1
|
Sun S, Liao Y, Fu J, Liang Y, Chen Y, Mao K, Gao B. Fingerprint Analysis and Comparison of Activity Differences of Crude Venom from Five Species of Vermivorous Cone Snail in the South China Sea. Mar Drugs 2025; 23:102. [PMID: 40137288 PMCID: PMC11943727 DOI: 10.3390/md23030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
The South China Sea is rich in cone snail resources, known for producing conotoxins with diverse biological activities such as analgesic, anticancer, and insecticidal effects. In this study, five vermivorous cone snail samples were collected from the South China Sea and their crude venom was extracted to investigate the variations in venom components and activities, aiming to identify highly active samples for further research. Cluster analysis using reverse-phase high-performance liquid chromatography (RP-HPLC) fingerprints and mitochondrial cytochrome c oxidase I (COI) gene sequences revealed that the diversity of venom components across different conotoxin species is genetically correlated. Activity assays demonstrated that all five cone snail venoms exhibited lethal effects on insects and zebrafish. Notably, the crude venom of Conus quercinus showed the highest insecticidal activity with an LD50 of 0.6 μg/mg, while C. tessellatus venom exhibited the most potent zebrafish lethality with an LD50 of 0.2 μg/mg. Furthermore, the crude venom from four cone snail species demonstrated toxicity against ovarian cancer cells, and only C. caracteristicu venom displayed significant analgesic activity. This study systematically identifies cone snail samples with promising insecticidal, anticancer, and analgesic properties, paving the way for the development and utilization of cone snail resources from the South China Sea and offering a novel approach for advancing marine peptide drug research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kailin Mao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.S.); (Y.L.); (J.F.); (Y.L.); (Y.C.)
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (S.S.); (Y.L.); (J.F.); (Y.L.); (Y.C.)
| |
Collapse
|
2
|
Xiao K, Li R, Lin S, Huang X. Enhancing eco-sensing in aquatic environments: Fish jumping behavior automatic recognition using YOLOv5. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107137. [PMID: 39520842 DOI: 10.1016/j.aquatox.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Contemporary research on ichthyological behavior predominantly investigates underwater environments. However, the intricate nature of aquatic ecosystems often hampers subaqueous observations of fish behavior due to interference. Transitioning the observational perspective from subaqueous to supra-aquatic enables a more direct assessment of fish physiology and habitat conditions. In this study, we utilized the YOLOv5 convolutional neural network target detection model to develop a fish jumping behavior (FJB) recognition model. A dataset comprising 877 images of fish jumping, captured via a camera in a reservoir, was assembled for model training and validation. After training and validating the model, its recognition accuracy was further tested in real aquatic environments. The results show that YOLOv5 outperforms YOLOv7, YOLOv8, and YOLOv9 in detecting splashes. Post 50 training epochs, YOLOv5 achieved over 97 % precision and recall in the validation set, with an F1 score exceeding 0.9. Furthermore, an enhanced YOLOv5-SN model was devised by integrating specific rules related to ripple size variation and duration, attributable to fish jumping. This modification significantly mitigates noise interference in the detection process. The model's robustness against weather variations ensures reliable detection of fish jumping behavior under diverse meteorological conditions, including rain, cloudiness, and sunshine. Different meteorological elements exert varying effects on fish jumping behavior. The research results can lay the foundation for intelligent perception in aquatic ecology assessment and aquaculture.
Collapse
Affiliation(s)
- Kaibang Xiao
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China.
