1
|
Loharch S, Medina-Trillo C, Sedgwick DM, Barrio P, Fustero S, Gallego J. Bilaterally Substituted Terphenyl Molecules Efficiently Inhibit the Interaction between a Protein and a Fully Buried α-Helix in the Malaria Parasite Motor System. J Am Chem Soc 2025; 147:15917-15922. [PMID: 40316890 DOI: 10.1021/jacs.4c15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Protein-protein interactions (PPI) frequently involve α-helices and are challenging targets for small-molecule drugs. Here we report the design, synthesis and evaluation of new PPI inhibitors based on a bilaterally substituted p-terphenyl scaffold. The side groups of this scaffold are projected in a broad spatial angle and reproduced the interactions of the myosin A (MyoA) α-helix wrapped by the Myosin Tail Interacting Protein (MTIP) in Plasmodium parasites causing malaria. Fluorescence, calorimetry, and NMR spectroscopy analyses revealed that the terphenyl molecules recognized the MyoA binding site within the MTIP and were capable of displacing the α-helix from its protein receptor and triggering comparable conformational changes in MTIP. The MTIP affinity of the best inhibitor was strikingly close to that exhibited by the MyoA helix. These data indicate that a small-molecule terphenyl compound can efficiently mimic a four-times heavier polypeptide. These molecules may serve as probes for PPIs involving deeply buried α-helices.
Collapse
Affiliation(s)
- Saurabh Loharch
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Cristina Medina-Trillo
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Daniel M Sedgwick
- Universidad de Valencia, Avda. V. A. Estellés s/n, 46100 Burjassot, Spain
| | - Pablo Barrio
- Universidad de Valencia, Avda. V. A. Estellés s/n, 46100 Burjassot, Spain
| | - Santos Fustero
- Universidad de Valencia, Avda. V. A. Estellés s/n, 46100 Burjassot, Spain
| | - José Gallego
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
2
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
3
|
Melbacke A, Salhotra A, Ušaj M, Månsson A. Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications. Sci Rep 2024; 14:22768. [PMID: 39354041 PMCID: PMC11445438 DOI: 10.1038/s41598-024-73457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.
Collapse
Affiliation(s)
- Andreas Melbacke
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
4
|
Auguin D, Robert-Paganin J, Réty S, Kikuti C, David A, Theumer G, Schmidt AW, Knölker HJ, Houdusse A. Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction. Nat Commun 2024; 15:4885. [PMID: 38849353 PMCID: PMC11161628 DOI: 10.1038/s41467-024-47587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024] Open
Abstract
Inherited cardiomyopathies are common cardiac diseases worldwide, leading in the late stage to heart failure and death. The most promising treatments against these diseases are small molecules directly modulating the force produced by β-cardiac myosin, the molecular motor driving heart contraction. Omecamtiv mecarbil and Mavacamten are two such molecules that completed phase 3 clinical trials, and the inhibitor Mavacamten is now approved by the FDA. In contrast to Mavacamten, Omecamtiv mecarbil acts as an activator of cardiac contractility. Here, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All-atom molecular dynamics simulations reveal how these molecules produce distinct effects in motor allostery thus impacting force production in opposite way. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.
Collapse
Affiliation(s)
- Daniel Auguin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, 75248, France
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, 75248, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, 75248, France
| | - Amandine David
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, 75248, France
| | | | | | | | - Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, Paris, 75248, France.
| |
Collapse
|
5
|
Auguin D, Robert-Paganin J, Réty S, Kikuti C, David A, Theumer G, Schmidt AW, Knölker HJ, Houdusse A. Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite antagonistic effects in heart contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567213. [PMID: 38014327 PMCID: PMC10680719 DOI: 10.1101/2023.11.15.567213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Inherited cardiomyopathies are amongst the most common cardiac diseases worldwide, leading in the late-stage to heart failure and death. The most promising treatments against these diseases are small-molecules directly modulating the force produced by β-cardiac myosin, the molecular motor driving heart contraction. Two of these molecules that produce antagonistic effects on cardiac contractility have completed clinical phase 3 trials: the activator Omecamtiv mecarbil and the inhibitor Mavacamten. In this work, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All atoms molecular dynamics simulations reveal how these molecules can have antagonistic impact on the allostery of the motor by comparing β-cardiac myosin in the apo form or bound to Omecamtiv mecarbil or Mavacamten. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.
