1
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2025; 67:2161-2184. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. Biomaterials 2025; 312:122750. [PMID: 39126779 PMCID: PMC11401478 DOI: 10.1016/j.biomaterials.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Duke Eye Center, Duke University, Durham, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander V Kabanov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Yang CL, Wang FX, Luo JH, Rong SJ, Lu WY, Chen QJ, Xiao J, Wang T, Song DN, Liu J, Mo Q, Li S, Chen Y, Wang YN, Liu YJ, Yan T, Gu WK, Zhang S, Xiong F, Yu QL, Zhang ZY, Yang P, Liu SW, Eizirik D, Dong LL, Sun F, Wang CY. PDIA3 orchestrates effector T cell program by serving as a chaperone to facilitate the non-canonical nuclear import of STAT1 and PKM2. Mol Ther 2024; 32:2778-2797. [PMID: 38822524 PMCID: PMC11405166 DOI: 10.1016/j.ymthe.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.
Collapse
Affiliation(s)
- Chun-Liang Yang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fa-Xi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia-Hui Luo
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan-Ying Lu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi-Jie Chen
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan-Ni Song
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Mo
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuo Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Chen
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Nan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Jun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiao-tong University, the Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiao-tong University, the Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Wei-Kuan Gu
- Research Service, Memphis VA Medical Center, Memphis, TN 38105, USA
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Xiong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi-Lin Yu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Yun Zhang
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan 030032, China
| | - Decio Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Ling-Li Dong
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan 030032, China.
| |
Collapse
|
5
|
Jana S, Li W, Lei PJ, Wang Z, Kibara S, Huang P, Jones D. Isolation and Characterization of a Novel Mammary Adenocarcinoma, MCa-P1362, with Hormone Receptor Expression, Human Epidermal Growth Factor Receptor 2 Positivity, and Enrichment in Cancer and Mesenchymal Stem Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1137-1153. [PMID: 38749609 PMCID: PMC11156160 DOI: 10.1016/j.ajpath.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 06/09/2024]
Abstract
Preclinical models that display spontaneous metastasis are necessary to improve the therapeutic options for hormone receptor-positive breast cancers. Within this study, detailed cellular and molecular characterization was conducted on MCa-P1362, a newly established mouse model of metastatic breast cancer that is syngeneic in BALB/c mice. MCa-P1362 cancer cells express estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2. MCa-P1362 cancer cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for growth and tumor progression. Analysis of MCa-P1362 tumor explants revealed the tumors contained a mixture of cancer cells and mesenchymal stromal cells. Through transcriptomic and functional analyses of both cancer and stromal cells, stem cells were detected within both populations. Functional studies demonstrated that MCa-P1362 cancer stem cells drove tumor initiation, whereas stromal cells from these tumors contributed to drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of breast tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Samir Jana
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Wende Li
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zixiong Wang
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Shaye Kibara
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts.
| |
Collapse
|
6
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584084. [PMID: 38559220 PMCID: PMC10979841 DOI: 10.1101/2024.03.09.584084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.
Collapse
|
7
|
Torres A, Cameselle C, Otero P, Simal-Gandara J. The Impact of Vitamin D and Its Dietary Supplementation in Breast Cancer Prevention: An Integrative Review. Nutrients 2024; 16:573. [PMID: 38474702 DOI: 10.3390/nu16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Vitamin D deficiency is currently a significant public health issue closely linked to numerous diseases, such as breast cancer. This study aims to determine the estimated optimal serum levels of vitamin D to have a protective effect against breast cancer, in addition to exploring the biological mechanisms and risk factors involved. A literature search of articles published in the last 5 years was conducted, and simple statistical analyses using mean and standard deviation were performed to calculate the average concentration of vitamin D from different available studies. It has been observed that serum levels of vitamin D ≥ 40.26 ng/mL ± 14.19 ng/mL could exert a protective effect against breast cancer. Additionally, various biological mechanisms, such as those related to the immune system, and risk factors like diet implicated in this relationship were elucidated. Consequently, it can be concluded that proper serum levels of vitamin D may have a protective effect against breast cancer, and dietary supplementation may be an appropriate procedure to achieve these optimal vitamin D concentrations.
