1
|
Kolibius LD, Josselyn SA, Hanslmayr S. On the origin of memory neurons in the human hippocampus. Trends Cogn Sci 2025; 29:421-433. [PMID: 40037964 DOI: 10.1016/j.tics.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
The hippocampus is essential for episodic memory, yet its coding mechanism remains debated. In humans, two main theories have been proposed: one suggests that concept neurons represent specific elements of an episode, while another posits a conjunctive code, where index neurons code the entire episode. Here, we integrate new findings of index neurons in humans and other animals with the concept-specific memory framework, proposing that concept neurons evolve from index neurons through overlapping memories. This process is supported by engram literature, which posits that neurons are allocated to a memory trace based on excitability and that reactivation induces excitability. By integrating these insights, we connect two historically disparate fields of neuroscience: engram research and human single neuron episodic memory research.
Collapse
Affiliation(s)
- Luca D Kolibius
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Simon Hanslmayr
- School of Psychology and Neuroscience and Centre for Neurotechnology, University of Glasgow, Glasgow, UK; Centre for Neurotechnology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
3
|
Lovatt C, O'Sullivan TJ, Luis CODS, Ryan TJ, Frank RAW. Memory engram synapse 3D molecular architecture visualized by cryoCLEM-guided cryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632151. [PMID: 39829918 PMCID: PMC11741270 DOI: 10.1101/2025.01.09.632151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Memory is incorporated into the brain as physicochemical changes to engram cells. These are neuronal populations that form complex neuroanatomical circuits, are modified by experiences to store information, and allow for memory recall. At the molecular level, learning modifies synaptic communication to rewire engram circuits, a mechanism known as synaptic plasticity. However, despite its functional role on memory formation, the 3D molecular architecture of synapses within engram circuits is unknown. Here, we demonstrate the use of engram labelling technology and cryogenic correlated light and electron microscopy (cryoCLEM)-guided cryogenic electron tomography (cryoET) to visualize the in-tissue 3D molecular architecture of engram synapses of a contextual fear memory within the CA1 region of the mouse hippocampus. Engram cells exhibited structural diversity of macromolecular constituents and organelles in both pre- and postsynaptic compartments and within the synaptic cleft, including in clusters of membrane proteins, synaptic vesicle occupancy, and F-actin copy number. This 'engram to tomogram' approach, harnessing in vivo functional neuroscience and structural biology, provides a methodological framework for testing fundamental molecular plasticity mechanisms within engram circuits during memory encoding, storage and recall.
Collapse
Affiliation(s)
- Charlie Lovatt
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Thomas J O'Sullivan
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| | - René A W Frank
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Morè L, Privitera L, Lopes M, Arthur JSC, Lauterborn JC, Corrêa SAL, Frenguelli BG. MSK1 is required for the experience- and ampakine-dependent enhancement of spatial reference memory and reversal learning and for the induction of Arc and BDNF. Neuropharmacology 2024; 261:110110. [PMID: 39128584 DOI: 10.1016/j.neuropharm.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Marcia Lopes
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Sonia A L Corrêa
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK; Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | | |
Collapse
|
5
|
Abstract
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.
Collapse
Affiliation(s)
- James D O'Leary
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Rasmus Bruckner
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Livia Autore
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of MelbourneMelbourneAustralia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR)TorontoCanada
| |
Collapse
|
6
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
7
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Jiang S, Yang Z, Aton SJ. Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome. Cell Rep 2024; 43:114266. [PMID: 38787724 PMCID: PMC11910971 DOI: 10.1016/j.celrep.2024.114266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Caicedo Garzon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roxanne E Perez Tremble
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
9
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 PMCID: PMC12006847 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Jung JH, Wang Y, Rashid AJ, Zhang T, Frankland PW, Josselyn SA. Examining memory linking and generalization using scFLARE2, a temporally precise neuronal activity tagging system. Cell Rep 2023; 42:113592. [PMID: 38103203 PMCID: PMC10842737 DOI: 10.1016/j.celrep.2023.113592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
How memories are organized in the brain influences whether they are remembered discretely versus linked with other experiences or whether generalized information is applied to entirely novel situations. Here, we used scFLARE2 (single-chain fast light- and activity-regulated expression 2), a temporally precise tagging system, to manipulate mouse lateral amygdala neurons active during one of two 3 min threat experiences occurring close (3 h) or further apart (27 h) in time. Silencing scFLARE2-tagged neurons showed that two threat experiences occurring at distal times are dis-allocated to orthogonal engram ensembles and remembered discretely, whereas the same two threat experiences occurring in close temporal proximity are linked via co-allocation to overlapping engram ensembles. Moreover, we found that co-allocation mediates memory generalization applied to a completely novel stimulus. These results indicate that endogenous temporal evolution of engram ensemble neuronal excitability determines how memories are organized and remembered and that this would not be possible using conventional immediate-early gene-based tagging methods.
