1
|
Bernstein JM, Francioli YZ, Schield DR, Adams RH, Perry BW, Farleigh K, Smith CF, Meik JM, Mackessy SP, Castoe TA. Disentangling a genome-wide mosaic of conflicting phylogenetic signals in Western Rattlesnakes. Mol Phylogenet Evol 2025; 206:108309. [PMID: 39938672 DOI: 10.1016/j.ympev.2025.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Species tree inference is often assumed to be more accurate as datasets increase in size, with whole genomes representing the best-case-scenario for estimating a single, most-likely speciation history with high confidence. However, genomes may harbor a complex mixture of evolutionary histories among loci, which amplifies the opportunity for model misspecification and impacts phylogenetic inference. Accordingly, multiple distinct and well-supported phylogenetic trees are often recovered from genome-scale data, and approaches for biologically interpreting these distinct signatures are a major challenge for evolutionary biology in the age of genomics. Here, we analyze 32 whole genomes of nine taxa and two outgroups from the Western Rattlesnake species complex. Using concordance factors, topology weighting, and concatenated and species tree analyses with a chromosome-level reference genome, we characterize the distribution of phylogenetic signal across the genomic landscape. We find that concatenated and species tree analyses of autosomes, the Z (sex) chromosome, and mitochondrial genome yield distinct, yet strongly supported phylogenies. Analyses of site-specific likelihoods show additional patterns consistent with rampant model misspecification, a likely consequence of several evolutionary processes. Together, our results suggest that a combination of historic and recent introgression, along with natural selection, recombination rate variation, and cytonuclear co-evolution of nuclear-encoded mitochondrial genes, underlie genome-wide variation in phylogenetic signal. Our results highlight both the power and complexity of interpreting whole genomes in a phylogenetic context and illustrate how patterns of phylogenetic discordance can reveal the impacts of different evolutionary processes that contribute to genome-wide variation in phylogenetic signal.
Collapse
Affiliation(s)
- Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Blair W Perry
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keaka Farleigh
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76402, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
2
|
Good BH, Bhatt AS, McDonald MJ. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol 2025:S0966-842X(25)00100-3. [PMID: 40274494 DOI: 10.1016/j.tim.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Research on horizontal gene transfer (HGT) has surged over the past two decades, revealing its critical role in accelerating evolutionary rates, facilitating adaptive innovations, and shaping pangenomes. Recent experimental and theoretical results have shown how HGT shapes the flow of genetic information within and between populations, expanding the range of possibilities for microbial evolution. These advances set the stage for a new wave of research seeking to predict how HGT shapes microbial evolution within natural communities, especially during rapid ecological shifts. In this article, we highlight these developments and outline promising research directions, emphasizing the necessity of quantifying the rates of HGT within diverse ecological contexts.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J McDonald
- ARC Centre for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
McHugh MP, Horsfield ST, von Wachsmann J, Toussaint J, Pettigrew KA, Czarniak E, Evans TJ, Leanord A, Tysall L, Gillespie SH, Templeton KE, Holden MTG, Croucher NJ, Lees JA. Integrated population clustering and genomic epidemiology with PopPIPE. Microb Genom 2025; 11:001404. [PMID: 40294103 PMCID: PMC12038005 DOI: 10.1099/mgen.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/22/2025] [Indexed: 04/30/2025] Open
Abstract
Genetic distances between bacterial DNA sequences can be used to cluster populations into closely related subpopulations and as an additional source of information when detecting possible transmission events. Due to their variable gene content and order, reference-free methods offer more sensitive detection of genetic differences, especially among closely related samples found in outbreaks. However, across longer genetic distances, frequent recombination can make calculation and interpretation of these differences more challenging, requiring significant bioinformatic expertise and manual intervention during the analysis process. Here, we present a Population analysis PIPEline (PopPIPE) which combines rapid reference-free genome analysis methods to analyse bacterial genomes across these two scales, splitting whole populations into subclusters and detecting plausible transmission events within closely related clusters. We use k-mer sketching to split populations into strains, followed by split k-mer analysis and recombination removal to create alignments and subclusters within these strains. We first show that this approach creates high-quality subclusters on a population-wide dataset of Streptococcus pneumoniae. When applied to nosocomial vancomycin-resistant Enterococcus faecium samples, PopPIPE finds transmission clusters that are more epidemiologically plausible than core genome or multilocus sequence typing (MLST) approaches. Our pipeline is rapid and reproducible, creates interactive visualizations and can easily be reconfigured and re-run on new datasets. Therefore, PopPIPE provides a user-friendly pipeline for analyses spanning species-wide clustering to outbreak investigations.
