1
|
Lawson-Michod KA, Marks JR, Collin LJ, Nix DA, Davidson NR, Huff CD, Yu Y, Atkinson A, Johnson CE, Salas LA, Peres LC, Greene CS, Schildkraut JM, Doherty JA. Genomic Characterization of High-Grade Serous Ovarian Carcinoma Reveals Distinct Somatic Features in Black Individuals. Cancer Res 2025; 85:1725-1737. [PMID: 40063699 PMCID: PMC12048278 DOI: 10.1158/0008-5472.can-24-1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 05/03/2025]
Abstract
Black individuals experience worse survival after a diagnosis of high-grade serous ovarian carcinoma (HGSC) than White individuals and are underrepresented in ovarian cancer research. To date, the understanding of the molecular and genomic heterogeneity of HGSC is based primarily on the evaluation of tumors from White individuals. In the present study, we performed whole-exome sequencing on HGSC samples from 211 Black patients to identify significantly mutated genes and characterize mutational signatures, assessing their distributions by gene expression subtypes. The occurrence and frequency of somatic mutations and signatures by self-reported race were compared with historic data from The Cancer Genome Atlas (TCGA). Despite technical differences (e.g., formalin-fixed vs. fresh-frozen tissue), the distribution of mutations and their variant classifications for major HGSC genes were nearly identical across study populations. However, de novo significantly mutated gene analysis identified genes not previously reported in TCGA analysis, including the oncogene KRAS and the potential tumor suppressor OBSCN. The prevalence of the homologous recombination deficiency signature was higher among Black individuals with the immunoreactive gene expression subtype compared with the mesenchymal and proliferative subtypes. These findings were confirmed by comparing the data from Black patients with those from 123 White patients with identical tissue collection and processing. Overall, this study suggests that, although most features of HGSC tumor phenotypes are similar in Black and White populations, there may be clinically relevant differences. If validated, these phenotypes may be important for clinical decision-making and would have been missed by characterizing tumors from White individuals only. Significance: Elucidation of the somatic mutational landscape of high-grade serous ovarian carcinoma in Black individuals, who experience poor survival and are underrepresented in research, could inform patient prognosis and enable precision medicine opportunities.
Collapse
Affiliation(s)
- Katherine A Lawson-Michod
- Huntsman Cancer Institute, Salt Lake City, Utah
- The Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Lindsay J Collin
- Huntsman Cancer Institute, Salt Lake City, Utah
- The Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - David A Nix
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Natalie R Davidson
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Courtney E Johnson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, New Hampshire
| | - Lauren C Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Casey S Greene
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Salt Lake City, Utah
- The Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Freie B, Ibrahim AH, Carroll PA, Bronson RT, Augert A, MacPherson D, Eisenman RN. MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues. SCIENCE ADVANCES 2025; 11:eadt3177. [PMID: 40279415 PMCID: PMC12024646 DOI: 10.1126/sciadv.adt3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
The MYC transcription factor requires MAX for DNA binding and widespread activation of gene expression in both normal and neoplastic cells. Inactivating mutations in MAX are associated with a subset of neuroendocrine cancers including pheochromocytoma, pituitary adenoma, and small cell lung cancer. Neither the extent nor the mechanisms of MAX tumor suppression are well understood. Deleting Max across multiple mouse neuroendocrine tissues, we find that Max inactivation alone produces pituitary adenomas, while Max inactivation cooperates with Rb1/Trp53 loss to accelerate medullary thyroid C cell and pituitary adenoma development. In the thyroid tumor cell lines, MAX loss triggers a marked shift in genomic occupancy by other members of the MYC network (MNT, MLX, MondoA) supporting metabolism, survival, and proliferation of neoplastic neuroendocrine cells. Our work reveals MAX as a broad suppressor of neuroendocrine tumorigenesis through its ability to maintain a balance of genomic occupancies among the diverse transcription factors in the MYC network.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ali H. Ibrahim
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Patrick A. Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Roderick T. Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Arnaud Augert
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David MacPherson