| | - Senhai Lin
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Xianyu Huang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
3
|
Langstengel J, Yaggi HK. Sleep Deficiency and Opioid Use Disorder: Trajectory, Mechanisms, and Interventions. Sleep Med Clin 2024; 19:625-638. [PMID: 39455182 DOI: 10.1016/j.jsmc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders (eg, insomnia, sleep apnea), circadian disruption (eg, delayed sleep phase and social jet lag), and poor sleep quality (eg, sleep fragmentation, impaired sleep architecture), is present in greater than 75% of patients with OUD. This article focuses on highlighting bidirectional mechanisms between OUD and sleep deficiency and points toward promising therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Langstengel
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA
| | - H Klar Yaggi
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA; Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
4
|
Acton S, O'Donnell MM, Periyasamy K, Dixit B, Eishingdrelo H, Hill C, Paul Ross R, Chesnel L. LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models. Brain Behav Immun 2024; 121:384-402. [PMID: 39147172 DOI: 10.1016/j.bbi.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
5
|
Hillman C, Kearn J, Parker MO. A unified approach to investigating 4 dpf zebrafish larval behaviour through a standardised light/dark assay. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111084. [PMID: 39002928 DOI: 10.1016/j.pnpbp.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Zebrafish are a dynamic research model in the domains of neuropsychopharmacology, biological psychiatry and behaviour. Working with larvae ≤4 days post-fertilisation (dpf) offers an avenue for high-throughput investigation whilst aligning with the 3Rs principles of animal research. The light/dark assay, which is the most widely used behavioural assay for larval neuropharmacology research, lacks experimental reliability and standardisation. This study aimed to formulate a robust, reproducible and standardised light/dark behavioural assay using 4 dpf zebrafish larvae. Considerable between-batch and inter-individual variability was found, which we rectified with a normalisation approach to ensure a reliable foundation for analysis. We then identified that 5-min light/dark transition periods are optimal for locomotor activity. We also found that a 30-min acclimation in the light was found to produce significantly increased dark phase larval locomotion. Next, we confirmed the pharmacological predictivity of the standardised assay using ethanol which, as predicted, caused hyperlocomotion at low concentrations and hypolocomotion at high concentrations. Finally, the assay was validated by assessing the behavioural phenotype of hyperactive transgenic (adgrl3.1-/-) larvae, which was rescued with psychostimulant medications. Our standardised assay not only provides a clear experimental and analytical framework to work with 4 dpf larvae, but also facilitates between-laboratory collaboration using our normalisation approach.
Collapse
Affiliation(s)
- Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| | - James Kearn
- Defence Science and Technology Laboratory (DSTL), UK.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
6
|
Li Y, Zhao M, Tang R, Fang K, Zhang H, Kang X, Yang L, Ge W, Du W. Study on the quality of Corydalis Rhizoma in Zhejiang based on multidimensional evaluation method. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118047. [PMID: 38499258 DOI: 10.1016/j.jep.2024.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality requirements of Corydalis Rhizoma (CR) in different producing areas are uniform, resulting in uneven efficacy. As a genuine producing area, the effective quality control of CR in Zhejiang Province (ZJ) could provide a theoretical basis for the rational application of medicinal materials. AIM OF THE STUDY The purpose of this study was to effectively distinguish the CR inside and outside ZJ, and provided a theoretical basis for the quality control and material basis research of ZJ CR. MATERIALS AND METHODS The core components of ZJ CR could be identified by HPLC combined with chemometrics screening, and the quality of CR from different producing areas was evaluated by a genetic algorithm-back propagation (GA-BP) neural network. Chromaticity and near-infrared (NIR) spectroscopy were used to identify CR inside and outside ZJ, and rapid content prediction was realized. The analgesic effect of CR in different regions was compared by a zebrafish analgesic experiment. Analgesic experiments in rats and analysis of the research status of quality components were used to screen the quality control components of ZJ CR. RESULTS The contents of palmatine hydrochloride (YSBMT), dehydrocorydaline (TQZJJ), tetrahydropalmatine (YHSYS), tetrahydroberberine (SQXBJ), corydaline (YHSJS), stylopine (SQHLJ), and isoimperatorin (YOQHS) in ZJ CR were higher than those in CR from outside ZJ, but the content of protopine (YAPJ) and berberine hydrochloride (YSXBJ) was lower than that in CR from outside ZJ. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. The GA-BP neural network showed that the relative importance of ZJ CR was the strongest. Chroma-content correlation analysis and the NIR qualitative model could effectively distinguish CR from inside and outside of ZJ, and the NIR quantitative model could quickly predict the content of CR from inside and outside of ZJ. Zebrafish experiments showed that ZJ, Shaanxi (SX), Henan (HN), and Sichuan (SC) CR had significant analgesic effects, while Hebei (HB) CR had no significant analgesic effect. Overall comparison, the analgesic effect of ZJ CR was better than that of CR outside ZJ. The comprehensive score of the grey correlation degree between YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, YHSJS, SQXBJ, and SQHLJ were higher than 0.9, and the research frequency were extremely high. CONCLUSIONS The relative importance of the content and origin of most components of ZJ CR was higher than that of CR outside ZJ. The holistic analgesic effect of ZJ CR was better than that of CR outside ZJ, but slightly lower than that of SX CR. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, SQXBJ, YHSJS, and SQHLJ could be used as the quality control components of ZJ CR. The multidimensional evaluation method used in this study provided a reference for the quality control and material basis research of ZJ CR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Xianjie Kang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Liu Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
