1
|
Jia H, Chen S, Hu X, Wang J, Suo J, Dai SM, Zou W, Feng H. Scleraxis-expressing progenitor cells are critical for the maturation of the annulus fibrosus and demonstrate therapeutic potential. J Orthop Translat 2025; 52:301-312. [PMID: 40421145 PMCID: PMC12104688 DOI: 10.1016/j.jot.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Background Annulus fibrosus (AF) is an important part of the intervertebral disc (IVD) and its injury leads to back pain and impaired mobility. The stem/progenitor cells are essential for the maturation and repair of the AF, however, the identity of AF stem/progenitor cells remain elusive. Methods In this study, we sorted cells from the murine IVDs and performed the single-cell RNA sequencing. Using single-cell transcriptomics, genetic lineage tracing, in vitro stem cell experiment, ablation models and cell transplantation, we elucidate the role of AF progenitor cells in maturation and injury. Results On the basis of single-cell RNA-sequencing (scRNA-seq) analysis of the intervertebral disc, we found that the transcription factor Scleraxis (Scx) can specifically label a progenitor cell population of the outer AF. By lineage tracing assay, Scx-lineage AF cells proliferate mainly prior to sexual maturity, but barely proliferate after age of 8 weeks. The Scx-expressing AF cells are enriched for stem/progenitor cell markers and show a higher proliferative capacity and differentiation potential than the Scx - cells. The ablation of Scx-expressing AF cells impairs the maturation of AF. The Scx + AF cells are enriched for TGFβ signaling. Transplantation of Scx-lineage cells to injured AF with Connective tissue growth factor (CTGF) improved the AF healing. Conclusions Scleraxis-expressing progenitor cells are critical for the maturation of AF and demonstrate therapeutic potential for AF regeneration. The translational potential of this article These findings expand the important role of stem cells in maturation and repair and provide new strategy for cellular therapy of AF repair.
Collapse
Affiliation(s)
- Hongtao Jia
- Department of Rheumatology & Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuqin Chen
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
| | - Xuye Hu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiajun Wang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Weiguo Zou
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Heng Feng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Goto A, Komura S, Kato K, Maki R, Hirakawa A, Aoki H, Tomita H, Taguchi J, Ozawa M, Matsushima T, Kishida A, Kimura T, Asahara H, Imai Y, Yamada Y, Akiyama H. PI3K-Akt signalling regulates Scx-lineage tenocytes and Tppp3-lineage paratenon sheath cells in neonatal tendon regeneration. Nat Commun 2025; 16:3734. [PMID: 40254618 PMCID: PMC12010001 DOI: 10.1038/s41467-025-59010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
Tendon injuries are frequently occurring disorders; it is clinically important to enhance tendon regeneration and prevent functional impairment post-injury. While tendon injuries in children heal quickly with minimal scarring, those in adults heal slowly and are accompanied by fibrotic scarring. Therefore, investigating the healing mechanisms after tendon injury, and identifying the factors that regulate the inherent regenerative capacity of tendons are promising approaches to promoting tendon regeneration. Here, we identify that the PI3K-Akt signalling pathway is preferentially upregulated in injured neonatal murine Achilles tendons. Inhibition of PI3K-Akt signalling in a neonatal murine Achilles tendon rupture model decreases cell proliferation and migration in both Scx-lineage intrinsic tenocytes and Tppp3-lineage extrinsic paratenon sheath cells. Moreover, the inhibition of PI3K-Akt signalling decreases stemness and promotes mature tenogenic differentiation in both Scx- and Tppp3-lineage cells. Collectively, these results suggest that PI3K-Akt signalling plays a pivotal role in neonatal tendon regeneration.
Collapse
Affiliation(s)
- Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Koki Kato
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rie Maki
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Jumpei Taguchi
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Manabu Ozawa
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Akio Kishida
- Department of Material-Based Medical Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Tsuyoshi Kimura
- Materials-based Medical Engineering Laboratory, Department of Biomedical Engineering, Faculty of Life Science, Toyo University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Sakai T, Kumagai K. Molecular dissection of tendon development and healing: Insights into tenogenic phenotypes and functions. J Biol Chem 2025; 301:108353. [PMID: 40015639 PMCID: PMC11986518 DOI: 10.1016/j.jbc.2025.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Tendon is a dense connective tissue that transmits contraction forces from skeletal muscles to bones. Adult tendon injury is a significant clinical problem because it occurs frequently with a high recurrence rate, and damaged tendon is rarely restored to full function. The main barrier to improving recovery outcomes is our incomplete understanding of the molecular mechanisms underlying the biological alterations following tendon injury in vivo. In this review, we specifically highlight the cellular dynamism of fibrotic tendon wound healing and the roles of mechanical loading. In particular, we document how tendon stem/progenitor cells expressing the tendon-specific transcription factor Scleraxis (Scx) play a role in fibrotic tendon wound healing, and describe novel experimental systems such as lineage cell tracing and single-cell analysis, both of which can shed light on tendon cell behavior and fate decisions during the tendon wound healing process.
Collapse
Affiliation(s)
- Takao Sakai
- Department of Diagnostic Pathology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Ken Kumagai
- Department of Orthopaedic Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
4
|
Stauber T, Moschini G, Hussien AA, Jaeger PK, De Bock K, Snedeker JG. Il-6 signaling exacerbates hallmarks of chronic tendon disease by stimulating reparative fibroblasts. eLife 2025; 12:RP87092. [PMID: 39918402 PMCID: PMC11805502 DOI: 10.7554/elife.87092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.