Collapse
Affiliation(s)
- Martin P. McHugh
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Samuel T. Horsfield
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Johanna von Wachsmann
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Jacqueline Toussaint
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Kerry A. Pettigrew
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Elzbieta Czarniak
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Thomas J. Evans
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alistair Leanord
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
- Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Luke Tysall
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Stephen H. Gillespie
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Kate E. Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Matthew T. G. Holden
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - John A. Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| |
Collapse
|
4
|
Doran BA, Chen RY, Giba H, Behera V, Barat B, Sundararajan A, Lin H, Sidebottom A, Pamer EG, Raman AS. Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Cell Syst 2025; 16:101167. [PMID: 39826551 DOI: 10.1016/j.cels.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The human gut microbiome contains many bacterial strains of the same species ("strain-level variants") that shape microbiome function. The tremendous scale and molecular resolution at which microbial communities are being interrogated motivates addressing how to describe strain-level variants. We introduce the "Spectral Tree"-an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater than 7,000 diverse bacteria. Using the Spectral Tree to describe over 600 diverse gut commensal strains that we isolated, whole-genome sequenced, and metabolically profiled revealed (1) widespread phylogenetic structure among strain-level variants, (2) the origins of subspecies phylogeny as a shared history of phage infections across humans, and (3) the key role of inter-human strain variation in predicting strain-level metabolic qualities. Overall, our work demonstrates the existence and metabolic importance of structured phylogeny below the level of species for commensal gut bacteria, motivating a redefinition of individual strains according to their evolutionary context. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin A Doran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Robert Y Chen
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Hannah Giba
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Vivek Behera
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Bidisha Barat
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ashley Sidebottom
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Arjun S Raman
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Torrance EL, Diop A, Bobay LM. Homologous recombination shapes the architecture and evolution of bacterial genomes. Nucleic Acids Res 2025; 53:gkae1265. [PMID: 39718992 PMCID: PMC11879095 DOI: 10.1093/nar/gkae1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotspots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 9455, USA
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Louis-Marie Bobay
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Qu EB, Baker JS, Markey L, Khadka V, Mancuso C, Tripp D, Lieberman TD. Intraspecies associations from strain-rich metagenome samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636498. [PMID: 39974997 PMCID: PMC11839054 DOI: 10.1101/2025.02.07.636498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetically distinct strains of a species can vary widely in phenotype, reducing the utility of species-resolved microbiome measurements for detecting associations with health or disease. While metagenomics theoretically provides information on all strains in a sample, current strain-resolved analysis methods face a tradeoff: de novo genotyping approaches can detect novel strains but struggle when applied to strain-rich or low-coverage samples, while reference database methods work robustly across sample types but are insensitive to novel diversity. We present PHLAME, a method that bridges this divide by combining the advantages of reference-based approaches with novelty awareness. PHLAME explicitly defines clades at multiple phylogenetic levels and introduces a probabilistic, mutation-based, framework to accurately quantify novelty from the nearest reference. By applying PHLAME to publicly available human skin and vaginal metagenomes, we uncover previously undetected clade associations with coexisting species, geography, and host age. The ability to characterize intraspecies associations and dynamics in previously inaccessible environments will propel new mechanistic insights from accumulating metagenomic data.