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Robert N. Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Wolf van der Meer J, Larue A, van der Knaap JA, Chalkley GE, Sijm A, Beikmohammadi L, Kozhevnikova EN, van der Vaart A, Tilly BC, Bezstarosti K, Dekkers DHW, Doff WAS, van de Wetering-Tieleman PJ, Lanko K, Barakat TS, Allertz T, van Haren J, Demmers JAA, Atlasi Y, Verrijzer CP. Hao-Fountain syndrome protein USP7 controls neuronal differentiation via BCOR-ncPRC1.1. Genes Dev 2025; 39:401-422. [PMID: 39919828 PMCID: PMC11875088 DOI: 10.1101/gad.352272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Pathogenic variants in the ubiquitin-specific protease 7 (USP7) gene cause a neurodevelopmental disorder called Hao-Fountain syndrome. However, it remains unclear which of USP7's pleiotropic functions are relevant for neurodevelopment. Here, we present a combination of quantitative proteomics, transcriptomics, and epigenomics to define the USP7 regulatory circuitry during neuronal differentiation. USP7 activity is required for the transcriptional programs that direct both the differentiation of embryonic stem cells into neural stem cells and the neuronal differentiation of SH-SY5Y neuroblastoma cells. USP7 controls the dosage of the Polycomb monubiquitylated histone H2A lysine 119 (H2AK119ub1) ubiquitin ligase complexes ncPRC1.1 and ncPRC1.6. Loss-of-function experiments revealed that BCOR-ncPRC1.1, but not ncPRC1.6, is a key effector of USP7 during neuronal differentiation. Indeed, BCOR-ncPRC1.1 mediates a major portion of USP7-dependent gene regulation during this process. Besides providing a detailed map of the USP7 regulome during neurodifferentiation, our results suggest that USP7- and ncPRC1.1-associated neurodevelopmental disorders involve dysregulation of a shared epigenetic network.
Collapse
Affiliation(s)
- Joyce Wolf van der Meer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Axelle Larue
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Gillian E Chalkley
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Elena N Kozhevnikova
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Aniek van der Vaart
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ben C Tilly
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Wouter A S Doff
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - P Jantine van de Wetering-Tieleman
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tim Allertz
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeffrey van Haren
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom;
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
| |
Collapse
|
4
|
Okada R, Takenobu H, Satoh S, Sugino RP, Onuki R, Haruta M, Mukae K, Nakazawa A, Akter J, Ohira M, Kamijo T. L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes. Genes Cells 2024; 29:838-853. [PMID: 39189159 DOI: 10.1111/gtc.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1-6 (PRC1.1-6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. L3MBTL2-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. L3MBTL2-knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. Break repair meiotic recombinase recruitment factor 1 (BRME1) and nuclear receptor interacting protein 3 (NRIP3) were notably de-repressed by L3MBTL2-knockout. The deletion of L3MBTL2 reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of NRIP3 in an L3MBTL2-deficient context. Therefore, this study first revealed the significance of L3MBTL2-mediated gene silencing in MYCN-amplified NB cells.
Collapse
Affiliation(s)
- Ryu Okada
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
- Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ritsuko Onuki
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
- Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
5
|
Feng X, Yang C, Huang Y, Su D, Wang C, Wilson LL, Yin L, Tang M, Li S, Chen Z, Zhu D, Wang S, Zhang S, Zhang J, Zhang H, Nie L, Huang M, Park JI, Hart T, Jiang D, Jiang K, Chen J. In vivo CRISPR screens identify Mga as an immunotherapy target in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2406325121. [PMID: 39298484 PMCID: PMC11441491 DOI: 10.1073/pnas.2406325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Immune evasion is not only critical for tumor initiation and progression, but also determines the efficacy of immunotherapies. Through iterative in vivo CRISPR screens with seven syngeneic tumor models, we identified core and context-dependent immune evasion pathways across cancer types. This valuable high-confidence dataset is available for the further understanding of tumor intrinsic immunomodulators, which may lead to the discovery of effective anticancer therapeutic targets. With a focus on triple-negative breast cancer (TNBC), we found that Mga knock-out significantly enhances antitumor immunity and inhibits tumor growth. Transcriptomics and single-cell RNA sequencing analyses revealed that Mga influences various immune-related pathways in the tumor microenvironment. Our findings suggest that Mga may play a role in modulating the tumor immune landscape, though the precise mechanisms require further investigation. Interestingly, we observed that low MGA expression in breast cancer patients correlates with a favorable prognosis, particularly in those with active interferon-γ signaling. These observations provide insights into tumor immune escape mechanisms and suggest that further exploration of MGA's function could potentially lead to effective therapeutic strategies in TNBC.