Collapse
Affiliation(s)
- Antía Torres
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Carla Cameselle
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
8
|
Wang L, Wang X, Zhang J, Duan J, Tang C, Zhang L, Zeng H, Li H, Li Y, Zhou Y. The role of PDIA3 in oral squamous cell carcinoma and its value as A diagnostic and prognostic biomarker. Heliyon 2023; 9:e22596. [PMID: 38213579 PMCID: PMC10782160 DOI: 10.1016/j.heliyon.2023.e22596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background This study aimed to investigate the role of protein disulfide isomerase A3 (PDIA3) in oral squamous cell carcinoma (OSCC) and evaluate its significance as a diagnostic and prognostic biomarker. Methods Comprehensive bioinformatics analysis of the OSCC dataset from The Cancer Genome Atlas (TCGA) was performed. PDIA3 was depleted in CAL27 and SCC25 OSCC cells by transfection with PDIA3-specific siRNA oligos. The effects of PDIA3 downregulation on cell viability, apoptosis, and cell migration were evaluated using CCK8, ELISA, and wound healing assays, respectively. Results The mRNA and protein expression of PDIA3 was significantly up-regulated in OSCC tissues compared to adjacent normal tissues. Knockdown of PDIA3 led to significantly decreased cell viability, increased apoptosis, and suppressed migratory ability in OSCC cells. The Kaplan-Meier survival curve showed that patients with higher PDIA3 expression levels had shorter survival than those with low PDIA3 levels. The receiver operating characteristic (ROC) curve indicated that PDIA3 had high sensitivity and accuracy for detecting OSCC (area under the curve (AUC): 0.917, CI: 0.879-0.955). Univariate and multivariate Cox regression analyses identified PDIA3 as an independent prognostic factor of OSCC. Furthermore, the depletion of PDIA3 inhibited AKT activity in OSCC cells. Gene set enrichment analysis (GSEA) indicated that PDIA3 is involved in various important biological functions and signaling pathways closely related to cancer development. Conclusion PDIA3 plays an oncogenic role in OSCC and represents a good candidate as a diagnostic and prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Lin Wang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xinxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jia Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiafeng Duan
- Department of Implant Dentistry, Xi'an Nobel Dental Hospital, Xi'an, Shaanxi, 710021, China
| | - Chengfang Tang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Linmei Zhang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hui Zeng
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hantong Li
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yuefan Li
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Zhou
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
9
|
Bryan A, Pingali P, Joslyn M, Li H, Bernas T, Koblinski J, Landry J, Lee WS, Patel B, Neuwelt A. High-Dose Acetaminophen with N-acetylcysteine Rescue Inhibits M2 Polarization of Tumor-Associated Macrophages. Cancers (Basel) 2023; 15:4770. [PMID: 37835464 PMCID: PMC10571846 DOI: 10.3390/cancers15194770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
High-dose acetaminophen (AAP) with N-acetylcysteine (NAC) rescue is among the few treatments that has shown activity in phase I trials without achieving dose-limiting toxicity that has not progressed to evaluation in later line studies. While the anti-tumor effects of AAP/NAC appear not to be mediated by glutathione depletion and free radical injury, the mechanism of anti-tumor effects of AAP/NAC has not been definitively characterized. In vitro, the effects of AAP/NAC were evaluated on bone marrow derived macrophages. Effects of AAP on IL-4/STAT6 (M2) or IFN/LPS/STAT1 (M1) signaling and downstream gene and protein expression were studied. NAC reversed the AAP toxicity in the normal liver but did not reverse AAP cytotoxicity against tumor cells in vitro. AAP/NAC selectively inhibited IL-4-induced STAT6 phosphorylation but not IFN/LPS-induced STAT1 phosphorylation. Downstream, AAP/NAC inhibited IL-4 induction of M2-associated genes and proteins but did not inhibit the IFN/LPS induction of M1-associated genes and proteins. In vivo, AAP/NAC inhibited tumor growth in EF43.fgf4 and 4T1 triple-negative breast tumors. Flow cytometry of tumor-associated macrophages revealed that AAP/NAC selectively inhibited M2 polarization. The anti-tumor activity of high-dose AAP/NAC is lost in macrophage-depleted mouse syngeneic tumor models, suggesting a macrophage-dependent mechanism of action. In conclusion, our study is the first to show that high-dose AAP/NAC has profound effects on the tumor immune microenvironment that facilitates immune-mediated inhibition of tumor growth.