Collapse
Affiliation(s)
- Evan B. Qu
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Jacob S. Baker
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Laura Markey
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Veda Khadka
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Chris Mancuso
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Delphine Tripp
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Mah JC, Lohmueller KE, Garud NR. Inference of the Demographic Histories and Selective Effects of Human Gut Commensal Microbiota Over the Course of Human History. Mol Biol Evol 2025; 42:msaf010. [PMID: 39838923 PMCID: PMC11824422 DOI: 10.1093/molbev/msaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their demographic histories and distributions of fitness effects (DFEs) of mutations. Here, we infer the demographic histories and DFEs for amino acid-changing mutations of 39 of the most prevalent and abundant commensal gut microbial species found in Westernized individuals over timescales exceeding human generations. Some species display contractions in population size and others expansions, with several of these events coinciding with several key historical moments in human history. DFEs across species vary from highly to mildly deleterious, with differences between accessory and core gene DFEs largely driven by genetic drift. Within genera, DFEs tend to be more congruent, reflective of underlying phylogenetic relationships. Together, these findings suggest that gut microbes have distinct demographic and selective histories.
Collapse
Affiliation(s)
- Jonathan C Mah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| |
Collapse
|
8
|
Gamblin J, Lambert A, Blanquart F. Persistent, Private, and Mobile Genes: A Model for Gene Dynamics in Evolving Pangenomes. Mol Biol Evol 2025; 42:msaf001. [PMID: 39812022 PMCID: PMC11781223 DOI: 10.1093/molbev/msaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The pangenome of a species is the set of all genes carried by at least one member of the species. In bacteria, pangenomes can be much larger than the set of genes carried by a single organism. Many questions remain unanswered regarding the evolutionary forces shaping the patterns of the presence/absence of genes in pangenomes of a given species. We introduce a new model for bacterial pangenome evolution along a species phylogeny that explicitly describes the timing of appearance of each gene in the species and accounts for three generic types of gene evolutionary dynamics: persistent genes that are present in the ancestral genome, private genes that are specific to a given clade, and mobile genes that are imported once into the gene pool and then undergo frequent horizontal gene transfers. We call this model the Persistent-Private-Mobile (PPM) model. We develop an algorithm fitting the PPM model and apply it to a dataset of 902 Salmonella enterica genomes. We show that the best fitting model is able to reproduce the global pattern of some multivariate statistics like the gene frequency spectrum and the parsimony vs. frequency plot. Moreover, the gene classification induced by the PPM model allows us to study the position of accessory genes on the chromosome depending on their category, as well as the gene functions that are most present in each category. This work paves the way for a mechanistic understanding of pangenome evolution, and the PPM model developed here could be used for dynamics-aware gene classification.
Collapse
Affiliation(s)
- Jasmine Gamblin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Amaury Lambert
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Institut de Biologie de l’ENS (IBENS), École Normale Supérieure (ENS), CNRS, INSERM, Université PSL, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
9
|
Molari M, Shaw LP, Neher RA. Quantifying the Evolutionary Dynamics of Structure and Content in Closely Related E. coli Genomes. Mol Biol Evol 2025; 42:msae272. [PMID: 39750749 PMCID: PMC11739808 DOI: 10.1093/molbev/msae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes. We comprehensively describe genome evolution within n=222 genomes of Escherichia coli ST131, which likely shared a common ancestor around 100 years ago. After removing putative recombinant diversity, the total length of the phylogeny is 6,000 core genome substitutions. Within this diversity, we find 22 modifications to core genome synteny and estimate around 2,000 structural changes within the accessory genome, i.e. one structural change for every three core genome substitutions. Sixty-three percent of loci with structural diversity could be resolved into individual gain and loss events with 10-fold more gains than losses, demonstrating a dominance of gains due to insertion sequences and prophage integration. Our results suggest the majority of synteny changes and insertions in our dataset are likely deleterious and only persist for a short time before being removed by purifying selection.
Collapse
Affiliation(s)
- Marco Molari
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Liam P Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Richard A Neher
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Rubio A, Garzón A, Moreno-Rodríguez A, Pérez-Pulido AJ. Biological warfare between two bacterial viruses in a defense archipelago sheds light on the spread of CRISPR-Cas systems. Cell Rep 2024; 43:115085. [PMID: 39675005 DOI: 10.1016/j.celrep.2024.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
CRISPR-Cas systems are adaptive immunity systems of bacteria and archaea that prevent infection by viruses and other external mobile genetic elements. It is currently known that these defense systems can be co-opted by the same viruses. We have found one of these viruses in the opportunistic pathogen Acinetobacter baumannii, and the same system has been also found in an integration hotspot of the bacterial genome that harbors other multiple defense systems. The CRISPR-Cas system appears to especially target another virus that could compete with the system itself for the same integration site. This virus is prevalent in strains of the species belonging to the so-called Global Clone 2, which causes the most frequent outbreaks worldwide. Knowledge of this viral warfare involving antiviral systems could be useful in the fight against infections caused by bacteria, and it would also shed light on how CRISPR-Cas systems expand in bacteria.