7
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
8
|
Esancy K, Conceicao LL, Curtright A, Tran T, Condon L, Lecamp B, Dhaka A. A novel small molecule, AS1, reverses the negative hedonic valence of noxious stimuli. BMC Biol 2023; 21:69. [PMID: 37013580 PMCID: PMC10071644 DOI: 10.1186/s12915-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Pain is the primary reason people seek medical care, with chronic pain affecting ~ 20% of people in the USA. However, many existing analgesics are ineffective in treating chronic pain, while others (e.g., opioids) have undesirable side effects. Here, we describe the screening of a small molecule library using a thermal place aversion assay in larval zebrafish to identify compounds that alter aversion to noxious thermal stimuli and could thus serve as potential analgesics. RESULTS From our behavioral screen, we discovered a small molecule, Analgesic Screen 1 (AS1), which surprisingly elicited attraction to noxious painful heat. When we further explored the effects of this compound using other behavioral place preference assays, we found that AS1 was similarly able to reverse the negative hedonic valence of other painful (chemical) and non-painful (dark) aversive stimuli without being inherently rewarding. Interestingly, targeting molecular pathways canonically associated with analgesia did not replicate the effects of AS1. A neuronal imaging assay revealed that clusters of dopaminergic neurons, as well as forebrain regions located in the teleost equivalent of the basal ganglia, were highly upregulated in the specific context of AS1 and aversive heat. Through a combination of behavioral assays and pharmacological manipulation of dopamine circuitry, we determined that AS1 acts via D1 dopamine receptor pathways to elicit this attraction to noxious stimuli. CONCLUSIONS Together, our results suggest that AS1 relieves an aversion-imposed "brake" on dopamine release, and that this unique mechanism may provide valuable insight into the development of new valence-targeting analgesic drugs, as well as medications for other valence-related neurological conditions, such as anxiety and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Lais L Conceicao
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Thanh Tran
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Bryce Lecamp
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, USA.
| |
Collapse
|
9
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
10
|
Bilel S, Murari M, Pesavento S, Arfè R, Tirri M, Torroni L, Marti M, Tagliaro F, Gottardo R. Toxicity and behavioural effects of ocfentanil and 2-furanylfentanyl in zebrafish larvae and mice. Neurotoxicology 2023; 95:83-93. [PMID: 36634872 DOI: 10.1016/j.neuro.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
The introduction of the so-called New Psychoactive Substances represents a problem of global concern due to several factors, including multiplicity of structures, poorly known activity, short half-life in the market, lack of pure standards etc. Among these problems, of the highest relevance is also the lack of information about metabolism and adverse effects, which must be faced using simple and low-cost animal models. On these grounds, the present work has been carried out on 5 days post fertilization zebrafish (Danio rerio) larvae in comparison with adult mice (Mus musculus). Ocfentanil and 2-furanylfentanyl were administered at different concentrations to zebrafish larvae (1, 10 µM) and mice (0.1, 1, 6, 15 mg/kg). The behavioural assay showed a decrease in basal locomotor activity in zebrafish, whereas in mice this effect was evident only after the mechanical stimulus. Larva extracts and mice urine were analysed by using liquid chromatography coupled to high resolution mass spectrometry to identify the metabolic pathways of the fentanyl analogs. For 2-furanylfentanyl, the most common biotransformations observed were hydroxylation, hydration and oxidation in zebrafish larvae, whereas mice produced mainly the dihydrodiol metabolite. Hydroxylation was the major route of metabolism for ocfentanil in zebrafish larvae, while in mice the O-demethylated derivative was the main metabolite. In addition, a study was conducted to evaluate morphological effects of the two drugs on zebrafish larvae. Malformations were noticeable only at the highest concentration of 2-furanylfentanyl, whereas no significant damage was observed with ocfentanil. In conclusion, the two animal models show similarities in behavioral response and in metabolism, considering the different biological investigated.
Collapse
Affiliation(s)
- S Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - M Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - M Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - L Torroni
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - M Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - F Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; "World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - R Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Sladky KK. Treatment of Pain in Fish. Vet Clin North Am Exot Anim Pract 2023; 26:11-26. [PMID: 36402477 DOI: 10.1016/j.cvex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter provides an overview of our current understanding of clinical analgesic use in fish. Recently, the efficacy and pharmacokinetics of several analgesic drugs for use in fish have been investigated, and the most important data indicates that μ-opioid agonist drugs (e.g, morphine) are consistently effective as analgesics across fish species. In addition, bath application of some analgesic drugs may be useful, which affords multiple methods for delivering analgesics to fish. Although few published studies of non-steroidal anti-inflammatory drugs administered to fish show promise, we have much to learn about the analgesic efficacy of most drugs in this class.