Collapse
Affiliation(s)
- Xu Feng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin150086, China
| | - Yuanjian Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Lori Lyn Wilson
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shimin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
- Pancreas Institute, Nanjing Medical University, Nanjing210000, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing210000, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
6
|
Freie B, Ibrahim AH, Carroll PA, Bronson RT, Augert A, MacPherson D, Eisenman RN. MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614255. [PMID: 39386474 PMCID: PMC11463667 DOI: 10.1101/2024.09.21.614255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The MYC transcription factor requires MAX for DNA binding and widespread activation of gene expression in both normal and neoplastic cells. Surprisingly, inactivating mutations in MAX are associated with a subset of neuroendocrine cancers including pheochromocytoma, pituitary adenoma and small cell lung cancer. Neither the extent nor the mechanisms of MAX tumor suppression are well understood. Delet-ing Max across multiple mouse neuroendocrine tissues, we find Max inactivation alone produces pituitary adenomas while Max loss cooperates with Rb1/Trp53 loss to accelerate medullary thyroid C-cell and pituitary adenoma development. In the thyroid tumor cell lines, MAX loss triggers a striking shift in genomic occupancy by other members of the MYC network (MNT, MLX, MondoA) supporting metabolism, survival and proliferation of neoplastic neuroendocrine cells. Our work reveals MAX as a broad suppressor of neuroendocrine tumorigenesis through its ability to maintain a balance of genomic occupancies among the diverse transcription factors in the MYC network.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA USA
| | - Ali H. Ibrahim
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Present address: Department of Internal Medicine, The University of Texas Health Science Center, Houston TX USA
| | | | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Arnaud Augert
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Present address: Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David MacPherson
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Department of Genome Sciences, University of Washington, Seattle WA USA
| | | |
Collapse
|
7
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
8
|
Moorthi S, Paguirigan A, Itagi P, Ko M, Pettinger M, Hoge AC, Nag A, Patel NA, Wu F, Sather C, Levine KM, Fitzgibbon MP, Thorner AR, Anderson GL, Ha G, Berger AH. The genomic landscape of lung cancer in never-smokers from the Women's Health Initiative. JCI Insight 2024; 9:e174643. [PMID: 39052387 PMCID: PMC11385083 DOI: 10.1172/jci.insight.174643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women's Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.
Collapse
Affiliation(s)
| | | | - Pushpa Itagi
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Minjeong Ko
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mary Pettinger
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna Ch Hoge
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Neil A Patel
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cassie Sather
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kevin M Levine
- Human Biology Division
- Division of Hematology and Oncology, Department of Medicine and
| | - Matthew P Fitzgibbon
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Gavin Ha
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alice H Berger
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Thomas ME, Qi W, Walsh MP, Ma J, Westover T, Abdelhamed S, Ezzell LJ, Rolle C, Xiong E, Rosikiewicz W, Xu B, Loughran AJ, Pruett-Miller SM, Janke LJ, Klco JM. Functional characterization of cooperating MGA mutations in RUNX1::RUNX1T1 acute myeloid leukemia. Leukemia 2024; 38:991-1002. [PMID: 38454121 PMCID: PMC11073986 DOI: 10.1038/s41375-024-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Lauren J Ezzell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chandra Rolle
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Emily Xiong
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allister J Loughran
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Adler N, Bahcheli AT, Cheng KC, Al-Zahrani KN, Slobodyanyuk M, Pellegrina D, Schramek D, Reimand J. Mutational processes of tobacco smoking and APOBEC activity generate protein-truncating mutations in cancer genomes. SCIENCE ADVANCES 2023; 9:eadh3083. [PMID: 37922356 PMCID: PMC10624356 DOI: 10.1126/sciadv.adh3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
Mutational signatures represent a genomic footprint of endogenous and exogenous mutational processes through tumor evolution. However, their functional impact on the proteome remains incompletely understood. We analyzed the protein-coding impact of single-base substitution (SBS) signatures in 12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) (i.e., nonsense mutations) were strongly enriched in SBS signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen species. These mutational processes alter specific trinucleotide contexts and thereby substitute serines and glutamic acids with stop codons. SGMs frequently affect cancer hallmark pathways and tumor suppressors such as TP53, FAT1, and APC. Tobacco-driven SGMs in lung cancer correlate with smoking history and highlight a preventable determinant of these harmful mutations. APOBEC-driven SGMs are enriched in YTCA motifs and associate with APOBEC3A expression. Our study exposes SGM expansion as a genetic mechanism by which endogenous and carcinogenic mutational processes directly contribute to protein loss of function, oncogenesis, and tumor heterogeneity.