Collapse
Affiliation(s)
- Jung Hoon Jung
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Ying Wang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Tao Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
11
|
Power SD, Stewart E, Zielke LG, Byrne EP, Douglas A, Ortega-de San Luis C, Lynch L, Ryan TJ. Immune activation state modulates infant engram expression across development. SCIENCE ADVANCES 2023; 9:eadg9921. [PMID: 37939176 PMCID: PMC10631722 DOI: 10.1126/sciadv.adg9921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Infantile amnesia is possibly the most ubiquitous form of memory loss in mammals. We investigated how memories are stored in the brain throughout development by integrating engram labeling technology with mouse models of infantile amnesia. Here, we found a phenomenon in which male offspring in maternal immune activation models of autism spectrum disorder do not experience infantile amnesia. Maternal immune activation altered engram ensemble size and dendritic spine plasticity. We rescued the same apparently forgotten infantile memories in neurotypical mice by optogenetically reactivating dentate gyrus engram cells labeled during complex experiences in infancy. Furthermore, we permanently reinstated lost infantile memories by artificially updating the memory engram, demonstrating that infantile amnesia is a reversible process. Our findings suggest not only that infantile amnesia is due to a reversible retrieval deficit in engram expression but also that immune activation during development modulates innate, and reversible, forgetting switches that determine whether infantile amnesia will occur.
Collapse
Affiliation(s)
- Sarah D. Power
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Erika Stewart
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Louisa G. Zielke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Eric P. Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Aaron Douglas
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
12
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Clawson BC, Jiang S, Yang Z, Aton SJ. Hypnotic treatment reverses NREM sleep disruption and EEG desynchronization in a mouse model of Fragile X syndrome to rescue memory consolidation deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549070. [PMID: 37502832 PMCID: PMC10370139 DOI: 10.1101/2023.07.14.549070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Fragile X syndrome (FXS) is a highly-prevalent genetic cause of intellectual disability, associated with disrupted cognition and sleep abnormalities. Sleep loss itself negatively impacts cognitive function, yet the contribution of sleep loss to impaired cognition in FXS is vastly understudied. One untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We hypothesized that restoration of sleep-dependent mechanisms could improve functions such as memory consolidation in FXS. We examined whether administration of ML297, a hypnotic drug acting on G-protein-activated inward-rectifying potassium channels, could restore sleep phenotypes and improve disrupted memory consolidation in Fmr1 -/y mice. Using 24-h polysomnographic recordings, we found that Fmr1 -/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM sleep architecture, alterations in NREM EEG spectral power (including reductions in sleep spindles), and reduced EEG coherence between cortical areas. These alterations were reversed in the hours following ML297 administration. Hypnotic treatment following contextual fear or spatial learning also ameliorated disrupted memory consolidation in Fmr1 -/y mice. Hippocampal activation patterns during memory recall was altered in Fmr1 -/y mice, reflecting an altered balance of activity among principal neurons vs. parvalbumin-expressing (PV+) interneurons. This phenotype was partially reversed by post-learning ML297 administration. These studies suggest that sleep disruption could have a major impact on neurophysiological and behavioral phenotypes in FXS, and that hypnotic therapy may significantly improve disrupted cognition in this disorder.
Collapse
|
13
|
Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, Pedini G, De Rubeis S, Longo F, Klann E, Smit AB, Grant SGN, Achsel T, Bagni C. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron 2023; 111:1760-1775.e8. [PMID: 36996810 DOI: 10.1016/j.neuron.2023.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
Collapse
Affiliation(s)
- Valentina Mercaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Barbora Vidimova
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Esperanza Fernández
- VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy; Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Seth G N Grant
- Center for the Clinical Brain Sciences and Simons Initiatives for the Developing Brain, The University of Edinburgh, Edinburgh EH16 4SB, Scotland
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland; Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
14
|
Gredell M, Lu J, Zuo Y. The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity. Front Synaptic Neurosci 2023; 15:1135479. [PMID: 37035256 PMCID: PMC10076639 DOI: 10.3389/fnsyn.2023.1135479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
15
|
Cao B, Scherrer G, Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022; 110:4108-4124.e6. [PMID: 36223767 PMCID: PMC9789181 DOI: 10.1016/j.neuron.2022.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023]
Abstract
Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.