Collapse
Affiliation(s)
- Kurt K Sladky
- University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53705 USA.
| |
Collapse
|
12
|
Wang B, Chen J, Sheng Z, Lian W, Wu Y, Liu M. Embryonic exposure to fentanyl induces behavioral changes and neurotoxicity in zebrafish larvae. PeerJ 2022; 10:e14524. [PMID: 36540796 PMCID: PMC9760023 DOI: 10.7717/peerj.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The use of fentanyl during pregnancy, whether by prescription or illicit use, may result in high blood levels that pose an early risk to fetal development. However, little is known regarding the neurotoxicity that might arise from excessive fentanyl exposure in growing organisms, particularly drug-related withdrawal symptoms. In this study, zebrafish embryos were exposed to fentanyl solutions (0.1, 1, and 5 mg/L) for 5 days post fertilization (dpf), followed by a 5-day recovery period, and then the larvae were evaluated for photomotor response, anxiety behavior, shoaling behavior, aggression, social preference, and sensitization behavior. Fentanyl solutions at 1 and 5 mg/L induced elevated anxiety, decreased social preference and aggressiveness, and behavioral sensitization in zebrafish larvae. The expression of genes revealed that embryonic exposure to fentanyl caused substantial alterations in neural activity (bdnf, c-fos) and neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). These results suggest that fentanyl exposure during embryonic development is neurotoxic, highlighting the importance of zebrafish as an aquatic species in research on the neurobehavioral effects of opioids in vertebrates.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiale Chen
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhong Sheng
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Wanting Lian
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Meng Liu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Khalili A, van Wijngaarden E, Zoidl GR, Rezai P. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach. INTEGRATIVE BIOLOGY : QUANTITATIVE BIOSCIENCES FROM NANO TO MACRO 2022; 14:162-170. [PMID: 36416255 DOI: 10.1093/intbio/zyac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Multi-phenotypic screening of multiple zebrafish larvae plays an important role in enhancing the quality and speed of biological assays. Many microfluidic platforms have been presented for zebrafish phenotypic assays, but multi-organ screening of multiple larvae, from different needed orientations, in a single device that can enable rapid and large-sample testing is yet to be achieved. Here, we propose a multi-phenotypic quadruple-fish microfluidic chip for simultaneous monitoring of heart activity and fin movement of 5-7-day postfertilization zebrafish larvae trapped in the chip. In each experiment, fin movements of four larvae were quantified in the dorsal view in terms of fin beat frequency (FBF). Positioning of four optical prisms next to the traps provided the lateral views of the four larvae and enabled heart rate (HR) monitoring. The device's functionality in chemical testing was validated by assessing the impacts of ethanol on heart and fin activities. Larvae treated with 3% ethanol displayed a significant drop of 13.2 and 35.8% in HR and FBF, respectively. Subsequent tests with cadmium chloride highlighted the novel application of our device for screening the effect of heavy metals on cardiac and respiratory function at the same time. Exposure to 5 $\mu$g/l cadmium chloride revealed a significant increase of 8.2% and 39.2% in HR and FBF, respectively. The device can be employed to monitor multi-phenotypic behavioral responses of zebrafish larvae induced by chemical stimuli in various chemical screening assays, in applications such as ecotoxicology and drug discovery.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Wu Y, Wang A, Fu L, Liu M, Li K, Chian S, Yao W, Wang B, Wang J. Fentanyl Induces Novel Conditioned Place Preference in Adult Zebrafish, Disrupts Neurotransmitter Homeostasis, and Triggers Behavioral Changes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13533. [PMID: 36294112 PMCID: PMC9603063 DOI: 10.3390/ijerph192013533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Abuse of new psychoactive substances increases risk of addiction, which can lead to serious brain disorders. Fentanyl is a synthetic opioid commonly used in clinical practice, and behavioral changes resulting from fentanyl addiction have rarely been studied with zebrafish models. In this study, we evaluated the rewarding effects of intraperitoneal injections of fentanyl at concentrations of 10, 100, and 1000 mg/L on the group shoaling behavior in adult zebrafish. Additional behavioral tests on