Collapse
Affiliation(s)
- Tino Stauber
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Greta Moschini
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Amro A Hussien
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Patrick Klaus Jaeger
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Jess G Snedeker
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Adjei-Sowah E, Lecaj E, Adhikari N, Sensini C, Nichols AE, Buckley MR, Loiselle AE. Loss of Cochlin drives impairments in tendon structure and function. Matrix Biol Plus 2025; 25:100168. [PMID: 40094079 PMCID: PMC11908599 DOI: 10.1016/j.mbplus.2025.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Aging tendons undergo disruptions in homeostasis, increased susceptibility to injury, and reduced capacity for healing. Exploring the mechanisms behind this disruption in homeostasis is essential for developing therapeutics aimed at maintaining tendon health through the lifespan. We have previously identified that the extracellular matrix protein, Cochlin, which is highly expressed in healthy flexor tendon, is consistently lost during both natural aging and upon depletion of Scleraxis-lineage cells in young animals, which recapitulates many aging-associated homeostatic disruptions. Therefore, we examined the effects of Cochlin-/- on tendon maturation and hypothesized that loss of Cochlin would disrupt normal tendon maturation and recapitulate phenotypes associated with disrupted adult tendon homeostasis, including alterations in collagen fibril organization, and impaired tendon mechanics. By 3-months of age, Cochlin-/- flexor tendons exhibited altered collagen structure, with these changes persisting through at least 9-months. In addition, Cochlin -/- tendons demonstrated significant declines in structural and material properties at 6-months, and structural properties at 9-months. While Cochlin-/- did not drastically change the overall tendon proteome, consistent decreases in proteins associated with RNA metabolism, extracellular matrix production and the cytoskeleton were observed in Cochlin -/-. Interestingly, disrupted tendon maturation via Cochlin-/- did not impair the tendon healing process. Taken together, these data define a critical role for Cochlin in facilitating physiological tendon maturation.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elsa Lecaj
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Neeta Adhikari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Clara Sensini
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, NY 14642, USA
| |
Collapse
|
6
|
Smolyak G, Rodenhouse A, Nichols AEC, Ketonis C, Loiselle AE. Pharmacological antagonism of Ccr2+ cell recruitment to facilitate regenerative tendon healing. J Orthop Res 2025; 43:243-251. [PMID: 39354731 DOI: 10.1002/jor.25986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Successful tendon healing requires sufficient deposition and remodeling of new extracellular matrix at the site of injury, with this process mediating in part through fibroblast activation via communication with macrophages. Moreover, resolution of healing requires clearance or reversion of activated cells, with chronic interactions with persistent macrophages impairing resolution and facilitating the conversion to fibrotic healing. As such, modulation of the macrophage environment represents an important translational target to improve the tendon healing process. Circulating monocytes are recruited to sites of tissue injury, including the tendon, via upregulation of cytokines including Ccl2, which facilitates recruitment of Ccr2+ macrophages to the healing tendon. Our prior work has demonstrated that Ccr2-/- can modulate fibroblast activation and myofibroblast differentiation. However, this approach lacked temporal control and resulted in healing impairments. Thus, in the current study we have leveraged a Ccr2 antagonist to blunt macrophage recruitment to the healing tendon in a time-dependent manner. We first tested the effects of Ccr2 antagonism during the acute inflammatory phase and found that this had no effect on the healing process. In contrast, Ccr2 antagonism during the early proliferative/granulation tissue period resulted in significant improvements in mechanical properties of the healing tendon. Collectively, these data demonstrate the temporally distinct impacts of modulating Ccr2+ cell recruitment and Ccr2 antagonism during tendon healing and highlight the translational potential of transient Ccr2 antagonism to improve the tendon healing process.
Collapse
Affiliation(s)
- Gilbert Smolyak
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Andrew Rodenhouse
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, New York, USA
| | - Constantinos Ketonis
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Shen Y, Wang Y, Xu Y, Wang J, Yin C, Han Z, Shen F, Wang T. Therapeutic potential and mechanisms of umbilical cord mesenchymal stem cells differentiating into tendon cells and promotion of rotator cuff tendon-bone healing. J Tissue Eng 2025; 16:20417314251315185. [PMID: 39882545 PMCID: PMC11776009 DOI: 10.1177/20417314251315185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods. In vitro experiments were performed to explore the mechanism of differentiation of umbilical cord mesenchymal stem cells (UCMSCs) to tendon cells and to evaluate their potential in promoting rotator cuff injury repair. Growth factors such as CTGF, GDF-6, and GDF-7 were used to induce the differentiation of UCMSCs, and gene expression changes during the differentiation process were analyzed by single-cell sequencing. Hes1 overexpression and animal models were constructed to study its role in UCMSCs differentiation and rotator cuff injury repair. CTGF was the optimal factor for inducing the differentiation of UCMSCs into tendon cells. With increasing induction time, UCMSCs exhibited obvious tendon cell characteristics, such as changes in cell morphology and increased expression of tendon-specific proteins (MKX, SCX, and TNC). Single-cell sequencing analysis revealed key cellular subpopulations and signaling pathways during differentiation. Furthermore, overexpression of the Hes1 gene significantly promoted the differentiation of UCMSCs to tendon cells and showed its therapeutic effect in rotator cuff injury repair in an animal model. This study confirmed the potential of UCMSCs in tendon injury repair, especially the critical role of Hes1 in promoting UCMSCs differentiation and rotator cuff tendon-bone healing, which provides a theoretical basis and experimental rationale for the development of new cellular therapeutic strategies.
Collapse
Affiliation(s)
- Youliang Shen
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuelei Wang
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yidan Xu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuqiang Yin
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zengshuai Han
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feng Shen
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ting Wang
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Adjei-Sowah E, Lecaj E, Adhikari N, Sensini C, Nichols AE, Buckley MR, Loiselle AE. Loss of Cochlin drives impairments in tendon structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623674. [PMID: 39605598 PMCID: PMC11601365 DOI: 10.1101/2024.11.14.623674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aging tendons undergo disruptions in homeostasis, increased susceptibility to injury, and reduced capacity for healing. Exploring the mechanisms behind this disruption in homeostasis is essential for developing therapeutics aimed at maintaining tendon health through the lifespan. We have previously identified that the extracellular matrix protein, Cochlin, which is highly expressed in healthy flexor tendon, is consistently lost during both natural aging and upon depletion of Scleraxis-lineage cells in young animals, which recapitulates many aging-associated homeostatic disruptions. Therefore, we hypothesized that loss of Cochlin would disrupt tendon homeostasis, including alterations in collagen fibril organization, and impaired tendon mechanics. By 3-months of age, Cochlin -/- flexor tendons exhibited altered collagen structure, with these changes persisting through at least 9-months. In addition, Cochlin-/- tendons demonstrated significant declines in structural and material properties at 6-months, and structural properties at 9-months. While Cochlin -/- did not drastically change the overall tendon proteome, consistent decreases in proteins associated with RNA metabolism, extracellular matrix production and the cytoskeleton were observed in Cochlin -/-. Interestingly, homeostatic disruption via Cochlin -/- did not impair the tendon healing process. Taken together, these data define a critical role for Cochlin in maintaining tendon homeostasis and suggest retention or restoration of Cochlin as a potential therapeutic approach to retain tendon structure and function through the lifespan.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Elsa Lecaj
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Neeta Adhikari
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Clara Sensini
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center; NY, 14642, USA
| |
Collapse
|
9
|
Darrieutort-Laffite C, Blanchard F, Soslowsky LJ, Le Goff B. Biology and physiology of tendon healing. Joint Bone Spine 2024; 91:105696. [PMID: 38307405 DOI: 10.1016/j.jbspin.2024.105696] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Tendon disorders affect people of all ages, from elite and recreational athletes and workers to elderly patients. After an acute injury, 3 successive phases are described to achieve healing: an inflammatory phase followed by a proliferative phase, and finally by a remodeling phase. Despite this process, healed tendon fails to recover its original mechanical properties. In this review, we proposed to describe the key factors involved in the process such as cells, transcription factors, extracellular matrix components, cytokines and growth factors and vascularization among others. A better understanding of this healing process could help provide new therapeutic approaches to improve patients' recovery while tendon disorders management remains a medical challenge.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France.