Collapse
Affiliation(s)
- Nina Adler
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alexander T. Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kevin C. L. Cheng
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Mykhaylo Slobodyanyuk
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Klco J, Thomas M, Qi W, Walsh M, Ma J, Westover T, Abdelhamed S, Ezzell L, Rolle C, Xiong E, Rosikiewicz W, Xu B, Pruett-Miller S, Loughran A, Janke L. Functional Characterization of Cooperating MGA Mutations in RUNX1::RUNX1T1 Acute Myeloid Leukemia. RESEARCH SQUARE 2023:rs.3.rs-3315059. [PMID: 37790524 PMCID: PMC10543392 DOI: 10.21203/rs.3.rs-3315059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promotors of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1 T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jing Ma
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | - Beisi Xu
- St Jude Children's Research Hospital
| | | | | | | |
Collapse
|
12
|
Stammnitz MR, Gori K, Kwon YM, Harry E, Martin FJ, Billis K, Cheng Y, Baez-Ortega A, Chow W, Comte S, Eggertsson H, Fox S, Hamede R, Jones M, Lazenby B, Peck S, Pye R, Quail MA, Swift K, Wang J, Wood J, Howe K, Stratton MR, Ning Z, Murchison EP. The evolution of two transmissible cancers in Tasmanian devils. Science 2023; 380:283-293. [PMID: 37079675 PMCID: PMC7614631 DOI: 10.1126/science.abq6453] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.
Collapse
Affiliation(s)
- Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ed Harry
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastien Comte
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, Australia
| | | | - Samantha Fox
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
- Toledo Zoo, 2605 Broadway, Toledo, Ohio 43609, USA
| | - Rodrigo Hamede
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- CANCEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna Jones
- School of Nature Sciences, University of Tasmania, Hobart, Australia
| | - Billie Lazenby
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Sarah Peck
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Ruth Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michael A. Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kate Swift
- Mount Pleasant Laboratories, Tasmanian Department of Natural Resources and Environment, Prospect, Australia
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
ten Hacken E, Sewastianik T, Yin S, Hoffmann GB, Gruber M, Clement K, Penter L, Redd RA, Ruthen N, Hergalant S, Sholokhova A, Fell G, Parry EM, Broséus J, Guieze R, Lucas F, Hernández-Sánchez M, Baranowski K, Southard J, Joyal H, Billington L, Regis FFD, Witten E, Uduman M, Knisbacher BA, Li S, Lyu H, Vaisitti T, Deaglio S, Inghirami G, Feugier P, Stilgenbauer S, Tausch E, Davids MS, Getz G, Livak KJ, Bozic I, Neuberg DS, Carrasco RD, Wu CJ. In Vivo Modeling of CLL Transformation to Richter Syndrome Reveals Convergent Evolutionary Paths and Therapeutic Vulnerabilities. Blood Cancer Discov 2023; 4:150-169. [PMID: 36468984 PMCID: PMC9975769 DOI: 10.1158/2643-3230.bcd-22-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Tomasz Sewastianik
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Michaela Gruber
- CEMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kendell Clement
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Robert A. Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neil Ruthen
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sébastien Hergalant
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | - Alanna Sholokhova
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Geoffrey Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julien Broséus
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | | | - Fabienne Lucas
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, Madrid, Spain
| | - Kaitlyn Baranowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Joyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leah Billington
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Fara Faye D. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth Witten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohamed Uduman
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Binyamin A. Knisbacher
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haoxiang Lyu
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | - Stephan Stilgenbauer
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Eugen Tausch
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kenneth J. Livak
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ruben D. Carrasco