Collapse
Affiliation(s)
- Bing Cao
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Chen
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev 2022; 139:104722. [PMID: 35690123 DOI: 10.1016/j.neubiorev.2022.104722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Predictive models are essential for advancing knowledge of brain disorders. High variation in study outcomes hampers progress. To address the validity of predictive models, we performed a systematic review and meta-analysis on behavioural phenotypes of the knock-out rodent model for Fragile X syndrome according to the PRISMA reporting guidelines. In addition, factors accountable for the heterogeneity between findings were analyzed. The knock-out model showed good translational validity and replicability for hyperactivity, cognitive and seizure phenotypes. Despite low replicability, translational validity was also found for social behaviour and sensory sensitivity, but not for attention, aggression and cognitive flexibility. Anxiety, acoustic startle and prepulse inhibition phenotypes, despite low replicability, were opposite to patient symptomatology. Subgroup analyses for experimental factors moderately explain the low replicability, these analyses were hindered by under-reporting of methodologies and environmental conditions. Together, the model has translational validity for most clinical phenotypes, but caution must be taken due to low effect sizes and high inter-study variability. These findings should be considered in view of other rodent models in preclinical research.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - María Arroyo-Araujo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Geert Groteplein Zuid 21, 6525 EZ Nijmegen, the Netherlands.
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
17
|
Homeostatic plasticity and excitation-inhibition balance: The good, the bad, and the ugly. Curr Opin Neurobiol 2022; 75:102553. [PMID: 35594578 DOI: 10.1016/j.conb.2022.102553] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the significance of the synaptic excitation/inhibition (E/I) balance in the context of homeostatic plasticity, whose primary goal is thought to maintain neuronal firing rates at a set point. We first provide an overview of the processes through which patterned input activity drives synaptic E/I tuning and maturation of circuits during development. Next, we emphasize the importance of the E/I balance at the synaptic level (homeostatic control of message reception) as a means to achieve the goal (homeostatic control of information transmission) at the network level and consider how compromised homeostatic plasticity associated with neurological diseases leads to hyperactivity, network instability, and ultimately improper information processing. Lastly, we highlight several pathological conditions related to sensory deafferentation and describe how, in some cases, homeostatic compensation without appropriate sensory inputs can result in phantom perceptions.
Collapse
|
18
|
Ryan TJ, Ortega-de San Luis C, Pezzoli M, Sen S. Engram cell connectivity: an evolving substrate for information storage. Curr Opin Neurobiol 2021; 67:215-225. [PMID: 33812274 DOI: 10.1016/j.conb.2021.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/02/2023]
Abstract
Understanding memory requires an explanation for how information can be stored in the brain in a stable state. The change in the brain that accounts for a given memory is referred to as an engram. In recent years, the term engram has been operationalized as the cells that are activated by a learning experience, undergoes plasticity, and are sufficient and necessary for memory recall. Using this framework, and a growing toolbox of related experimental techniques, engram manipulation has become a central topic in behavioral, systems, and molecular neuroscience. Recent research on the topic has provided novel insights into the mechanisms of long-term memory storage, and its overlap with instinct. We propose that memory and instinct may be embodied as isomorphic topological structures within the brain's microanatomical circuitry.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada.
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Siddhartha Sen
- Centre for Research on Adaptive Nanostructures and Nanodevices and School of Physics, Trinity College Dublin, D02 PN40, Ireland
| |
Collapse
|
19
|
Miry O, Li J, Chen L. The Quest for the Hippocampal Memory Engram: From Theories to Experimental Evidence. Front Behav Neurosci 2021; 14:632019. [PMID: 33519396 PMCID: PMC7843437 DOI: 10.3389/fnbeh.2020.632019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
More than a century after Richard Semon's theoretical proposal of the memory engram, technological advancements have finally enabled experimental access to engram cells and their functional contents. In this review, we summarize theories and their experimental support regarding hippocampal memory engram formation and function. Specifically, we discuss recent advances in the engram field which help to reconcile two main theories for how the hippocampus supports memory formation: The Memory Indexing and Cognitive Map theories. We also highlight the latest evidence for engram allocation mechanisms through which memories can be linked or separately encoded. Finally, we identify unanswered questions for future investigations, through which a more comprehensive understanding of memory formation and retrieval may be achieved.
Collapse
Affiliation(s)
- Omid Miry
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jie Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|