Collapse
Affiliation(s)
- Alejandro Rubio
- Andalusian Center for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain
| | - Andrés Garzón
- Andalusian Center for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Moreno-Rodríguez
- Andalusian Center for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain
| | - Antonio J Pérez-Pulido
- Andalusian Center for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
11
|
Conrad RE, Brink CE, Viver T, Rodriguez-R LM, Aldeguer-Riquelme B, Hatt JK, Venter SN, Rossello-Mora R, Amann R, Konstantinidis KT. Microbial species and intraspecies units exist and are maintained by ecological cohesiveness coupled to high homologous recombination. Nat Commun 2024; 15:9906. [PMID: 39548060 PMCID: PMC11568254 DOI: 10.1038/s41467-024-53787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Recent genomic analyses have revealed that microbial communities are predominantly composed of persistent, sequence-discrete species and intraspecies units (genomovars), but the mechanisms that create and maintain these units remain unclear. By analyzing closely-related isolate genomes from the same or related samples and identifying recent recombination events using a novel bioinformatics methodology, we show that high ecological cohesiveness coupled to frequent-enough and unbiased (i.e., not selection-driven) horizontal gene flow, mediated by homologous recombination, often underlie these diversity patterns. Ecological cohesiveness was inferred based on greater similarity in temporal abundance patterns of genomes of the same vs. different units, and recombination was shown to affect all sizable segments of the genome (i.e., be genome-wide) and have two times or greater impact on sequence evolution than point mutations. These results were observed in both Salinibacter ruber, an environmental halophilic organism, and Escherichia coli, the model gut-associated organism and an opportunistic pathogen, indicating that they may be more broadly applicable to the microbial world. Therefore, our results represent a departure compared to previous models of microbial speciation that invoke either ecology or recombination, but not necessarily their synergistic effect, and answer an important question for microbiology: what a species and a subspecies are.
Collapse
Affiliation(s)
| | | | - Tomeu Viver
- Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | - Janet K Hatt
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ramon Rossello-Mora
- Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | |
Collapse
|
12
|
Lyulina AS, Liu Z, Good BH. Linkage equilibrium between rare mutations. Genetics 2024; 228:iyae145. [PMID: 39222343 PMCID: PMC11538400 DOI: 10.1093/genetics/iyae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here, we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination and discuss their implications for the rates of horizontal gene transfer in bacteria.