| | - Frédéric Blanchard
- Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoit Le Goff
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| |
Collapse
|
10
|
Smolyak G, Rodenhouse A, Nichols AEC, Ketonis C, Loiselle AE. Pharmacological Antagonism of Ccr2+ Cell Recruitment to Facilitate Regenerative Tendon Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603448. [PMID: 39071284 PMCID: PMC11275796 DOI: 10.1101/2024.07.15.603448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Successful tendon healing requires sufficient deposition and remodeling of new extracellular matrix at the site of injury, with this process mediating in part through fibroblast activation via communication with macrophages. Moreover, resolution of healing requires clearance or reversion of activated cells, with chronic interactions with persistent macrophages impairing resolution and facilitating the conversion the conversion to fibrotic healing. As such, modulation of the macrophage environment represents an important translational target to improve the tendon healing process. Circulating monocytes are recruited to sites of tissue injury, including the tendon, via upregulation of cytokines including Ccl2, which facilitates recruitment of Ccr2+ macrophages to the healing tendon. Our prior work has demonstrated that Ccr2-/- can modulate fibroblast activation and myofibroblast differentiation. However, this approach lacked temporal control and resulted in healing impairments. Thus, in the current study we have leveraged a Ccr2 antagonist to blunt macrophage recruitment to the healing tendon in a time-dependent manner. We first tested the effects of Ccr2 antagonism during the acute inflammatory phase and found that this had no effect on the healing process. In contrast, Ccr2 antagonism during the late inflammatory/ early proliferative period resulted in significant improvements in mechanical properties of the healing tendon. Collectively, these data demonstrate the temporally distinct impacts of modulating Ccr2+ cell recruitment and Ccr2 antagonism during tendon healing and highlight the translational potential of transient Ccr2 antagonism to improve the tendon healing process.
Collapse
Affiliation(s)
- Gilbert Smolyak
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Andrew Rodenhouse
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642
| | - Anne E C Nichols
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642
| | - Constantinos Ketonis
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642
| | - Alayna E Loiselle
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
11
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a nanoparticle-based tendon-targeting drug delivery system to pharmacologically modulate tendon healing. SCIENCE ADVANCES 2024; 10:eadn2332. [PMID: 38896625 PMCID: PMC11186494 DOI: 10.1126/sciadv.adn2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Satisfactory healing following acute tendon injury is marred by fibrosis. Despite the high frequency of tendon injuries and poor outcomes, there are no pharmacological therapies in use to enhance the healing process. Moreover, systemic treatments demonstrate poor tendon homing, limiting the beneficial effects of potential tendon therapeutics. To address this unmet need, we leveraged our existing tendon healing spatial transcriptomics dataset and identified an area enriched for expression of Acp5 (TRAP) and subsequently demonstrated robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this DDS, we delivered niclosamide (NEN), an S100a4 inhibitor. While systemic delivery of free NEN did not alter healing, TBP-NPNEN enhanced both functional and mechanical recovery, demonstrating the translational potential of this approach to enhance the tendon healing process.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuxuan Liu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
| | - Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Celia Soto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne E. C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine Nolan
- Department of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Usami Y, Iijima H, Kokubun T. Exploring the role of mechanical forces on tendon development using in vivo model: A scoping review. Dev Dyn 2024; 253:550-565. [PMID: 37947268 DOI: 10.1002/dvdy.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tendons transmit the muscle contraction forces to bones and drive joint movement throughout life. While extensive research have indicated the essentiality of mechanical forces on tendon development, a comprehensive understanding of the fundamental role of mechanical forces still needs to be impaerted. This scoping review aimed to summarize the current knowledge about the role of mechanical forces during the tendon developmental phase. The electronic database search using PubMed, performed in May 2023, yielded 651 articles, of which 16 met the prespecified inclusion criteria. We summarized and divided the methods to reduce the mechanical force into three groups: loss of muscle, muscle dysfunction, and weight-bearing regulation. In contrast, there were few studies to analyze the increased mechanical force model. Most studies suggested that mechanical force has some roles in tendon development in the embryo to postnatal phase. However, we identified species variability and methodological heterogeneity to modulate mechanical force. To establish a comprehensive understanding, methodological commonality to modulate the mechanical force is needed in this field. Additionally, summarizing chronological changes in developmental processes across animal species helps to understand the essence of developmental tendon mechanobiology. We expect that the findings summarized in the current review serve as a groundwork for future study in the fields of tendon developmantal biology and mechanobiology.
Collapse
Affiliation(s)
- Yuna Usami
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Takanori Kokubun
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Koshigaya, Japan
| |
Collapse
|
13
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
14
|
Konar S, Leung S, Tay ML, Coleman B, Dalbeth N, Cornish J, Naot D, Musson DS. Novel In Vitro Platform for Studying the Cell Response to Healthy and Diseased Tendon Matrices. ACS Biomater Sci Eng 2024; 10:3293-3305. [PMID: 38666422 DOI: 10.1021/acsbiomaterials.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Current in vitro models poorly represent the healthy or diseased tendon microenvironment, limiting the translation of the findings to clinics. The present work aims to establish a physiologically relevant in vitro tendon platform that mimics biophysical aspects of a healthy and tendinopathic tendon matrix using a decellularized bovine tendon and to characterize tendon cells cultured using this platform. Bovine tendons were subjected to various decellularization techniques, with the efficacy of decellularization determined histologically. The biomechanical and architectural properties of the decellularized tendons were characterized using an atomic force microscope. Tendinopathy-mimicking matrices were prepared by treating the decellularized tendons with collagenase for 3 h or collagenase-chondroitinase (CC) for 1 h. The tendon tissue collected from healthy and tendinopathic patients was characterized using an atomic force microscope and compared to that of decellularized matrices. Healthy human tendon-derived cells (hTDCs) from the hamstring tendon were cultured on the decellularized matrices for 24 or 48 h, with cell morphology characterized using f-actin staining and gene expression characterized using real-time PCR. Tendon matrices prepared by freeze-thawing and 48 h nuclease treatment were fully decellularized, and the aligned structure and tendon stiffness (1.46 MPa) were maintained. Collagenase treatment prepared matrices with a disorganized architecture and reduced stiffness (0.75 MPa), mimicking chronic tendinopathy. Treatment with CC prepared matrices with a disorganized architecture without altering stiffness, mimicking early tendinopathy (1.52 MPa). hTDCs on a healthy tendon matrix were elongated, and the scleraxis (SCX) expression was maintained. On tendinopathic matrices, hTDCs had altered morphological characteristics and lower SCX expression. The expression of genes related to actin polymerization, matrix degradation and remodeling, and immune cell invasion were higher in hTDCs on tendinopathic matrices. Overall, the present study developed a physiological in vitro system to mimic healthy tendons and early and late tendinopathy, and it can be used to better understand tendon cell characteristics in healthy and diseased states.
