1
|
Mao R, Zhang J, Qin H, Liu Y, Xing Y, Zeng W. Application progress of bio-manufacturing technology in kidney organoids. Biofabrication 2025; 17:022007. [PMID: 39933190 DOI: 10.1088/1758-5090/adb4a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Kidney transplantation remains a pivotal treatment modality for kidney disease, yet its progress is significantly hindered by the scarcity of donor kidneys and ethical dilemmas surrounding their procurement. As organoid technology evolves and matures, the creation of bionic human kidney organoids offers profound potential for advancing kidney disease research, drug nephrotoxicity screening, and regenerative medicine. Nevertheless, current kidney organoid models grapple with limitations such as constrained cellular differentiation, underdeveloped functional structures, and a crucial absence of vascularization. This deficiency in vascularization, in particular, stunts organoid development, restricts their size, diminishes filtration capabilities, and may trigger immune inflammatory reactions through the resulting ischemic microenvironment. Hence, the achievement of vascularization within kidney organoids and the successful establishment of functional microvascular networks constitutes a paramount goal for their future progression. In this review, we provide an overview of recent advancements in biotechnology domains, encompassing organ-on-a-chip technology, biomimetic matrices, and bioprinting, with the aim of catalyzing technological breakthroughs that can enhance the vascularization of kidney organoids and broaden their applicability. These technologies hold the key to unlocking the full potential of kidney organoids as a transformative therapeutic option for kidney disease.
Collapse
Affiliation(s)
- Runqi Mao
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Junming Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuxin Xing
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| |
Collapse
|
2
|
Su Z, Su Y, Shen X, Zhang J, Zeng T, Li J, Chen S, Shao K, Zhang S, Luo D, Hu L, Guo X, Li H. Analysis of differentially methylated sites and regions associated with intrauterine transmission of hepatitis B virus in infants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105705. [PMID: 39674522 DOI: 10.1016/j.meegid.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection. METHODS This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained. RESULTS We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding. CONCLUSIONS Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
Collapse
Affiliation(s)
- Zhengqin Su
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Yongjian Su
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, China
| | - Xiaozhen Shen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Jiawei Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Ting Zeng
- Liuzhou Maternal and Child Health Care Hospital, Guangxi, China
| | - Jialing Li
- Zhongshan Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Shiyi Chen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Kai Shao
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Shiyue Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Liping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, China; Key Laboratory for Prevention and Treatment of Viral Hepatitis, Guangxi, China.
| | - Xiaojing Guo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China.
| | - Hai Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China.
| |
Collapse
|
3
|
Negrón-Piñeiro LJ, Wu Y, Mehta R, Maguire JE, Chou C, Lee J, Dahia CL, Di Gregorio A. Fine-Tuned Expression of Evolutionarily Conserved Signaling Molecules in the Ciona Notochord. Int J Mol Sci 2024; 25:13631. [PMID: 39769393 PMCID: PMC11728170 DOI: 10.3390/ijms252413631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment. To reconstruct this evolutionary route, we surveyed the expression of signaling molecules in the notochord of the tunicate Ciona, an experimentally amenable and informative chordate. We found that several genes encoding for candidate components of diverse signaling pathways are expressed during notochord development, and in some instances, display distinctive regionalized and/or lineage-specific patterns. We identified and deconstructed notochord enhancers associated with TGF-β and Ctgf, two evolutionarily conserved signaling genes that are expressed dishomogeneously in the Ciona notochord, and shed light on the cis-regulatory origins of their peculiar expression patterns.