Collapse
Affiliation(s)
- Anastasia S Lyulina
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Benjamin H Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Molteni C, Forni D, Cagliani R, Sironi M. Comparative genomics reveal a novel phylotaxonomic order in the genus Fusobacterium. Commun Biol 2024; 7:1102. [PMID: 39244637 PMCID: PMC11380691 DOI: 10.1038/s42003-024-06825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
14
|
Kellgren T, Dwibedi C, Widerström M, Sundell D, Öhrman C, Sjödin A, Monsen T, Rydén P, Johansson A. Completed genome and emergence scenario of the multidrug-resistant nosocomial pathogen Staphylococcus epidermidis ST215. BMC Microbiol 2024; 24:215. [PMID: 38890594 PMCID: PMC11186124 DOI: 10.1186/s12866-024-03367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND A multidrug-resistant lineage of Staphylococcus epidermidis named ST215 is a common cause of prosthetic joint infections and other deep surgical site infections in Northern Europe, but is not present elsewhere. The increasing resistance among S. epidermidis strains is a global concern. We used whole-genome sequencing to characterize ST215 from healthcare settings. RESULTS We completed the genome of a ST215 isolate from a Swedish hospital using short and long reads, resulting in a circular 2,676,787 bp chromosome and a 2,326 bp plasmid. The new ST215 genome was placed in phylogenetic context using 1,361 finished public S. epidermidis reference genomes. We generated 10 additional short-read ST215 genomes and 11 short-read genomes of ST2, which is another common multidrug-resistant lineage at the same hospital. We studied recombination's role in the evolution of ST2 and ST215, and found multiple recombination events averaging 30-50 kb. By comparing the results of antimicrobial susceptibility testing for 31 antimicrobial drugs with the genome content encoding antimicrobial resistance in the ST215 and ST2 isolates, we found highly similar resistance traits between the isolates, with 22 resistance genes being shared between all the ST215 and ST2 genomes. The ST215 genome contained 29 genes that were historically identified as virulence genes of S. epidermidis ST2. We established that in the nucleotide sequence stretches identified as recombination events, virulence genes were overrepresented in ST215, while antibiotic resistance genes were overrepresented in ST2. CONCLUSIONS This study features the extensive antibiotic resistance and virulence gene content in ST215 genomes. ST215 and ST2 lineages have similarly evolved, acquiring resistance and virulence through genomic recombination. The results highlight the threat of new multidrug-resistant S. epidermidis lineages emerging in healthcare settings.
Collapse
Affiliation(s)
- Therese Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Chinmay Dwibedi
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| | - Micael Widerström
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
| | - David Sundell
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Caroline Öhrman
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Andreas Sjödin
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| |
Collapse
|
15
|
Souza SSR, Smith JT, Marcovici MM, Eckhardt EM, Hansel NB, Martin IW, Andam CP. Demographic fluctuations in bloodstream Staphylococcus aureus lineages configure the mobile gene pool and antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:14. [PMID: 38725655 PMCID: PMC11076216 DOI: 10.1038/s44259-024-00032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
Staphylococcus aureus in the bloodstream causes high morbidity and mortality, exacerbated by the spread of multidrug-resistant and methicillin-resistant S. aureus (MRSA). We aimed to characterize the circulating lineages of S. aureus from bloodstream infections and the contribution of individual lineages to resistance over time. Here, we generated 852 high-quality short-read draft genome sequences of S. aureus isolates from patient blood cultures in a single hospital from 2010 to 2022. A total of 80 previously recognized sequence types (ST) and five major clonal complexes are present in the population. Two frequently detected lineages, ST5 and ST8 exhibited fluctuating demographic structures throughout their histories. The rise and fall in their population growth coincided with the acquisition of antimicrobial resistance, mobile genetic elements, and superantigen genes, thus shaping the accessory genome structure across the entire population. These results reflect undetected selective events and changing ecology of multidrug-resistant S. aureus in the bloodstream.
Collapse
Affiliation(s)
- Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| | - Joshua T. Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Michael M. Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| | - Elissa M. Eckhardt
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Nicole B. Hansel
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Isabella W. Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| |
Collapse
|
16
|
Lagerstrom KM, Scales NC, Hadly EA. Impressive pan-genomic diversity of E. coli from a wild animal community near urban development reflects human impacts. iScience 2024; 27:109072. [PMID: 38375235 PMCID: PMC10875580 DOI: 10.1016/j.isci.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Human and domesticated animal waste infiltrates global freshwater, terrestrial, and marine environments, widely disseminating fecal microbes, antibiotics, and other chemical pollutants. Emerging evidence suggests that guts of wild animals are being invaded by our microbes, including Escherichia coli, which face anthropogenic selective pressures to gain antimicrobial resistance (AMR) and increase virulence. However, wild animal sources remain starkly under-represented among genomic sequence repositories. We sequenced whole genomes of 145 E. coli isolates from 55 wild and 13 domestic animal fecal samples, averaging 2 (ranging 1-7) isolates per sample, on a preserve imbedded in a human-dominated landscape in California Bay Area, USA, to assess AMR, virulence, and pan-genomic diversity. With single nucleotide polymorphism analyses we predict potential transmission routes. We illustrate the usefulness of E. coli to aid our understanding of and ability to surveil the emergence of zoonotic pathogens created by the mixing of human and wild bacteria in the environment.