Collapse
Affiliation(s)
- Subhajit Konar
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - Sophia Leung
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1142, New Zealand
| | - Mei Lin Tay
- Department of Surgery, University of Auckland, Auckland 1142, New Zealand
| | - Brendan Coleman
- Department of Orthopaedics, Middlemore Hospital, Auckland 1640, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Dorit Naot
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - David S Musson
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
15
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a Nanoparticle-Based Tendon-Targeting Drug Delivery System to Pharmacologically Modulate Tendon Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569204. [PMID: 38076889 PMCID: PMC10705411 DOI: 10.1101/2023.11.29.569204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Tendon regeneration following acute injury is marred by a fibrotic healing response that prevents complete functional recovery. Despite the high frequency of tendon injuries and the poor outcomes, including functional deficits and elevated risk of re-injury, there are currently no pharmacological therapies in clinical use to enhance the healing process. Several promising pharmacotherapies have been identified; however, systemic treatments lack tendon specificity, resulting in poor tendon biodistribution and perhaps explaining the largely limited beneficial effects of these treatments on the tendon healing process. To address this major unmet need, we leveraged our existing spatial transcriptomics dataset of the tendon healing process to identify an area of the healing tendon that is enriched for expression of Acp5. Acp5 encodes tartrate-resistant acid phosphatase (TRAP), and we demonstrate robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this drug delivery system, we delivered the S100a4 inhibitor, Niclosamide to the healing tendon. We have previously shown that genetic knockdown of S100a4 enhances tendon healing. While systemic delivery of Niclosamide did not affect the healing process, relative to controls, TBP-NP delivery of Niclosamide enhanced both functional and mechanical outcome measures. Collectively, these data identify a novel tendon-targeting drug delivery system and demonstrate the translational potential of this approach to enhance the tendon healing process.
Collapse
|
18
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Shen H, Lane RA. Extracellular Vesicles From Primed Adipose-Derived Stem Cells Enhance Achilles Tendon Repair by Reducing Inflammation and Promoting Intrinsic Healing. Stem Cells 2023; 41:617-627. [PMID: 37085269 PMCID: PMC10267691 DOI: 10.1093/stmcls/sxad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Achilles tendon rupture is a common sports-related injury. Even with advanced clinical treatments, many patients suffer from long-term pain and functional deficits. These unsatisfactory outcomes result primarily from an imbalanced injury response with excessive inflammation and inadequate tendon regeneration. Prior studies showed that extracellular vesicles from inflammation-primed adipose-derived stem cells (iEVs) can attenuate early tendon inflammatory response to injury. It remains to be determined if iEVs can both reduce inflammation and promote regeneration in the later phases of tendon healing and the underlying mechanism. Therefore, this study investigated the mechanistic roles of iEVs in regulating tendon injury response using a mouse Achilles tendon injury and repair model in vivo and iEV-macrophage and iEV-tendon cell coculture models in vitro. Results showed that iEVs promoted tendon anti-inflammatory gene expression and reduced mononuclear cell accumulation to the injury site in the remodeling phase of healing. iEVs also increased collagen deposition in the injury center and promoted tendon structural recovery. Accordingly, mice treated with iEVs showed less peritendinous scar formation, much lower incidence of postoperative tendon gap or rupture, and faster functional recovery compared to untreated mice. Further in vitro studies revealed that iEVs both inhibited macrophage M1 polarization and increased tendon cell proliferation and collagen production. The iEV effects were partially mediated by miR-147-3p, which blocked the toll-like receptor 4/NF-κB signaling pathway that activated the M1 phenotype of macrophages. The combined results demonstrate that iEVs are a promising therapeutic agent that can enhance tendon repair by attenuating inflammation and promoting intrinsic healing.
Collapse
Affiliation(s)
- Hua Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan A Lane
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Nguyen PK, Hart C, Hall K, Holt I, Kuo CK. Establishing in vivo and ex vivo chick embryo models to investigate fetal tendon healing. Sci Rep 2023; 13:9600. [PMID: 37311784 PMCID: PMC10264358 DOI: 10.1038/s41598-023-35408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Injured adult tendons heal fibrotically and possess high re-injury rates, whereas fetal tendons appear to heal scarlessly. However, knowledge of fetal tendon wound healing is limited due in part to the need for an accessible animal model. Here, we developed and characterized an in vivo and ex vivo chick embryo tendon model to study fetal tendon healing. In both models, injury sites filled rapidly with cells and extracellular matrix during healing, with wound closure occurring faster in vivo. Tendons injured at an earlier embryonic stage improved mechanical properties to levels similar to non-injured controls, whereas tendons injured at a later embryonic stage did not. Expression levels of tendon phenotype markers, collagens, collagen crosslinking regulators, matrix metalloproteinases, and pro-inflammatory mediators exhibited embryonic stage-dependent trends during healing. Apoptosis occurred during healing, but ex vivo tendons exhibited higher levels of apoptosis than tendons in vivo. Future studies will use these in vivo and ex vivo chick embryo tendon injury models to elucidate mechanisms of stage-specific fetal tendon healing to inform the development of therapeutic approaches to regeneratively heal adult tendons.
Collapse
Affiliation(s)
- Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Fischell Department of Bioengineering, University of Maryland, 4108 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christoph Hart
- Fischell Department of Bioengineering, University of Maryland, 4108 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Kaitlyn Hall
- Fischell Department of Bioengineering, University of Maryland, 4108 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Iverson Holt
- Fischell Department of Bioengineering, University of Maryland, 4108 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Fischell Department of Bioengineering, University of Maryland, 4108 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
22
|
Shen H, Lane RA. Extracellular Vesicles from Inflammation-Primed Adipose-Derived Stem Cells Enhance Achilles Tendon Repair by Reducing Inflammation and Promoting Intrinsic Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526532. [PMID: 36778262 PMCID: PMC9915600 DOI: 10.1101/2023.01.31.526532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Achilles tendon rupture is a common sports-related tendon injury. Even with advanced clinical treatments, many patients suffer from long-term pain and reduced function. These unsatisfactory outcomes result primarily from an imbalanced injury response with excessive inflammation and inadequate regeneration. Prior studies showed that extracellular vesicles from inflammation-primed adipose-derived stem cells (iEVs) can attenuate inflammation in the early phase of tendon healing. However, the effect of iEVs on tendon inflammation and regeneration in the later phases of tendon healing and the underlying mechanism remain to be determined. Accordingly, this study investigated the mechanistic roles of iEVs in regulating tendon response to injury using a mouse Achilles tendon injury and repair model in vivo and iEV-macrophage and iEV-tendon cell co-culture models in vitro. Results showed that iEVs promoted tendon anti-inflammatory gene expression and reduced mononuclear cell infiltration in the remodeling phase of tendon healing. iEVs also increased injury site collagen deposition and promoted tendon structural recovery. As such, mice treated with iEVs showed less peritendinous scar formation, much lower incidence of postoperative tendon gap or rupture, and faster functional recovery compared to untreated mice. Further in vitro study revealed that iEVs both inhibited macrophage inflammatory response and increased tendon cell proliferation and collagen production. The iEV effects were partially mediated by miR-147-3p, which blocks the toll-like receptor 4/NF-κB signaling pathway that activates macrophage M1 polarization. The combined results demonstrated that iEVs are a promising therapeutic agent, which can enhance tendon repair by attenuating inflammation and promoting intrinsic healing. Significance statement Using a clinically relevant mouse Achilles tendon injury and repair model, this study revealed that iEVs, a biological product generated from inflammation-primed adipose-derived stem cells, can directly target both macrophages and tendon cells and enhance tendon structural and functional recovery by limiting inflammation and promoting intrinsic healing. Results further identified miR-147-3p as one of the active components of iEVs that modulate macrophage inflammatory response by inhibiting toll-like receptor 4/NF-κB signaling pathway. These promising findings paved the road toward clinical application of iEVs in the treatment of tendon injury and other related disorders.