Collapse
Affiliation(s)
- Lenny J. Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Ravij Mehta
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julie E. Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Cindy Chou
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Joyce Lee
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY 10065, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| |
Collapse
|
4
|
Jiang L, Wang X, Zhang D, Yee Yuen KW, Tse YC. RSU-1 regulates the integrity of dense bodies in muscle cells of aging Caenorhabditis elegans. iScience 2024; 27:109854. [PMID: 38784006 PMCID: PMC11112334 DOI: 10.1016/j.isci.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle contraction is vital for animal survival, and the sarcomere is the fundamental unit for this process. However, the functions of many conserved sarcomere proteins remain unknown, as their mutants do not exhibit obvious defects. To address this, Caenorhabditis elegans was utilized as a model organism to investigate RSU-1 function in the body wall muscle. RSU-1 is found to colocalize with UNC-97 at the dense body and M-line, and it is particularly crucial for regulating locomotion in aging worms, rather than in young worms. This suggests that RSU-1 has a specific function in maintaining muscle function during aging. Furthermore, the interaction between RSU-1 and UNC-97/PINCH is essential for RSU-1 to modulate locomotion, preserve filament structure, and sustain the M-line and dense body throughout aging. Overall, these findings highlight the significant contribution of RSU-1, through its interaction with UNC-97, in maintaining proper muscle cell function in aging worms.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyan Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| | - Yu Chung Tse
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Yao SQ, Ye Y, Li Q, Wang XY, Yan L, Huo XM, Pan CS, Fu Y, Liu J, Han JY. YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117024. [PMID: 37572928 DOI: 10.1016/j.jep.2023.117024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT YangXueQingNaoWan (YXQNW), a compound Chinese medicine, has been widely used for dizziness, irritability, insomnia, and dreaminess caused by blood deficiency and liver hyperactivity in China. However, whether YXQNW can inhibit cerebral microvascular exudation and cerebral hemorrhage (CH) caused by blood brain barrier (BBB) damage after tissue plasminogen activator (tPA) still unknown. AIM OF THE RESEARCH To observe the effect of YXQNW on cerebral microvascular exudation and CH after tPA and investigate its mechanism in protecting BBB. MATERIALS AND METHODS Male C57BL/6 N mice suffered from ischemia stroke by mechanical detachment of carotid artery thrombi with the stimulation of ferric chloride. Then mice were treated with tPA (10 mg/kg) and/or YXQNW (0.72 g/kg) at 4.5 h. Cerebral blood flow (CBF), infarct size, survival rate, neurological scores, gait analysis, Evans blue extravasation, cerebral water content, fluorescein isothiocyanate-labeled albumin leakage, hemorrhage, junction and basement membrane proteins expression, leukocyte adhesion and matrix metalloproteinases (MMPs) expression were evaluated 24 h after tPA. Proteomics was used to identify target proteins. RESULTS YXQNW inhibited cerebral infarction, neurobehavioral deficits, decreased survival, Evans blue leakage, albumin leakage, cerebral water content and CH after tPA thrombolysis; improved CBF, low-expression and degradation of junction proteins, basement membrane proteins, Arhgap21 and its downstream α-catenin and β-catenin proteins expression; and suppressed the increase of adherent leukocytes and the release of MMP-9 derived from macrophage. CONCLUSION YXQNW relieved BBB damage and attenuated cerebral microvascular exudation and CH after tPA thrombolysis. The effect of YXQNW on cerebral microvascular exudation was associated with the inhibition of the low-expression of junction proteins, especially AJs mediated by Rho GTPase-activating protein 21 (Arhgap21), while the effect on CH was associated with the inhibition of leukocyte adhesion, the release of MMP-9 derived from macrophage, and low-expression and degradation of collagen IV and laminin in the vascular basement membrane.
Collapse
Affiliation(s)
- Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China.
| |
Collapse
|
6
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
7
|
Adeva-Andany MM, Carneiro-Freire N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J Diabetes 2022; 13:498-520. [PMID: 36051430 PMCID: PMC9329837 DOI: 10.4239/wjd.v13.i7.498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
In the glomeruli, mesangial cells produce mesangial matrix while podocytes wrap glomerular capillaries with cellular extensions named foot processes and tether the glomerular basement membrane (GBM). The turnover of the mature GBM and the ability of adult podocytes to repair injured GBM are unclear. The actin cytoskeleton is a major cytoplasmic component of podocyte foot processes and links the cell to the GBM. Predominant components of the normal glomerular extracellular matrix (ECM) include glycosaminoglycans, proteoglycans, laminins, fibronectin-1, and several types of collagen. In patients with diabetes, multiorgan composition of extracellular tissues is anomalous, including the kidney, so that the constitution and arrangement of glomerular ECM is profoundly altered. In patients with diabetic kidney disease (DKD), the global quantity of glomerular ECM is increased. The level of sulfated proteoglycans is reduced while hyaluronic acid is augmented, compared to control subjects. The concentration of mesangial fibronectin-1 varies depending on the stage of DKD. Mesangial type III collagen is abundant in patients with DKD, unlike normal kidneys. The amount of type V and type VI collagens is higher in DKD and increases with the progression of the disease. The GBM contains lower amount of type IV collagen in DKD compared to normal tissue. Further, genetic variants in the α3 chain of type IV collagen may modulate susceptibility to DKD and end-stage kidney disease. Human cellular models of glomerular cells, analyses of human glomerular proteome, and improved microscopy procedures have been developed to investigate the molecular composition and organization of the human glomerular ECM.