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Ishii T, Akiyama Y, Shimada S, Kabashima A, Asano D, Watanabe S, Ishikawa Y, Ueda H, Akahoshi K, Ogawa K, Ono H, Kudo A, Tanabe M, Tanaka S. Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer. Cancer Sci 2023; 114:463-476. [PMID: 36271761 PMCID: PMC9899616 DOI: 10.1111/cas.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Although histone H3K4 methyltransferase SETD1A is overexpressed in various cancer types, the molecular mechanism underlying its overexpression and its target genes in pancreatic ductal adenocarcinoma (PDAC) remain unclarified. We conducted immunohistochemical staining for SETD1A in 105 human PDAC specimens to assess the relationship between SETD1A overexpression and clinicopathological features. The function and target genes of SETD1A were investigated using human pancreatic cancer cell lines. SETD1A expression was upregulated in 51.4% of patients with PDAC and was an independent prognostic factor associated with shorter disease-free survival after resection (p < 0.05). Knockdown and overexpression of SETD1A showed that SETD1A plays a crucial role in increasing the proliferation and motility of PDAC cells. SETD1A overexpression increased tumorigenicity. RNA sequencing of SETD1A-knockdown cells revealed downregulation of RUVBL1, an oncogenic protein ATP-dependent DNA helicase gene. ChIP analysis revealed that SETD1A binds to the RUVBL1 promoter region, resulting in increased H3K4me3 levels. Knockdown of RUVBL1 showed inhibition of cell proliferation, migration, and invasion of PDAC cells, which are similar biological effects to SETD1A knockdown. High expression of both SETD1A and RUVBL1 was an independent prognostic factor not only for disease-free survival but also for overall survival (p < 0.05). In conclusion, we identified RUVBL1 as a novel downstream target gene of the SETD1A-H3K4me3 pathway. Co-expression of SETD1A and RUVBL1 is an important factor for predicting the prognosis of patients with PDAC.
Collapse
Grants
- JP19cm0106540 Japan Agency for Medical Research and Development
- 19H01055 Ministry of Education, Culture, Sports, Science and Technology
- 20H03526 Ministry of Education, Culture, Sports, Science and Technology
- 20K21627 Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
Collapse
Affiliation(s)
- Takeshi Ishii
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Ayano Kabashima
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Daisuke Asano
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shuichi Watanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshiya Ishikawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroki Ueda
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Keiichi Akahoshi
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Kosuke Ogawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Ono
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Atsushi Kudo
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Minoru Tanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
15
|
Lee SHT, Kim JY, Kim P, Dong Z, Su CY, Ahn EH. Changes of Mutations and Copy-Number and Enhanced Cell Migration during Breast Tumorigenesis. Adv Biol (Weinh) 2023; 7:e2200072. [PMID: 36449747 PMCID: PMC10836759 DOI: 10.1002/adbi.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/14/2022] [Indexed: 12/02/2022]
Abstract
Although cancer stem cells (CSCs) play a major role in tumorigenesis and metastasis, the role of genetic alterations in invasiveness of CSCs is still unclear. Tumor microenvironment signals, such as extracellular matrix (ECM) composition, significantly influence cell behaviors. Unfortunately, these signals are often lost in in vitro cell culture. This study determines putative CSC populations, examines genetic changes during tumorigenesis of human breast epithelial stem cells, and investigates single-cell migration properties on ECM-mimetic platforms. Whole exome sequencing data indicate that tumorigenic cells have a higher somatic mutation burden than non-tumorigenic cells, and that mutations exclusive to tumorigenic cells exhibit higher predictive deleterious scores. Tumorigenic cells exhibit distinct somatic copy number variations (CNVs) including gain of duplications in chromosomes 5 and 8. ECM-mimetic topography selectively enhances migration speed of tumorigenic cells, but not of non-tumorigenic cells, and results in a wide distribution of tumorigenic single-cell migration speeds, suggesting heterogeneity in cellular sensing of contact guidance cues. This study identifies mutations and CNVs acquired during breast tumorigenesis, which can be associated with enhanced migration of breast tumorigenic cells, and demonstrates that a nanotopographically-defined platform can be applied to recapitulate an ECM structure for investigating cellular migration in the simulated tumor microenvironment.