Collapse
|
23
|
Nichols AEC, Wagner NW, Ketonis C, Loiselle AE. Epitenon-derived cells comprise a distinct progenitor population that contributes to both tendon fibrosis and regeneration following acute injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526242. [PMID: 36778469 PMCID: PMC9915485 DOI: 10.1101/2023.01.30.526242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexor tendon injuries are common and heal poorly owing to both the deposition of function- limiting peritendinous scar tissue and insufficient healing of the tendon itself. Therapeutic options are limited due to a lack of understanding of the cell populations that contribute to these processes. Here, we identified a bi-fated progenitor cell population that originates from the epitenon and goes on to contribute to both peritendinous fibrosis and regenerative tendon healing following acute tendon injury. Using a combination of genetic lineage tracing and single cell RNA-sequencing (scRNA-seq), we profiled the behavior and contributions of each cell fate to the healing process in a spatio-temporal manner. Branched pseudotime trajectory analysis identified distinct transcription factors responsible for regulation of each fate. Finally, integrated scRNA-seq analysis of mouse healing with human peritendinous scar tissue revealed remarkable transcriptional similarity between mouse epitenon- derived cells and fibroblasts present in human peritendinous scar tissue, which was further validated by immunofluorescent staining for conserved markers. Combined, these results clearly identify the epitenon as the cellular origin of an important progenitor cell population that could be leveraged to improve tendon healing.
Collapse
|
24
|
Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype. eLife 2023; 12:e84194. [PMID: 36656751 PMCID: PMC9908079 DOI: 10.7554/elife.84194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Aged tendons have disrupted homeostasis, increased injury risk, and impaired healing capacity. Understanding mechanisms of homeostatic disruption is crucial for developing therapeutics to retain tendon health through the lifespan. Here, we developed a novel model of accelerated tendon extracellular matrix (ECM) aging via depletion of Scleraxis-lineage cells in young mice (Scx-DTR). Scx-DTR recapitulates many aspects of tendon aging including comparable declines in cellularity, alterations in ECM structure, organization, and composition. Single-cell RNA sequencing demonstrated a conserved decline in tenocytes associated with ECM biosynthesis in aged and Scx-DTR tendons, identifying the requirement for Scleraxis-lineage cells during homeostasis. However, the remaining cells in aged and Scx-DTR tendons demonstrate functional divergence. Aged tenocytes become pro-inflammatory and lose proteostasis. In contrast, tenocytes from Scx-DTR tendons demonstrate enhanced remodeling capacity. Collectively, this study defines Scx-DTR as a novel model of accelerated tendon ECM aging and identifies novel biological intervention points to maintain tendon function through the lifespan.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Anne EC Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
| | - Mark R Buckley
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| |
Collapse
|
25
|
Korcari A, Przybelski SJ, Gingery A, Loiselle AE. Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing. Connect Tissue Res 2023; 64:1-13. [PMID: 35903886 PMCID: PMC9851966 DOI: 10.1080/03008207.2022.2102004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Aging is a complex and progressive process where the tissues of the body demonstrate a decreased ability to maintain homeostasis. During aging, there are substantial cellular and molecular changes, with a subsequent increase in susceptibility to pathological degeneration of normal tissue function. In tendon, aging results in well characterized alterations in extracellular matrix (ECM) structure and composition. In addition, the cellular environment of aged tendons is altered, including a marked decrease in cell density and metabolic activity, as well as an increase in cellular senescence. Collectively, these degenerative changes make aging a key risk factor for the development of tendinopathies and can increase the frequency of tendon injuries. However, inconsistencies in the extent of age-related degenerative impairments in tendons have been reported, likely due to differences in how "old" and "young" age-groups have been defined, differences between anatomically distinct tendons, and differences between animal models that have been utilized to study the impact of aging on tendon homeostasis. In this review, we address these issues by summarizing data by well-defined age categories (young adults, middle-aged, and aged) and from anatomically distinct tendon types. We then summarize in detail how aging affects tendon mechanics, structure, composition, and the cellular environment based on current data and underscore what is currently not known. Finally, we discuss gaps in the current understanding of tendon aging and propose key avenues for future research that can shed light on the specific mechanisms of tendon pathogenesis due to aging.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Anne Gingery
- Division of Orthopedic Surgery Research, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alayna E Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
26
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
27
|
Disser NP, Piacentini AN, De Micheli AJ, Schonk MM, Yao VJH, Deng XH, Oliver DJ, Rodeo SA. Achilles Tendons Display Region-Specific Transcriptomic Signatures Associated With Distinct Mechanical Properties. Am J Sports Med 2022; 50:3866-3874. [PMID: 36305762 DOI: 10.1177/03635465221128589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have examined the transcriptomes and mechanical properties of whole tendons in different regions of the body. However, less is known about these characteristics within a single tendon. PURPOSE To develop a regional transcriptomic atlas and evaluate the region-specific mechanical properties of Achilles tendons. STUDY DESIGN Descriptive laboratory study. METHODS Achilles tendons from 2-month-old male Sprague Dawley rats were used. Tendons were isolated and divided into proximal, middle, and distal thirds for RNA sequencing (n = 5). For mechanical testing, the Achilles muscle-tendon-calcaneus unit was mounted in a custom-designed materials testing system with the unit clamped over the musculotendinous junction (MTJ) and the calcaneus secured at 90° of dorsiflexion (n = 9). Tendons were stretched to 20 N at a constant speed of 0.0167 mm/s. Cross-sectional area, strain, stress, and Young modulus were determined in each tendon region. RESULTS An open-access, interactive transcriptional atlas was generated that revealed distinct gene expression signatures in each tendon region. The proximal and distal regions had the largest differences in gene expression, with 2596 genes significantly differentially regulated at least 1.5-fold (q < .01). The proximal tendon displayed increased expression of genes resembling a tendon phenotype and increased expression of nerve cell markers. The distal region displayed increases in genes involved in extracellular matrix synthesis and remodeling, immune cell regulation, and a phenotype similar to cartilage and bone. There was a 3.72-fold increase in Young modulus from the proximal to middle region (P < .01) and an additional 1.34-fold increase from the middle to distal region (P = .027). CONCLUSION Within a single tendon, there are region-specific transcriptomic signatures and mechanical properties, and there is likely a gradient in the biological and functional phenotype from the proximal origin at the MTJ to the distal insertion at the enthesis. CLINICAL RELEVANCE These findings improve our understanding of the underlying biological heterogeneity of tendon tissue and will help inform the future targeted use of regenerative medicine and tissue engineering strategies for patients with tendon disorders.