Collapse
|
8
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
9
|
ITGβ6 Facilitates Skeletal Muscle Development by Maintaining the Properties and Cytoskeleton Stability of Satellite Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070926. [PMID: 35888016 PMCID: PMC9318838 DOI: 10.3390/life12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Integrin proteins are important receptors connecting the intracellular skeleton of satellite cells and the extracellular matrix (ECM), playing an important role in the process of skeletal muscle development. In this research, the function of ITGβ6 in regulating the differentiation of satellite cells was studied. Transcriptome and proteome analysis indicated that Itgβ6 is a key node connecting ECM-related proteins to the cytoskeleton, and it is necessary for the integrity of the membrane structure and stability of the cytoskeletal system, which are essential for satellite cell adhesion. Functional analysis revealed that the ITGβ6 protein could affect the myogenic differentiation potential of satellite cells by regulating the expression of PAX7 protein, thus regulating the formation of myotubes. Moreover, ITGβ6 is involved in muscle development by regulating cell-adhesion-related proteins, such as β-laminin, and cytoskeletal proteins such as PXN, DMD, and VCL. In conclusion, the effect of ITGβ6 on satellite cell differentiation mainly occurs before the initiation of differentiation, and it regulates terminal differentiation by affecting satellite cell characteristics, cell adhesion, and the stability of the cytoskeleton system.
Collapse
|
10
|
Nikou S, Arbi M, Dimitrakopoulos FID, Kalogeropoulou A, Geramoutsou C, Zolota V, Kalofonos HP, Taraviras S, Lygerou Z, Bravou V. Ras suppressor-1 (RSU1) exerts a tumor suppressive role with prognostic significance in lung adenocarcinoma. Clin Exp Med 2022:10.1007/s10238-022-00847-8. [PMID: 35729367 DOI: 10.1007/s10238-022-00847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
Ras suppressor-1 (RSU1), originally described as a suppressor of Ras oncogenic transformation, localizes to focal adhesions interacting with the ILK-PINCH-PARVIN (IPP) complex that exerts a well-established oncogenic role in cancer. However, RSU1 implication in lung cancer is currently unknown. Our study aims to address the role of RSU1 in lung adenocarcinoma (LUADC). We here show that RSU1 protein expression by immunohistochemistry is downregulated in LUADC human tissue samples and represents a significant prognostic indicator. In silico analysis of gene chip and RNA seq data validated our findings. Depletion of RSU1 by siRNA in lung cancer cells promotes anchorage-independent cell growth, cell motility and epithelial to mesenchymal transition (EMT). Silencing of RSU1 also alters IPP complex expression in lung cancer cells. The p29 RSU1 truncated isoform is detected in lung cancer cells, and its expression is downregulated upon RSU1 silencing, whereas it is overexpressed upon ILK overexpression. These findings suggest that RSU1 exerts a tumor suppressive role with prognostic significance in LUADC.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece
| | - Argiro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Christina Geramoutsou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Zolota
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.,Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
11
|
ATP allosterically stabilizes integrin-linked kinase for efficient force generation. Proc Natl Acad Sci U S A 2022; 119:e2106098119. [PMID: 35259013 PMCID: PMC8933812 DOI: 10.1073/pnas.2106098119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration. Focal adhesions link the actomyosin cytoskeleton to the extracellular matrix regulating cell adhesion, shape, and migration. Adhesions are dynamically assembled and disassembled in response to extrinsic and intrinsic forces, but how the essential adhesion component integrin-linked kinase (ILK) dynamically responds to mechanical force and what role adenosine triphosphate (ATP) bound to this pseudokinase plays remain elusive. Here, we apply force–probe molecular-dynamics simulations of human ILK:α-parvin coupled to traction force microscopy to explore ILK mechanotransducing functions. We identify two key salt-bridge–forming arginines within the allosteric, ATP-dependent force-propagation network of ILK. Disrupting this network by mutation impedes parvin binding, focal adhesion stabilization, force generation, and thus migration. Under tension, ATP shifts the balance from rupture of the complex to protein unfolding, indicating that ATP increases the force threshold required for focal adhesion disassembly. Our study proposes a role of ATP as an obligatory binding partner for structural and mechanical integrity of the pseudokinase ILK, ensuring efficient cellular force generation and migration.
Collapse
|
12
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|