Collapse
Affiliation(s)
| | - Nicholas C. Scales
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
18
|
Mah JC, Lohmueller KE, Garud N. Inference of the demographic histories and selective effects of human gut commensal microbiota over the course of human history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566454. [PMID: 38014007 PMCID: PMC10680615 DOI: 10.1101/2023.11.09.566454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their population demographic histories and their distributions of fitness effects (DFE) of new mutations. Here, we infer the demographic histories and DFEs of 27 of the most highly prevalent and abundant commensal gut microbial species in North Americans over timescales exceeding human generations using a collection of lineages inferred from a panel of healthy hosts. We find overall reductions in genetic variation among commensal gut microbes sampled from a Western population relative to an African rural population. Additionally, some species in North American microbiomes display contractions in population size and others expansions, potentially occurring at several key historical moments in human history. DFEs across species vary from highly to mildly deleterious, with accessory genes experiencing more drift compared to core genes. Within genera, DFEs tend to be more congruent, reflective of underlying phylogenetic relationships. Taken together, these findings suggest that human commensal gut microbes have distinct evolutionary histories, possibly reflecting the unique roles of individual members of the microbiome.
Collapse
Affiliation(s)
- Jonathan C. Mah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| |
Collapse
|
19
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Recombination as an enforcement mechanism of prosocial behavior in cooperating bacteria. iScience 2023; 26:107344. [PMID: 37554437 PMCID: PMC10405257 DOI: 10.1016/j.isci.2023.107344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Prosocial behavior is ubiquitous in nature despite the relative fitness costs carried by cooperative individuals. However, the stability of cooperation in populations is fragile and often maintained through enforcement. We propose that homologous recombination provides such a mechanism in bacteria. Using an agent-based model of recombination in bacteria playing a public goods game, we demonstrate how changes in recombination rates affect the proportion of cooperating cells. In our model, recombination converts cells to a different strategy, either freeloading (cheaters) or cooperation, based on the strategies of neighboring cells and recombination rate. Increasing the recombination rate expands the parameter space in which cooperators outcompete freeloaders. However, increasing the recombination rate alone is neither sufficient nor necessary. Intermediate benefits of cooperation, lower population viscosity, and greater population size can promote the evolution of cooperation from within populations of cheaters. Our findings demonstrate how recombination influences the persistence of cooperative behavior in bacteria.
Collapse
Affiliation(s)
- Isaiah Paolo A. Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- National Institute of Molecular Biology and Biotechnology, University of the Philippines–Diliman, Quezon City 1101, Philippines
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
20
|
Birzu G, Muralidharan HS, Goudeau D, Malmstrom RR, Fisher DS, Bhaya D. Hybridization breaks species barriers in long-term coevolution of a cyanobacterial population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543983. [PMID: 37333348 PMCID: PMC10274767 DOI: 10.1101/2023.06.06.543983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bacterial species often undergo rampant recombination yet maintain cohesive genomic identity. Ecological differences can generate recombination barriers between species and sustain genomic clusters in the short term. But can these forces prevent genomic mixing during long-term coevolution? Cyanobacteria in Yellowstone hot springs comprise several diverse species that have coevolved for hundreds of thousands of years, providing a rare natural experiment. By analyzing more than 300 single-cell genomes, we show that despite each species forming a distinct genomic cluster, much of the diversity within species is the result of hybridization driven by selection, which has mixed their ancestral genotypes. This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species and highlights the importance of hybridization as a source of genomic diversity.