Collapse
Affiliation(s)
- Nathaniel P Disser
- Hospital for Special Surgery, New York, New York, USA.,McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Andrea J De Micheli
- Hospital for Special Surgery, New York, New York, USA.,Department of Oncology of the Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | | | - Vincent J H Yao
- Hospital for Special Surgery, New York, New York, USA.,Sophie Davis Biomedical Education Program at CUNY School of Medicine, New York, New York, USA
| | | | - David J Oliver
- Hospital for Special Surgery, New York, New York, USA.,The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
28
|
Kent RN, Said M, Busch ME, Poupard ER, Tsai A, Xia J, Matera DL, Wang WY, DePalma SJ, Hiraki HL, Killian ML, Abraham AC, Shin JW, Huang AH, Shikanov A, Baker BM. Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207556. [PMID: 39257859 PMCID: PMC11382351 DOI: 10.1002/adfm.202207556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Indexed: 09/12/2024]
Abstract
Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Mohamed Said
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan E Busch
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ethan R Poupard
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ariane Tsai
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Jingyi Xia
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Daniel L Matera
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - William Y Wang
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Samuel J DePalma
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan L Killian
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Adam C Abraham
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, Department of Biomedical Engineering University of Illinois Chicago Chicago IL 60607 USA
| | - Alice H Huang
- Department of Orthopedic Surgery Columbia University New York NY 10032 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Brendon M Baker
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
29
|
Ackerman JE, Best KT, Muscat SN, Pritchett EM, Nichols AE, Wu CL, Loiselle AE. Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep 2022; 41:111706. [PMID: 36417854 PMCID: PMC9741867 DOI: 10.1016/j.celrep.2022.111706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined. In the present study, we combine lineage tracing of adult Scleraxis-lineage cells with spatial transcriptomic profiling to define the overarching molecular programs that govern tendon healing and cell-fate decisions. Pseudotime analysis identified three fibroblast trajectories (synthetic, fibrotic, and reactive) and key transcription factors regulating these fate-switching decisions, including the progression of adult Scleraxis-lineage cells through the reactive trajectory. Collectively, this resource defines the molecular mechanisms that coordinate the temporo-spatial healing phenotype, which can be leveraged to inform therapeutic candidate selection.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Katherine T. Best
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth M. Pritchett
- Genomics Research Center, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Senior author
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
30
|
Muscat S, Nichols AEC, Gira E, Loiselle AE. CCR2 is expressed by tendon resident macrophage and T cells, while CCR2 deficiency impairs tendon healing via blunted involvement of tendon-resident and circulating monocytes/macrophages. FASEB J 2022; 36:e22607. [PMID: 36250393 PMCID: PMC9593314 DOI: 10.1096/fj.202201162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
During tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population. To begin to delineate the functions of tendon-resident versus circulation-derived macrophages, we examined the tendon healing phenotype in Chemokine Receptor 2 (CCR2) reporter (CCR2GFP/+ ), and knockout mice. CCR2 is a chemokine receptor primarily found on the surface of circulating bone marrow-derived monocytes, with CCR2 being an important mediator of macrophage recruitment to wound environments. Surprisingly, CCR2GFP/+ cells were present in the tendon during adult homeostasis, and single-cell RNA sequencing identified these cells as tendon-resident macrophages and T cells. During both homeostasis and healing, CCR2 knockout resulted in a substantial decrease in CCR2GFP+ cells and pan-macrophages. Additionally, loss of CCR2 resulted in reduced numbers of myofibroblasts and impeded functional recovery during late healing. This study highlights the heterogeneity of tendon-resident and recruited immune cells and their contributions following injury, and establishes an important role for CCR2 in modulating both the adult tendon cell environment and tendon healing process.
Collapse
Affiliation(s)
- Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Gira
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
31
|
Korcari A, Muscat S, McGinn E, Buckley MR, Loiselle AE. Depletion of Scleraxis-lineage cells during tendon healing transiently impairs multi-scale restoration of tendon structure during early healing. PLoS One 2022; 17:e0274227. [PMID: 36240193 PMCID: PMC9565440 DOI: 10.1371/journal.pone.0274227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Tendons are composed of a heterogeneous cell environment, with Scleraxis-lineage (ScxLin) cells being the predominant population. Although ScxLin cells are required for maintenance of tendon homeostasis, their functions during tendon healing are unknown. To this end, we first characterized the spatiotemporal dynamics of ScxLin cells during tendon healing, and identified that the overall ScxLin pool continuously expands up to early remodeling healing phase. To better define the function of ScxLin cells during the late proliferative phase of healing, we inducibly depleted ScxLin cells from day 14-18 post-surgery using the Scx-Cre; Rosa-DTR mouse model, with local administration of diphtheria toxin inducing apoptosis of ScxLin cells in the healing tendon. At D28 post-surgery, ScxLin cell depleted tendons (DTRScxLin) had substantial impairments in structure and function, relative to WT, demonstrating the importance of ScxLin cells during tendon healing. Next, bulk RNAseq was utilized to identify the underlying mechanisms that were impaired with depletion and revealed that ScxLin depletion induced molecular and morphological stagnation of the healing process at D28. However, this stagnation was transient, such that by D56 tendon mechanics in DTRScxLin were not significantly different than wildtype repairs. Collectively, these data offer fundamental knowledge on the dynamics and roles of ScxLin cells during tendon healing.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Samantha Muscat
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elizabeth McGinn
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Mark R. Buckley
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Alayna E. Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
32
|
Ramos‐Mucci L, Sarmiento P, Little D, Snelling S. Research perspectives-Pipelines to human tendon transcriptomics. J Orthop Res 2022; 40:993-1005. [PMID: 35239195 PMCID: PMC9007907 DOI: 10.1002/jor.25315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Tendon transcriptomics is a rapidly growing field in musculoskeletal biology. The ultimate aim of many current tendon transcriptomic studies is characterization of in vitro, ex vivo, or in vivo, healthy, and diseased tendon microenvironments to identify the underlying pathways driving human tendon pathology. The transcriptome interfaces between genomic, proteomic, and metabolomic signatures of the tendon cellular niche and the response of this niche to stimuli. Some of the greatest bottlenecks in tendon transcriptomics relate to the availability and quality of human tendon tissue, hence animal tissues are frequently used even though human tissue is most translationally relevant. Here, we review the variability associated with human donor and procurement factors, such as whether the tendon is cadaveric or a clinical remnant, and how these variables affect the quality and relevance of the transcriptomes obtained. Moreover, age, sex, and health demographic variables impact the human tendon transcriptome. Tendons present tissue-specific challenges for cell, nuclei, and RNA extraction that include a dense extracellular matrix, low cellularity, and therefore low RNA yield of variable quality. Consideration of these factors is particularly important for single-cell and single-nuclei resolution transcriptomics due to the necessity for unbiased and representative cell or nuclei populations. Different cell, nuclei, and RNA extraction methods, library preparation, and quality control methods are used by the tendon research community and attention should be paid to these when designing and reporting studies. We discuss the different components and challenges of human tendon transcriptomics, and propose pipelines, quality control, and reporting guidelines for future work in the field.