Collapse
Affiliation(s)
- Seung Hyuk T. Lee
- Department of Pathology, University of Washington, Seattle,
WA 98195, USA
| | - Joon Yup Kim
- Department of Pathology, University of Washington, Seattle,
WA 98195, USA
| | - Peter Kim
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, USA
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| | - Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Sarsembayeva A, Kienzl M, Gruden E, Ristic D, Maitz K, Valadez-Cosmes P, Santiso A, Hasenoehrl C, Brcic L, Lindenmann J, Kargl J, Schicho R. Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8 + T and NK cells. Front Immunol 2023; 13:997115. [PMID: 36700219 PMCID: PMC9868666 DOI: 10.3389/fimmu.2022.997115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Cannabinoid (CB) receptors (CB1 and CB2) are expressed on cancer cells and their expression influences carcinogenesis in various tumor entities. Cells of the tumor microenvironment (TME) also express CB receptors, however, their role in tumor development is still unclear. We, therefore, investigated the role of TME-derived CB1 and CB2 receptors in a model of non-small cell lung cancer (NSCLC). Leukocytes in the TME of mouse and human NSCLC express CB receptors, with CB2 showing higher expression than CB1. In the tumor model, using CB1- (CB1 -/-) and CB2-knockout (CB2 -/-) mice, only deficiency of CB2, but not of CB1, resulted in reduction of tumor burden vs. wild type (WT) littermates. This was accompanied by increased accumulation and tumoricidal activity of CD8+ T and natural killer cells, as well as increased expression of programmed death-1 (PD-1) and its ligand on lymphoid and myeloid cells, respectively. CB2 -/- mice responded significantly better to anti-PD-1 therapy than WT mice. The treatment further increased infiltration of cytotoxic lymphocytes into the TME of CB2 -/- mice. Our findings demonstrate that TME-derived CB2 dictates the immune cell recruitment into tumors and the responsiveness to anti-PD-1 therapy in a model of NSCLC. CB2 could serve as an adjuvant target for immunotherapy.
Collapse
Affiliation(s)
- Arailym Sarsembayeva
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Eva Gruden
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Dusica Ristic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Carina Hasenoehrl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
17
|
Moorthi S, Paguirigan A, Ko M, Pettinger M, Hoge ACH, Nag A, Patel NA, Wu F, Sather C, Fitzgibbon MP, Thorner AR, Anderson GL, Ha G, Berger AH. Somatic mutation but not aneuploidy differentiates lung cancer in never-smokers and smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522947. [PMID: 36712079 PMCID: PMC9881937 DOI: 10.1101/2023.01.05.522947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.
Collapse
|
18
|
Low JY, Ko M, Hanratty B, Patel RA, Bhamidipati A, Heaphy CM, Sayar E, Lee JK, Li S, De Marzo AM, Nelson WG, Gupta A, Yegnasubramanian S, Ha G, Epstein JI, Haffner MC. Genomic Characterization of Prostatic Basal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:4-10. [PMID: 36309102 PMCID: PMC9768679 DOI: 10.1016/j.ajpath.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.
Collapse
Affiliation(s)
- Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shan Li
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jonathan I Epstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
19
|
Sijm A, Atlasi Y, van der Knaap JA, Wolf van der Meer J, Chalkley GE, Bezstarosti K, Dekkers DHW, Doff WAS, Ozgur Z, van IJcken WFJ, Demmers JAA, Verrijzer CP. USP7 regulates the ncPRC1 Polycomb axis to stimulate genomic H2AK119ub1 deposition uncoupled from H3K27me3. SCIENCE ADVANCES 2022; 8:eabq7598. [PMID: 36332031 PMCID: PMC9635827 DOI: 10.1126/sciadv.abq7598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.