individual zebrafish, including novel tank, novel object exploration, mirror attack, social preference, and T-maze memory, were utilized to evaluate fentanyl-induced neuro-behavioral toxicity. The high doses of 1000 mg/L fentanyl produced significant reward effects in zebrafish and altered the neuro-behavioral profiles: reduced cohesion in shoaling behavior, decreased anxiety levels, reduced exploratory behavior, increased aggression behavior, affected social preference, and suppressed memory in an appetitive associative learning task. Behavioral changes in zebrafish were shown to be associated with altered neurotransmitters, such as elevated glutamine (Gln), gamma-aminobutyric acid (GABA), dopamine hydrochloride (DA), and 5-hydroxytryptamine (5-HT). This study identified potential fentanyl-induced neurotoxicity through multiple neurobehavioral assessments, which provided a method for assessing risk of addiction to new psychoactive substances.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lixiang Fu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou 310002, China
| | - Meng Liu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Kang Li
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Song Chian
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
15
|
Eckert DJ, Yaggi HK. Opioid Use Disorder, Sleep Deficiency, and Ventilatory Control: Bidirectional Mechanisms and Therapeutic Targets. Am J Respir Crit Care Med 2022; 206:937-949. [PMID: 35649170 PMCID: PMC9801989 DOI: 10.1164/rccm.202108-2014ci] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Opioid use continues to rise globally. So too do the associated adverse consequences. Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders, circadian disruption, and poor sleep quality or structure due to other medical conditions and pain, is present in 75% of patients with OUD. Sleep deficiency accompanies OUD across the spectrum of this addiction. The focus of this concise clinical review is to highlight the bidirectional mechanisms between OUD and sleep deficiency and the potential to target sleep deficiency with therapeutic interventions to promote long-term, healthy recovery among patients in OUD treatment. In addition, current knowledge on the effects of opioids on sleep quality, sleep architecture, sleep-disordered breathing, sleep apnea endotypes, ventilatory control, and implications for therapy and clinical practice are highlighted. Finally, an actionable research agenda is provided to evaluate the basic mechanisms of the relationship between sleep deficiency and OUD and the potential for behavioral, pharmacologic, and positive airway pressure treatments targeting sleep deficiency to improve OUD treatment outcomes.
Collapse
Affiliation(s)
- Danny J. Eckert
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - H. Klar Yaggi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
- Clinical Epidemiology Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
16
|
Pesavento S, Bilel S, Murari M, Gottardo R, Arfè R, Tirri M, Panato A, Tagliaro F, Marti M. Zebrafish larvae: A new model to study behavioural effects and metabolism of fentanyl, in comparison to a traditional mice model. MEDICINE, SCIENCE, AND THE LAW 2022; 62:188-198. [PMID: 35040690 DOI: 10.1177/00258024221074568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an effort to find alternatives to study in vivo the so-called New Psychoactive Substances (NPS), the present work was undertaken to investigate the use of zebrafish larvae as animal model in pharmaco-toxicology, providing behavioural and metabolism information. For this purpose, fentanyl, the progenitor of an extremely dangerous group of NPS, was administered at different doses to zebrafish larvae (1, 10, 50, 100 µM) in comparison to mice (0.1, 1, 6, 15 mg/kg), as a well-established animal model. A behavioural assay was performed at the time of the peak effect of fentanyl, showing that the results in larvae are consistent with those observed in mice. On the other hand, several morphological abnormalities (namely yolk sac edema, abnormal pericardial edema, jaw defect and spinal curvature) were found in larvae mostly at high fentanyl doses (50, 100 µM). Larva extract and mice urine were analyzed by using liquid chromatography coupled to high resolution mass spectrometry to identify the metabolic pathways of fentanyl. The main metabolites detected were norfentanyl and hydroxyfentanyl in both the tested models. In conclusion, the present study provides evidence that fentanyl effects on zebrafish larvae and metabolism are similar to rodents and consequently support the hypothesis of using zebrafish larvae as a suitable rapid screening tool to investigate new drugs, and particularly NPS.