Collapse
Affiliation(s)
- Lorenzo Ramos‐Mucci
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| | - Paula Sarmiento
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Dianne Little
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Sarah Snelling
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Abstract
Tendons perform a critical function in the musculoskeletal system by integrating muscle with skeleton and enabling force transmission. Damage or degeneration of these tissues lead to impaired structure and function, which often persist despite surgical intervention. While the immune response and inflammation are important drivers of both tendon healing and disease progression, there have been relatively few studies of the diverse immune cell types that may regulate these processes in these tissues. To date, most of the studies have focused on macrophages, but emerging research indicate that other immune cell types may also play a role in tendon healing, either by regulating the immune environment or through direct interactions with resident tenocytes. The present review synthesises the literature on innate and adaptive immune system cells that have been implicated in tendon healing or disease, in the context of animal injury models, human clinical samples or in vitro experiments.
Collapse
Affiliation(s)
| | - A H Huang
- William Black Building, 650 W 168th Street, Room 1408, New York, NY 10032,
| |
Collapse
|
34
|
Wang Y, Zhang J, Lin Y, Cheng S, Wang D, Rao M, Jiang Y, Huang X, Chen R, Xie Y, Yin P, Cheng B. A Global Phosphorylation Atlas of Proteins Within Pathological Site of Rotator Cuff Tendinopathy. Front Mol Biosci 2022; 8:787008. [PMID: 35242811 PMCID: PMC8886731 DOI: 10.3389/fmolb.2021.787008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff tendinopathy (RCT) is the most common cause of shoulder pain, therefore posing an important clinical problem. Understanding the mechanism and biochemical changes of RCT would be of crucial importance and pave the path to targeting novel and effective therapeutic strategies in translational perspectives and clinical practices. Phosphorylation, as one of the most important and well-studied post-translational modifications, is tightly associated with protein activity and protein functional regulation. Here in this study, we generated a global protein phosphorylation atlas within the pathological site of human RCT patients. By using Tandem Mass Tag (TMT) labeling combined with mass spectrometry, an average of 7,741 phosphorylation sites (p-sites) and 3,026 proteins were identified. Compared with their normal counterparts, 1,668 p-sites in 706 proteins were identified as upregulated, while 73 p-sites in 57 proteins were downregulated. GO enrichment analyses have shown that majority of proteins with upregulated p-sites functioned in neutrophil-mediated immunity whereas downregulated p-sites are mainly involved in muscle development. Furthermore, pathway analysis identified NF-κB–related TNF signaling pathway and protein kinase C alpha type (PKCα)–related Wnt signaling pathway were associated with RCT pathology. At last, a weighted kinase-site phosphorylation network was built to identify potentially core kinase, from which serine/threonine-protein kinase 39 (STLK3) and mammalian STE20-like protein kinase 1 (MST1) were proposed to be positively correlated with the activation of Wnt pathway.
Collapse
Affiliation(s)
- Yezhou Wang
- School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Jiawei Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing, China
| | - Yuan Lin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Duanyang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Man Rao
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yuheng Jiang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ruijing Chen
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yong Xie
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Pengbin Yin, ; Biao Cheng,
| | - Biao Cheng
- School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Pengbin Yin, ; Biao Cheng,
| |
Collapse
|
35
|
Mueller AL, Brockmueller A, Kunnumakkara AB, Shakibaei M. Calebin A, a Compound of Turmeric, Down-Regulates Inflammation in Tenocytes by NF-κB/Scleraxis Signaling. Int J Mol Sci 2022; 23:ijms23031695. [PMID: 35163616 PMCID: PMC8836001 DOI: 10.3390/ijms23031695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Calebin A (CA) is one of the active constituents of turmeric and has anti-inflammatory and antioxidant effects. Excessive inflammation and cell apoptosis are the main causes of tendinitis and tendinopathies. However, the role of CA in tendinitis is still unclear and needs to be studied in detail. Tenocytes in monolayer or 3D-alginate cultures in the multicellular tendinitis microenvironment (fibroblast cells) with T-lymphocytes (TN-ME) or with TNF-α or TNF-β, were kept without treatment or treated with CA to study their range of actions in inflammation. We determined that CA blocked TNF-β-, similar to TNF-α-induced adhesiveness of T-lymphocytes to tenocytes. Moreover, immunofluorescence and immunoblotting showed that CA, similar to BMS-345541 (specific IKK-inhibitor), suppressed T-lymphocytes, or the TNF-α- or TNF-β-induced down-regulation of Collagen I, Tenomodulin, tenocyte-specific transcription factor (Scleraxis) and the up-regulation of NF-κB phosphorylation; thus, its translocation to the nucleus as well as various NF-κB-regulated proteins was implicated in inflammatory and degradative processes. Furthermore, CA significantly suppressed T-lymphocyte-induced signaling, similar to TNF-β-induced signaling, and NF-κB activation by inhibiting the phosphorylation and degradation of IκBα (an NF-κB inhibitor) and IκB-kinase activity. Finally, inflammatory TN-ME induced the functional linkage between NF-κB and Scleraxis, proposing that a synergistic interaction between the two transcription factors is required for the initiation of tendinitis, whereas CA strongly attenuated this linkage and subsequent inflammation. For the first time, we suggest that CA modulates TN-ME-promoted inflammation in tenocytes, at least in part, via NF-κB/Scleraxis signaling. Thus, CA seems to be a potential bioactive compound for the prevention and treatment of tendinitis.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, India;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
36
|
Ding L, Zhou B, Hou Y, Xu L. Stem cells in tendon regeneration and factors governing tenogenesis. Curr Stem Cell Res Ther 2022; 17:503-512. [PMID: 35086458 DOI: 10.2174/1574888x17666220127111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Tendons are connective tissue structures of paramount importance to the human ability of locomotion. Tendinopathy and tendon rupture can be resistant to treatment and often recurs, thus resulting in a significant health problem with a relevant social impact worldwide. Unfortunately, existing treatment approaches are suboptimal. A better understanding of the basic biology of tendons may provide a better way to solve these problems and promote tendon regeneration. Stem cells, either obtained from tendons or non-tendon sources, such as bone marrow (BMSCs), adipose tissue (AMSCs), as well as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have received increasing attention toward enhancing tendon healing. There are many studies showing that stem cells can contribute to improving tendon healing. Hence, in this review, the current knowledge of BMSCs, AMSCs, TSPCs, ESCs and iPSCs for tendon regeneration, as well as the advantages and limitations among them, has been highlighted. Moreover, the transcriptional and bioactive factors governing tendon healing processes have been discussed.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - BingYu Zhou