Collapse
Affiliation(s)
- Daniel Auguin
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258 Paris cedex 05, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207, INRAE- USC1328, F-45067 Orléans, France
| | - Julien Robert-Paganin
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258 Paris cedex 05, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Carlos Kikuti
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258 Paris cedex 05, France
| | - Amandine David
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258 Paris cedex 05, France
| | - Gabriele Theumer
- Faculty of Chemistry, TU Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Arndt W Schmidt
- Faculty of Chemistry, TU Dresden, Bergstraße 66, 01069 Dresden, Germany
| | | | - Anne Houdusse
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258 Paris cedex 05, France
| |
Collapse
|
6
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Moussaoui D, Robblee JP, Robert-Paganin J, Auguin D, Fisher F, Fagnant PM, Macfarlane JE, Schaletzky J, Wehri E, Mueller-Dieckmann C, Baum J, Trybus KM, Houdusse A. Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design. Nat Commun 2023; 14:3463. [PMID: 37308472 PMCID: PMC10261046 DOI: 10.1038/s41467-023-38976-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.
Collapse
Affiliation(s)
- Dihia Moussaoui
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - James P Robblee
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
| | - Daniel Auguin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE, USC1328, Orléans, France
| | - Fabio Fisher
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Patricia M Fagnant
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Jill E Macfarlane
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Christoph Mueller-Dieckmann
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
- School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kathleen M Trybus
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA.
| | - Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France.
| |
Collapse
|
9
|
Analysis of Plasmodium falciparum myosin B ATPase activity and structure in complex with the calmodulin-like domain of its light chain MLC-B. J Biol Chem 2022; 298:102634. [PMID: 36273584 PMCID: PMC9692044 DOI: 10.1016/j.jbc.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.
Collapse
|
10
|
McMillan SN, Scarff CA. Cryo-electron microscopy analysis of myosin at work and at rest. Curr Opin Struct Biol 2022; 75:102391. [DOI: 10.1016/j.sbi.2022.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
|
11
|
Ripp J, Smyrnakou X, Neuhoff M, Hentzschel F, Frischknecht F. Phosphorylation of myosin A regulates gliding motility and is essential for
Plasmodium
transmission. EMBO Rep 2022; 23:e54857. [PMID: 35506479 PMCID: PMC9253774 DOI: 10.15252/embr.202254857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.
Collapse
Affiliation(s)
- Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Xanthoula Smyrnakou
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Marie‐Therese Neuhoff
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Franziska Hentzschel
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
12
|
Vahokoski J, Calder LJ, Lopez AJ, Molloy JE, Kursula I, Rosenthal PB. High-resolution structures of malaria parasite actomyosin and actin filaments. PLoS Pathog 2022; 18:e1010408. [PMID: 35377914 PMCID: PMC9037914 DOI: 10.1371/journal.ppat.1010408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/25/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.
Collapse
Affiliation(s)
- Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justin E. Molloy
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Arwansyah A, Arif AR, Syahputra G, Sukarti S, Kurniawan I. Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1935926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arwansyah Arwansyah
- Department of Chemistry, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - Abdur Rahman Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - Gita Syahputra
- Research Center for Biotechnology, Indonesian Institute of Science, Bogor, Indonesia
| | - Sukarti Sukarti
- Department of Chemistry, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - Isman Kurniawan
- School of Computing, Telkom University, Bandung, Indonesia
- Research Center of Human Centric Engineering, Telkom University, Bandung, Indonesia
| |
Collapse
|
14
|
Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. mSphere 2021; 6:6/3/e00823-20. [PMID: 34011689 PMCID: PMC8265671 DOI: 10.1128/msphere.00823-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii uses an unusual form of substrate-dependent gliding motility to invade cells of its hosts and to disseminate throughout the body during infection. It is well established that a myosin motor consisting of a class XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the IMC-anchored protein, TgGAP45. Therefore, the binding of TgMLC1 to TgGAP45 is considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and we show here that palmitoylation occurs on two N-terminal cysteine residues, C8 and C11. Mutations that block TgMLC1 palmitoylation completely abrogate the binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in these mutant parasites has little effect on their ability to initiate or sustain movement. These results question a key tenet of the current model of apicomplexan motility and suggest that our understanding of gliding motility in this important group of human and animal pathogens is not yet complete. IMPORTANCE Gliding motility plays a central role in the life cycle of T. gondii and other apicomplexan parasites. The myosin motor thought to power motility is essential for virulence but distinctly different from the myosins found in humans. Consequently, an understanding of the mechanism(s) underlying parasite motility and the role played by this unusual myosin may reveal points of vulnerability that can be targeted for disease prevention or treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural component of the motility machinery have little impact on parasite motility. This finding runs counter to predictions of the current, widely held “linear motor” model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces necessary to move into, out of, and between cells of the hosts they infect.