Collapse
Affiliation(s)
- Allyn Bryan
- Department of Veterans Affairs, Richmond, VA 23249, USA
| | | | - Martha Joslyn
- Department of Veterans Affairs, Richmond, VA 23249, USA
| | - Howard Li
- Department of Veterans Affairs, Charleston, SC 29405, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jennifer Koblinski
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Won Sok Lee
- Department of Veterans Affairs, Richmond, VA 23249, USA
| | - Bhaumik Patel
- Department of Veterans Affairs, Richmond, VA 23249, USA
- Department of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander Neuwelt
- Department of Veterans Affairs, Richmond, VA 23249, USA
- Department of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Staquicini DI, Cardó-Vila M, Rotolo JA, Staquicini FI, Tang FHF, Smith TL, Ganju A, Schiavone C, Dogra P, Wang Z, Cristini V, Giordano RJ, Ozawa MG, Driessen WHP, Proneth B, Souza GR, Brinker LM, Noureddine A, Snider AJ, Canals D, Gelovani JG, Petrache I, Tuder RM, Obeid LM, Hannun YA, Kolesnick RN, Brinker CJ, Pasqualini R, Arap W. Ceramide as an endothelial cell surface receptor and a lung-specific lipid vascular target for circulating ligands. Proc Natl Acad Sci U S A 2023; 120:e2220269120. [PMID: 37579172 PMCID: PMC10450669 DOI: 10.1073/pnas.2220269120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/16/2023] Open
Abstract
The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.
Collapse
Affiliation(s)
- Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Marina Cardó-Vila
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ85724
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, Tucson, AZ85724
| | - Jimmy A. Rotolo
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Fenny H. F. Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Tracey L. Smith
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Aditya Ganju
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - Carmine Schiavone
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
| | - Prashant Dogra
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY10065
| | - Zhihui Wang
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY10065
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX77030
| | - Vittorio Cristini
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX77030
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
- Physiology, Biophysics and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10065
| | - Ricardo J. Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP05508, Brazil
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Wouter H. P. Driessen
- David H. Koch Center and Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Zentrum Muenchen, Muenchen, Neuherberg85764, Germany
| | - Glauco R. Souza
- David H. Koch Center and Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
| | - Lina M. Brinker
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Ashley J. Snider
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Daniel Canals
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Juri G. Gelovani
- Office of the Provost, United Arab Emirates University, Al Ain, Abu Dhabi15551, UAE
| | - Irina Petrache
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO80206
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Lina M. Obeid
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
- Stony Brook Cancer Center, Stony Brook University Hospital and Departments of Biochemistry and Pathology, Renaissance School of Medicine, Stony Brook University, Brookhaven, NY11794
| | - Richard N. Kolesnick
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - C. Jeffrey Brinker
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ07103
| |
Collapse
|
12
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
13
|
Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed Pharmacother 2023; 164:114996. [PMID: 37311281 DOI: 10.1016/j.biopha.2023.114996] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The escalating rate of cancer cases, together with treatment deficiencies and long-term side effects of currently used cancer drugs, has made this disease a global burden of the 21st century. The number of breast and lung cancer patients has sharply increased worldwide in the last few years. Presently, surgical treatment, radiotherapy, chemotherapy, and immunotherapy strategies are used to cure cancer, which cause severe side effects, toxicities, and drug resistance. In recent years, anti-cancer peptides have become an eminent therapeutic strategy for cancer treatment due to their high specificity and fewer side effects and toxicity. This review presents an updated overview of different anti-cancer peptides, their mechanisms of action and current production strategies employed for their manufacture. In addition, approved and under clinical trials anti-cancer peptides and their applications have been discussed. This review provides updated information on therapeutic anti-cancer peptides that hold great promise for cancer treatment in the near future.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed-to-be-University), Pondicherry 607402, India
| | - Nazam Khan
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry University, Pondicherry 605014, India
| | - Maryam Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Rajender Kumar
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden.