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Leucht P, Einhorn TA. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2021; 103:2157-2160. [PMID: 34637402 DOI: 10.2106/jbjs.21.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Philipp Leucht
- Departments of Orthopaedic Surgery and Cell Biology, NYU Grossman School of Medicine, New York, NY
| | | |
Collapse
|
38
|
A Tendon-Specific Double Reporter Transgenic Mouse Enables Tracking Cell Lineage and Functions Alteration In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222011189. [PMID: 34681849 PMCID: PMC8537162 DOI: 10.3390/ijms222011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
We generated and characterized a transgenic mouse line with the tendon-specific expression of a double fluorescent reporter system, which will fulfill an unmet need for animal models to support real-time monitoring cell behaviors during tendon development, growth, and repair in vitro and in vivo. The mScarlet red fluorescent protein is driven by the Scleraxis (Scx) promoter to report the cell lineage alteration. The blue fluorescent protein reporter is expressed under the control of the 3.6kb Collagen Type I Alpha 1 Chain (Col1a1) proximal promoter. In this promoter, the existence of two promoter regions named tendon-specific cis-acting elements (TSE1, TSE2) ensure the specific expression of blue fluorescent protein (BFP) in tendon tissue. Collagen I is a crucial marker for tendon regeneration that is a major component of healthy tendons. Thus, the alteration of function during tendon repair can be estimated by BFP expression. After mechanical stimulation, the expression of mScarlet and BFP increased in adipose-derived mesenchymal stem cells (ADMSCs) from our transgenic mouse line, and there was a rising trend on tendon key markers. These results suggest that our tendon-specific double reporter system is a novel model used to study cell re-differentiation and extracellular matrix alteration in vitro and in vivo.
Collapse
|
39
|
Stauber T, Wolleb M, Duss A, Jaeger PK, Heggli I, Hussien AA, Blache U, Snedeker JG. Extrinsic Macrophages Protect While Tendon Progenitors Degrade: Insights from a Tissue Engineered Model of Tendon Compartmental Crosstalk. Adv Healthc Mater 2021; 10:e2100741. [PMID: 34494401 PMCID: PMC11468160 DOI: 10.1002/adhm.202100741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/30/2021] [Indexed: 12/15/2022]
Abstract
Tendons are among the most mechanically stressed tissues of the body, with a functional core of type-I collagen fibers maintained by embedded stromal fibroblasts known as tenocytes. The intrinsic load-bearing core compartment of tendon is surrounded, nourished, and repaired by the extrinsic peritendon, a synovial-like tissue compartment with access to tendon stem/progenitor cells as well as blood monocytes. In vitro tendon model systems generally lack this important feature of tissue compartmentalization, while in vivo models are cumbersome when isolating multicellular mechanisms. To bridge this gap, an improved in vitro model of explanted tendon core stromal tissue (mouse tail tendon fascicles) surrounded by cell-laden collagen hydrogels that mimic extrinsic tissue compartments is suggested. Using this model, CD146+ tendon stem/progenitor cell and CD45+ F4/80+ bone-marrow derived macrophage activity within a tendon injury-like niche are recapitulated. It is found that extrinsic stromal progenitors recruit to the damaged core, contribute to an overall increase in catabolic ECM gene expression, and accelerate the decrease in mechanical properties. Conversely, it is found that extrinsic bone-marrow derived macrophages in these conditions adopt a proresolution phenotype that mitigates rapid tissue breakdown by outwardly migrated tenocytes and F4/80+ "tenophages" from the intrinsic tissue core.
Collapse
Affiliation(s)
- Tino Stauber
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Maja Wolleb
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Anja Duss
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Patrick K. Jaeger
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Irina Heggli
- Center of Experimental RheumatologyDepartment of RheumatologyUniversity Hospital, University of ZurichLengghalde 5Zurich8008Switzerland
| | - Amro A. Hussien
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Ulrich Blache
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
- Fraunhofer Institute for Cell Therapy and Immunology04103LeipzigGermany
| | - Jess G. Snedeker
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| |
Collapse
|
40
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Notermans T, Tanska P, Korhonen RK, Khayyeri H, Isaksson H. A numerical framework for mechano-regulated tendon healing-Simulation of early regeneration of the Achilles tendon. PLoS Comput Biol 2021; 17:e1008636. [PMID: 33556080 PMCID: PMC7901741 DOI: 10.1371/journal.pcbi.1008636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/23/2021] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently. However, the basic mechanobiological mechanisms governing tendon healing after a rupture are still not well-understood. Literature has reported spatial and temporal variations in the healing of ruptured tendon tissue. In this study, we explored a computational modeling approach to describe tendon healing. In particular, a novel 3D mechano-regulatory framework was developed to investigate spatio-temporal evolution of collagen content and orientation, and temporal evolution of tendon stiffness during early tendon healing. Based on an extensive literature search, two possible relationships were proposed to connect levels of mechanical stimuli to collagen production. Since literature remains unclear on strain-dependent collagen production at high levels of strain, the two investigated production laws explored the presence or absence of collagen production upon non-physiologically high levels of strain (>15%). Implementation in a finite element framework, pointed to large spatial variations in strain magnitudes within the callus tissue, which resulted in predictions of distinct spatial distributions of collagen over time. The simulations showed that the magnitude of strain was highest in the tendon core along the central axis, and decreased towards the outer periphery. Consequently, decreased levels of collagen production for high levels of tensile strain were shown to accurately predict the experimentally observed delayed collagen production in the tendon core. In addition, our healing framework predicted evolution of collagen orientation towards alignment with the tendon axis and the overall predicted tendon stiffness agreed well with experimental data. In this study, we explored the capability of a numerical model to describe spatial and temporal variations in tendon healing and we identified that understanding mechano-regulated collagen production can play a key role in explaining heterogeneities observed during tendon healing.
Collapse
Affiliation(s)
- Thomas Notermans
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- * E-mail:
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|