Collapse
|
15
|
Houdusse A. Biological nanomotors, driving forces of life. C R Biol 2021; 343:53-78. [PMID: 33988324 DOI: 10.5802/crbiol.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Life is driven by awe-inspiring coordinated movements observed in cells and tissues. In each cell, nm-size molecular motor proteins contribute to these movements as they power numerous mechanical processes with precision and complex orchestration. For the multiple functions that an eukaryotic cell accomplish, motility is essential both at molecular and cellular scales. Tissue morphogenesis, cell migration, cell division or cell differentiation are all controlled by the precise action of such nanomotors that work on cytoskeletal tracks using ATP as fuel. The study of motility has a long history and scientists of all disciplines have contributed to its understanding. The first part of this review compares myosin and kinesin motors to describe the principles underlying how motors convert chemical energy into mechanical movement. In a second part, I will describe how sequence differences selected through evolution can lead to distinct force production output despite a common mechanism. Motors within a superfamily can thus carry out distinct functions in cells. Such differences give rise to their individual, specific motility properties, including reversal of directionality or ability to organize cytoskeletal tracks. The power of structural biology to reveal unexpected and surprising structures, with certainty when visualized at atomic resolution, has been a great advantage for this field. The critical insights gained from the structures can be carefully tested with functional experiments, leading to progress in defining the role motors play in cells. Last, I will describe how targeting these motors can be beneficial for human health. Allosteric sites for specific small molecules can act as activators or inhibitors of the force produced by these nanomotors. While frequent sites of mutations in these motors can lead to disease phenotypes, high therapeutic potential of allosteric effectors is now established for heart muscle diseases and should be extended to treat other pathologies.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248 Paris, France
| |
Collapse
|
16
|
Robert-Paganin J, Xu XP, Swift MF, Auguin D, Robblee JP, Lu H, Fagnant PM, Krementsova EB, Trybus KM, Houdusse A, Volkmann N, Hanein D. The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity. Nat Commun 2021; 12:1892. [PMID: 33767187 PMCID: PMC7994445 DOI: 10.1038/s41467-021-22093-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, moves by an atypical process called gliding motility. Actomyosin interactions are central to gliding motility. However, the details of these interactions remained elusive until now. Here, we report an atomic structure of the divergent Plasmodium falciparum actomyosin system determined by electron cryomicroscopy at the end of the powerstroke (Rigor state). The structure provides insights into the detailed interactions that are required for the parasite to produce the force and motion required for infectivity. Remarkably, the footprint of the myosin motor on filamentous actin is conserved with respect to higher eukaryotes, despite important variability in the Plasmodium falciparum myosin and actin elements that make up the interface. Comparison with other actomyosin complexes reveals a conserved core interface common to all actomyosin complexes, with an ancillary interface involved in defining the spatial positioning of the motor on actin filaments. Plasmodium falciparum moves by an atypical process called gliding motility which comprises of atypical myosin A (PfMyoA) and filaments of the dynamic and divergent PfActin-1 (PfAct1). Here authors present the cryo-EM structure of PfMyoA bound to filamentous PfAct1 stabilized with jasplakinolide and provide insights into the interactions that are required for the parasite to produce the force and motion required for infectivity.
Collapse
Affiliation(s)
| | | | | | - Daniel Auguin
- Structural Motility, Institut Curie, CNRS, UMR 144, Paris, France.,Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE, USC1328, Orléans, France
| | - James P Robblee
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Hailong Lu
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Patricia M Fagnant
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Elena B Krementsova
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Anne Houdusse
- Structural Motility, Institut Curie, CNRS, UMR 144, Paris, France.
| | - Niels Volkmann
- Scintillon Institute, San Diego, CA, USA. .,Structural Image Analysis Unit, Department of Structural Biology & Chemistry, Institut Pasteur, Paris, France.
| | - Dorit Hanein
- Scintillon Institute, San Diego, CA, USA.,Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology & Chemistry, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Blake TCA, Haase S, Baum J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog 2020; 16:e1009007. [PMID: 33104759 PMCID: PMC7644091 DOI: 10.1371/journal.ppat.1009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|