| |
Collapse
|
14
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
15
|
Zhang M, Xu H. Peptide-assembled nanoparticles targeting tumor cells and tumor microenvironment for cancer therapy. Front Chem 2023; 11:1115495. [PMID: 36762192 PMCID: PMC9902599 DOI: 10.3389/fchem.2023.1115495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Tumor cells and corrupt stromal cells in the tumor microenvironment usually overexpress cancer-specific markers that are absent or barely detectable in normal cells, providing available targets for inhibiting the occurrence and development of cancers. It is noticeable that therapeutic peptides are emerging in cancer therapies and playing more and more important roles. Moreover, the peptides can be self-assembled and/or incorporated with polymeric molecules to form nanoparticles via non-covalent bond, which have presented appealing as well as enhanced capacities of recognizing targeted cells, responding to microenvironments, mediating internalization, and achieving therapeutic effects. In this review, we will introduce the peptide-based nanoparticles and their application advances in targeting tumor cells and stromal cells, including suppressive immune cells, fibrosis-related cells, and angiogenic vascular cells, for cancer therapy.
Collapse
|
16
|
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023; 56:14-31. [PMID: 36630912 PMCID: PMC9839308 DOI: 10.1016/j.immuni.2022.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Germon A, Heesom KJ, Amoah R, Adams JC. Protein disulfide isomerase A3 activity promotes extracellular accumulation of proteins relevant to basal breast cancer outcomes in human MDA-MB-A231 breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C113-C132. [PMID: 36374169 PMCID: PMC9799142 DOI: 10.1152/ajpcell.00445.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Metastasis and recurrence of breast cancer remain major causes of patient mortality, and there is an ongoing need to identify new therapeutic targets relevant to tumor invasion. Protein disulfide isomerase A3 (PDIA3) is a disulfide oxidoreductase and isomerase of the endoplasmic reticulum that has known extracellular substrates and has been correlated with aggressive breast cancers. We show that either prior PDIA3 inhibition by the disulfide isomerase inhibitor 16F16 or depletion of heparin-binding proteins strongly reduces the activity of conditioned medium (CM) of MDA-MB-231 human breast cancer cells to support promigratory cell spreading and F-actin organization by newly adherent MDA-MB-231 cells. Quantitative proteomics to investigate effects of 16F16 inhibition on heparin-binding proteins in the CM of MDA-MB-231 cells identified 80 proteins reproducibly decreased at least twofold (at q ≤ 0.05) after 16F16 treatment. By Gene Ontology analysis, many of these have roles in extracellular matrix (ECM) structure and function and cell adhesion; ribosomal proteins that also correlate with extracellular vesicles were also identified. Protein-protein interaction analysis showed that many of the extracellular proteins have known network interactions with each other. The predominant types of disulfide-bonded domains in the extracellular proteins contained β-hairpin folds, with the knottin fold the most common. From human breast cancer data sets, the extracellular proteins were found to correlate specifically with the basal subtype of breast cancer and their high expression in tumors correlated with reduced distant metastasis-free survival. These data provide new evidence that PDIA3 may be a relevant therapeutic target to alter properties of the ECM-associated microenvironment in basal breast cancer.
