug-resistant M. tuberculosis clinical isolates using the PacBio single-molecule real-time technology. The results showed they were almost the same as the pan-susceptible ones. Genetics and bioinformatics analysis confirmed three DNA methyltransferases-MamA, MamB, and HsdM. Moreover, anti-tuberculosis drug treatment did not change the methylomes. In addition, the knockout of the DNA methyltransferase hsdM gene in the extensively drug-resistant clinical isolate 11826 revealed that the motifs of GTAYN4ATC modified by HsdM were completely demethylated. Furthermore, the results of the methylated DNA target analysis found that HsdM was mainly involved in redox-related pathways, especially the prodrug isoniazid active protein KatG. HsdM also targeted three drug-targeted genes, eis, embB, and gyrA, and three drug transporters (Rv0194, Rv1410, and Rv1877), which mildly affected the drug susceptibility. The overexpression of HsdM in M. smegmatis increased the basal mutation rate. Our results suggested that DNA methyltransferase HsdM affected the drug resistance of M. tuberculosis by modulating the gene expression of redox, drug targets and transporters, and gene mutation.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Yongfei Hu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhaogang Sun
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
- Correspondence: (Z.S.); (B.Z.)
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (Z.S.); (B.Z.)
| |
Collapse
|
15
|
Hu X, Zhou X, Yin T, Chen K, Hu Y, Zhu B, Mi K. The Mycobacterial DNA Methyltransferase HsdM Decreases Intrinsic Isoniazid Susceptibility. Antibiotics (Basel) 2021; 10:antibiotics10111323. [PMID: 34827261 PMCID: PMC8614780 DOI: 10.3390/antibiotics10111323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a serious infectious disease worldwide. Multidrug-resistant TB (MDR-TB) remains a global problem, and the understanding of this resistance is incomplete. Studies suggested that DNA methylation promotes bacterial adaptability to antibiotic treatment, but the role of mycobacterial HsdM in drug susceptibility has not been explored. Here, we constructed an inactivated Mycobacterium bovis (BCG) strain, ΔhsdM. ΔhsdM shows growth advantages over wild-type BCG under isoniazid treatment and hypoxia-induced stress. Using high-precision PacBio single-molecule real-time sequencing to compare the ΔhsdM and BCG methylomes, we identified 219 methylated HsdM substrates. Bioinformatics analysis showed that most HsdM-modified genes were enriched in respiration- and energy-related pathways. qPCR showed that HsdM-modified genes directly affected their own transcription, indicating an altered redox regulation. The use of the latent Wayne model revealed that ΔhsdM had growth advantages over wild-type BCG and that HsdM regulated trcR mRNA levels, which may be crucial in regulating transition from latency to reactivation. We found that HsdM regulated corresponding transcription levels via gene methylation; thus, altering the mycobacterial redox status and decreasing the bacterial susceptibility to isoniazid, which is closely correlated with the redox status. Our results provide valuable insight into DNA methylation on drug susceptibility.
Collapse
Affiliation(s)
- Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
| | - Xintong Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
| | - Tong Yin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
| | - Keyu Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.H.); (X.Z.); (T.Y.); (K.C.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: ; Tel.: +86-01-64806082
| |
Collapse
|
16
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|
17
|
Payelleville A, Brillard J. Novel Identification of Bacterial Epigenetic Regulations Would Benefit From a Better Exploitation of Methylomic Data. Front Microbiol 2021; 12:685670. [PMID: 34054792 PMCID: PMC8160106 DOI: 10.3389/fmicb.2021.685670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation can be part of epigenetic mechanisms, leading to cellular subpopulations with heterogeneous phenotypes. While prokaryotic phenotypic heterogeneity is of critical importance for a successful infection by several major pathogens, the exact mechanisms involved in this phenomenon remain unknown in many cases. Powerful sequencing tools have been developed to allow the detection of the DNA methylated bases at the genome level, and they have recently been extensively applied on numerous bacterial species. Some of these tools are increasingly used for metagenomics analysis but only a limited amount of the available methylomic data is currently being exploited. Because newly developed tools now allow the detection of subpopulations differing in their genome methylation patterns, it is time to emphasize future strategies based on a more extensive use of methylomic data. This will ultimately help to discover new epigenetic gene regulations involved in bacterial phenotypic heterogeneity, including during host-pathogen interactions.
Collapse
Affiliation(s)
- Amaury Payelleville
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France.,Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
18
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|