Collapse
Affiliation(s)
- Gabriel Birzu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel S. Fisher
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Noll N, Molari M, Shaw LP, Neher RA. PanGraph: scalable bacterial pan-genome graph construction. Microb Genom 2023; 9:mgen001034. [PMID: 37278719 PMCID: PMC10327495 DOI: 10.1099/mgen.0.001034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
The genomic diversity of microbes is commonly parameterized as SNPs relative to a reference genome of a well-characterized, but arbitrary, isolate. However, any reference genome contains only a fraction of the microbial pangenome, the total set of genes observed in a given species. Reference-based approaches are thus blind to the dynamics of the accessory genome, as well as variation within gene order and copy number. With the widespread usage of long-read sequencing, the number of high-quality, complete genome assemblies has increased dramatically. In addition to pangenomic approaches that focus on the variation in the sets of genes present in different genomes, complete assemblies allow investigations of the evolution of genome structure and gene order. This latter problem, however, is computationally demanding with few tools available that shed light on these dynamics. Here, we present PanGraph, a Julia-based library and command line interface for aligning whole genomes into a graph. Each genome is represented as a path along vertices, which in turn encapsulate homologous multiple sequence alignments. The resultant data structure succinctly summarizes population-level nucleotide and structural polymorphisms and can be exported into several common formats for either downstream analysis or immediate visualization.
Collapse
Affiliation(s)
- Nicholas Noll
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, USA
| | - Marco Molari
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Richard A. Neher
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Walsh SK, Imrie RM, Matuszewska M, Paterson GK, Weinert LA, Hadfield JD, Buckling A, Longdon B. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLoS Pathog 2023; 19:e1011433. [PMID: 37289828 PMCID: PMC10284401 DOI: 10.1371/journal.ppat.1011433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/21/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.
Collapse
Affiliation(s)
- Sarah K. Walsh
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ryan M. Imrie
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| | - Marta Matuszewska
- Department of Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute; University of Edinburgh;Edinburgh; United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology; The University of Edinburgh; Edinburgh; United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ben Longdon
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| |
Collapse
|
23
|
Zarras C, Karampatakis T, Pappa S, Iosifidis E, Vagdatli E, Roilides E, Papa A. Genetic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates in a Tertiary Hospital in Greece, 2018-2022. Antibiotics (Basel) 2023; 12:976. [PMID: 37370295 DOI: 10.3390/antibiotics12060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious public health issue. The study aimed to identify the antimicrobial resistance and accessory genes, the clonal relatedness, and the evolutionary dynamics of selected CRKP isolates recovered in an adult and pediatric intensive care unit of a tertiary hospital in Greece. METHODS Twenty-four CRKP isolates recovered during 2018-2022 were included in the study. Next-generation sequencing was performed using the Ion Torrent PGM Platform. The identification of the plasmid content, MLST, and antimicrobial resistance genes, as well as the comparison of multiple genome alignments and the identification of core genome single-nucleotide polymorphism sites, were performed using various bioinformatics software. RESULTS The isolates belonged to eight sequence types: 11, 15, 30, 35, 39, 307, 323, and 512. A variety of carbapenemases (KPC, VIM, NDM, and OXA-48) and resistance genes were detected. CRKP strains shared visually common genomic regions with the reference strain (NTUH-K2044). ST15, ST323, ST39, and ST11 CRKP isolates presented on average 17, 6, 16, and 866 recombined SNPs, respectively. All isolates belonging to ST15, ST323, and ST39 were classified into distinct phylogenetic branches, while ST11 isolates were assigned to a two-subclade branch. For large CRKP sets, the phylogeny seems to change approximately every seven SNPs. CONCLUSIONS The current study provides insight into the genetic characterization of CRKP isolates in the ICUs of a tertiary hospital. Our results indicate clonal dispersion of ST15, ST323, and ST39 and highly diverged ST11 isolates.