Collapse
Affiliation(s)
- Anna Germon
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Reiss Amoah
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
19
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
20
|
Nikovics K, Favier AL. Macrophage Identification In Situ. Biomedicines 2021; 9:1393. [PMID: 34680510 PMCID: PMC8533306 DOI: 10.3390/biomedicines9101393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes of inflammation and tissue regeneration after injury is of great importance. For a long time, macrophages have been known to play a central role during different stages of inflammation and tissue regeneration. However, the molecular and cellular mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages have been characterized, recent progress in macrophage biology studies revealed that macrophages in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages in vivo is essential to develop new healing treatments and can be approached via in situ analyses. Nowadays, the characterization of macrophages in situ has improved significantly using antigen surface markers and cytokine secretion identification resulting in specific patterns. This review aims for a comprehensive overview of different tools used for in situ macrophage identification, reporter genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | | |
Collapse
|
21
|
Sillerud LO, Neuwelt AJ, Staquicini FI, Arap W, Pasqualini R. Repurposing Ferumoxytol as a Breast Cancer-Associated Macrophage Tracer with Five-Dimensional Quantitative [Fe]MRI of SPION Dynamics. Cancers (Basel) 2021; 13:cancers13153802. [PMID: 34359704 PMCID: PMC8345165 DOI: 10.3390/cancers13153802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary With the incorporation of immune-modulating therapies into the standard management of triple-negative breast cancer, there is increased interest in the non-invasive imaging of the tumor immune microenvironment. Ferumoxytol is FDA-approved as an iron replacement therapy for iron-deficiency anemia and is also a superparamagnetic iron oxide nanoparticle (SPION) resulting in negative enhancement on T2-weighted MR imaging. It has previously been established that ferumoxytol is taken up by macrophages. In the current study, we used ferumoxytol-contrasted MRI to quantitatively image the iron concentration, and, by extension, the tumor-associated macrophage infiltration within the tumor microenvironment of a highly inflammatory model of triple-negative breast cancer. Abstract Tumor-associated macrophages (TAMs) in breast cancer regulate inflammation, immunosuppression, angiogenesis, and metastasis. However, TAM imaging remains a clinical challenge. Ferumoxytol has long been an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used as an intravenous (IV) treatment for iron-deficiency anemia. Given its high transverse relaxivity, ferumoxytol produces a negative image contrast upon cellular uptake in T2-weighted magnetic resonance imaging (MRI) studies. Here we evaluated ferumoxytol as a contrast agent to image/quantify TAMs in an aggressive mouse model of breast cancer: We developed [Fe]MRI to measure the 5-dimensional function c(x,y,z,t), where c is the concentration of nanoparticle iron and {x,y,z,t} is the 4-dimensional set of tumor space-time coordinates. Ferumoxytol SPIONs are readily phagocytosed (~104/cell) by the F4/80+CD11b+ TAMs within breast tumors. Quantitative [Fe]MRIs served to determine both the spatial and the temporal distribution of the SPION iron, and hence to measure [Fe] = c(x,y,z,t), a surrogate for TAM density. In single-dose pharmacokinetic studies, after an IV dose of 5 mg/Kg iron, [Fe]MRI measurements showed that c(x,y,z,t) within breast tumors peaked around [Fe] = 70 μM at 42 h post-administration, and decayed below the [Fe]MRI detection limit (~2 μM) by day 7. There was no SPION uptake in control organs (muscle and adipose tissue). Optical microscopy of tissue sections confirmed that F4/80+CD11b+ TAMs infiltrated the tumors and accumulated SPION iron. Our methodology and findings have translational applications for breast cancer patients.
Collapse
Affiliation(s)
- Laurel O. Sillerud
- Department of Neurology, UNM BRaIN Center, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Correspondence: (L.O.S.); (R.P.)
| | - Alexander J. Neuwelt
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
- Department of Medical Oncology, Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: (L.O.S.); (R.P.)
| |
Collapse
|