Collapse
Affiliation(s)
- Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Jan A. van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Gillian E. Chalkley
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dick H. W. Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wouter A. S. Doff
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jeroen A. A. Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - C. Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Sharov AA, Nakatake Y, Wang W. Atlas of regulated target genes of transcription factors (ART-TF) in human ES cells. BMC Bioinformatics 2022; 23:377. [PMID: 36114445 PMCID: PMC9479252 DOI: 10.1186/s12859-022-04924-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Transcription factors (TFs) play central roles in maintaining “stemness” of embryonic stem (ES) cells and their differentiation into several hundreds of adult cell types. The regulatory competence of TFs is routinely assessed by detecting target genes to which they bind. However, these data do not indicate which target genes are activated, repressed, or not affected by the change of TF abundance. There is a lack of large-scale studies that compare the genome binding of TFs with the expression change of target genes after manipulation of each TF. Results In this paper we associated human TFs with their target genes by two criteria: binding to genes, evaluated from published ChIP-seq data (n = 1868); and change of target gene expression shortly after induction of each TF in human ES cells. Lists of direction- and strength-specific regulated target genes are generated for 311 TFs (out of 351 TFs tested) with expected proportion of false positives less than or equal to 0.30, including 63 new TFs not present in four existing databases of target genes. Our lists of direction-specific targets for 152 TFs (80.0%) are larger that in the TRRUST database. In average, 30.9% of genes that respond greater than or equal to twofold to the induction of TFs are regulated targets. Regulated target genes indicate that the majority of TFs are either strong activators or strong repressors, whereas sets of genes that responded greater than or equal to twofold to the induction of TFs did not show strong asymmetry in the direction of expression change. The majority of human TFs (82.1%) regulated their target genes primarily via binding to enhancers. Repression of target genes is more often mediated by promoter-binding than activation of target genes. Enhancer-promoter loops are more abundant among strong activator and repressor TFs. Conclusions We developed an atlas of regulated targets of TFs (ART-TF) in human ES cells by combining data on TF binding with data on gene expression change after manipulation of individual TFs. Sets of regulated gene targets were identified with a controlled rate of false positives. This approach contributes to the understanding of biological functions of TFs and organization of gene regulatory networks. This atlas should be a valuable resource for ES cell-based regenerative medicine studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04924-3.
Collapse
|
21
|
Tanaskovic N, Dalsass M, Filipuzzi M, Ceccotti G, Verrecchia A, Nicoli P, Doni M, Olivero D, Pasini D, Koseki H, Sabò A, Bisso A, Amati B. Polycomb group ring finger protein 6 suppresses Myc-induced lymphomagenesis. Life Sci Alliance 2022; 5:5/8/e202101344. [PMID: 35422437 PMCID: PMC9012912 DOI: 10.26508/lsa.202101344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Max dimerizes with Mga to form the repressive complex PRC1.6; another PRC1.6 subunit, Pcgf6, suppresses Myc-induced lymphomagenesis but, unexpectedly, does so in a Mga- and PRC1.6-independent manner. Max is an obligate dimerization partner for the Myc transcription factors and for several repressors, such as Mnt, Mxd1-4, and Mga, collectively thought to antagonize Myc function in transcription and oncogenesis. Mga, in particular, is part of the variant Polycomb group repressive complex PRC1.6. Here, we show that ablation of the distinct PRC1.6 subunit Pcgf6–but not Mga–accelerates Myc-induced lymphomagenesis in Eµ-myc transgenic mice. Unexpectedly, however, Pcgf6 loss shows no significant impact on transcriptional profiles, in neither pre-tumoral B-cells, nor lymphomas. Altogether, these data unravel an unforeseen, Mga- and PRC1.6-independent tumor suppressor activity of Pcgf6.
Collapse
Affiliation(s)
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | | | | | - Paola Nicoli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Daniela Olivero
- Laboratorio Analisi Veterinarie BiEsseA, A Company of Scil Animal Care Company Srl, Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Andrea Bisso
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
22
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
23
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
24
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
25
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|