Collapse
Affiliation(s)
- S Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - A Panato
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- "World-Class Research Center" Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - M Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| |
Collapse
|
17
|
Langstengel J, Yaggi HK. Sleep Deficiency and Opioid Use Disorder: Trajectory, Mechanisms, and Interventions. Clin Chest Med 2022; 43:e1-e14. [PMID: 35659031 PMCID: PMC10018646 DOI: 10.1016/j.ccm.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders (eg, insomnia, sleep apnea), circadian disruption (eg, delayed sleep phase and social jet lag), and poor sleep quality (eg, sleep fragmentation, impaired sleep architecture), is present in greater than 75% of patients with OUD. This article focuses on highlighting bidirectional mechanisms between OUD and sleep deficiency and points toward promising therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Langstengel
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA
| | - H Klar Yaggi
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA; Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
18
|
Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med 2022; 18:647-652. [PMID: 34672945 PMCID: PMC8805010 DOI: 10.5664/jcsm.9730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
Opioids are widely prescribed for pain management, and it is estimated that 40% of adults in the United States use prescription opioids every year. Opioid misuse leads to high mortality, with respiratory depression as the main cause of death. Animal and human studies indicate that opioid use may lead to sleep-disordered breathing. Opioids affect control of breathing and impair upper airway function, causing central apneas, upper airway obstruction, and hypoxemia during sleep. The presence of obstructive sleep apnea (OSA) increases the risk of opioid-induced respiratory depression. However, even if the relationship between opioids and central sleep apnea is firmly established, the question of whether opioids can aggravate OSA remains unanswered. While several reports have shown a high prevalence of OSA and nocturnal hypoxemia in patients receiving a high dose of opioids, other studies did not find a correlation between opioid use and obstructive events. These differences can be attributed to considerable interindividual variability, divergent effects of opioids on different phenotypic traits of OSA, and wide-ranging methodology. This review will discuss mechanistic insights into the effects of opioids on the upper airway and hypoglossal motor activity and the association of opioid use and obstructive sleep apnea. CITATION Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med. 2022;18(2):647-652.
Collapse
Affiliation(s)
- Carla Freire
- Johns Hopkins Sleep Disorders Center, Baltimore, Maryland
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | - Luiz U. Sennes
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
19
|
Ishimota M, Tomiyama N. Generational sensitivity alteration in Chironomus yoshimatsui to carbamate and pharmaceutical chemicals and the effect on Catalase, CYP450, and hemoglobin gene transcription. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2119-2131. [PMID: 34623547 DOI: 10.1007/s10646-021-02484-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
To ascertain the tolerance mechanisms of aquatic organisms to artificial chemicals, intergenerational sensitivity changes of Chironomus yoshimatsui to a carbamate pesticide (pirimicarb) and pharmaceutical chemical (diazepam) were investigated. The larvae (<48-h-old) in each generation were exposed to both chemicals for 48 h and then the surviving chironomids were cultured until the fifth generation (F0-F4) without chemical addition. The 48-h 50% effective concentration (EC50) value of chironomids was determined for each generation. In the pirimicarb treatment group, the EC50 values significantly increased in F3 and F4, and those in the diazepam treatment group slightly increased. Catalase, Cytochrome P450 and hemoglobin (Hb) mRNA levels were monitored to see whether these were related to the trans-generational sensitivity. Although the generalized linear model results showed that the sensitivity to diazepam was slightly increased in the diazepam treatment, we could not find any mRNA levels related to sensitivity alteration. In contrast, the model approach showed that the chironomids exposed to pirimicarb trans-generationally became tolerant with increasing Hb mRNA levels. Therefore, they might decrease their chemical stress by modifying Hb gene transcription.
Collapse
Affiliation(s)
- Makoto Ishimota
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan.
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| |
Collapse
|
20
|
Hill R, Canals M. Experimental considerations for the assessment of in vivo and in vitro opioid pharmacology. Pharmacol Ther 2021; 230:107961. [PMID: 34256067 DOI: 10.1016/j.pharmthera.2021.107961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Morphine and other mu-opioid receptor (MOR) agonists remain the mainstay treatment of acute and prolonged pain states worldwide. The major limiting factor for continued use of these current opioids is the high incidence of side effects that result in loss of life and loss of quality of life. The development of novel opioids bereft, or much less potent, at inducing these side effects remains an intensive area of research, with multiple pharmacological strategies being explored. However, as with many G protein-coupled receptors (GPCRs), translation of promising candidates from in vitro characterisation to successful clinical candidates still represents a major challenge and attrition point. This review summarises the preclinical animal models used to evaluate the key opioid-induced behaviours of antinociception, respiratory depression, constipation and opioid-induced hyperalgesia and tolerance. We highlight the influence of distinct variables in the experimental protocols, as well as the potential implications for differences in receptor reserve in each system. Finally, we discuss how methods to assess opioid action in vivo and in vitro relate to each other in the context of bridging the translational gap in opioid drug discovery.
Collapse
Affiliation(s)
- Rob Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| |
Collapse
|