Collapse
Affiliation(s)
- Charalampos Zarras
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Theodoros Karampatakis
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Eleni Vagdatli
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
24
|
Ikhimiukor OO, Souza SSR, Marcovici MM, Nye GJ, Gibson R, Andam CP. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun Biol 2023; 6:482. [PMID: 37137974 PMCID: PMC10156822 DOI: 10.1038/s42003-023-04877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Michael M Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Griffin J Nye
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Robert Gibson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
25
|
Huisman JS, Vaughan TG, Egli A, Tschudin-Sutter S, Stadler T, Bonhoeffer S. The effect of sequencing and assembly on the inference of horizontal gene transfer on chromosomal and plasmid phylogenies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210245. [PMID: 35989605 PMCID: PMC9393563 DOI: 10.1098/rstb.2021.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The spread of antibiotic resistance genes on plasmids is a threat to human and animal health. Phylogenies of bacteria and their plasmids contain clues regarding the frequency of plasmid transfer events, as well as the co-evolution of plasmids and their hosts. However, whole genome sequencing data from diverse ecological or clinical bacterial samples are rarely used to study plasmid phylogenies and resistance gene transfer. This is partially due to the difficulty of extracting plasmids from short-read sequencing data. Here, we use both short- and long-read sequencing data of 24 clinical extended-spectrum [Formula: see text]-lactamase (ESBL)-producing Escherichia coli to estimate chromosomal and plasmid phylogenies. We compare the impact of different sequencing and assembly methodologies on these phylogenies and on the inference of horizontal gene transfer. We find that chromosomal phylogenies can be estimated robustly with all methods, whereas plasmid phylogenies have more variable topology and branch lengths across the methods used. Specifically, hybrid methods that use long reads to resolve short-read assemblies (HybridSPAdes and Unicycler) perform better than those that started from long reads during assembly graph generation (Canu). By contrast, the inference of plasmid and antibiotic resistance gene transfer using a parsimony-based criterion is mostly robust to the choice of sequencing and assembly method. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Jana S. Huisman
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Timothy G. Vaughan
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Leducq JB, Sneddon D, Santos M, Condrain-Morel D, Bourret G, Cecilia Martinez-Gomez N, Lee JA, Foster JA, Stolyar S, Jesse Shapiro B, Kembel SW, Sullivan JM, Marx CJ. Comprehensive phylogenomics of Methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol 2022; 14:6652236. [PMID: 35906926 PMCID: PMC9364378 DOI: 10.1093/gbe/evac123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere, and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer. We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Université Laval - Quebec City (QC) Canada.,University of Idaho - Moscow (ID) US
| | | | | | | | | | | | | | | | | | - B Jesse Shapiro
- Université de Montréal - Montreal (QC) Canada.,McGill University - Montreal (QC) Canada
| | | | | | | |
Collapse
|
27
|
Demographic Expansions and the Emergence of Host Specialization in Genetically Distinct Ecotypes of the Tick-Transmitted Bacterium Anaplasma phagocytophilum. Appl Environ Microbiol 2022; 88:e0061722. [PMID: 35867580 PMCID: PMC9317897 DOI: 10.1128/aem.00617-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In Europe, genetically distinct ecotypes of the tick-vectored bacterium Anaplasma phagocytophilum circulate among mammals in three discrete enzootic cycles. To date, potential ecological factors that contributed to the emergence of these divergent ecotypes have been poorly studied. Here, we show that the ecotype that predominantly infects roe deer (Capreolus capreolus) is evolutionarily derived. Its divergence from a host generalist ancestor occurred after the last glacial maximum as mammal populations, including roe deer, recolonized the European mainland from southern refugia. We also provide evidence that this host specialist ecotype's effective population size (Ne) has tracked changes in the population of its roe deer host. Specifically, both host and bacterium have undergone substantial increases in Ne over the past 1,500 years. In contrast, we show that while it appears to have undergone a major population expansion starting ~3,500 years ago, in the past 500 years, the contemporary host generalist ecotype has experienced a substantial reduction in genetic diversity levels, possibly as a result of reduced opportunities for transmission between competent hosts. IMPORTANCE The findings of this study reveal specific events important for the evolution of host specialization in a naturally occurring, obligately intracellular bacterial pathogen. Specifically, they show that host range shifts and the emergence of host specialization may occur during periods of population growth in a generalist ancestor. Our results also demonstrate the close correlation between demographic patterns in host and pathogen for a specialist system. These findings have important relevance for understanding the evolution of host range diversity. They may inform future work on host range dynamics, and they provide insights for understanding the emergence of pathogens that have human and veterinary health implications.
Collapse
|
28
|
Qin X, Chiang CWK, Gaggiotti OE. KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis. Brief Bioinform 2022; 23:bbac202. [PMID: 35649387 PMCID: PMC9294434 DOI: 10.1093/bib/bbac202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal components (DAPC). However, genetic features produced from both approaches could fail to correctly characterize population structure for complex scenarios involving admixture. In this study, we introduce Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC), a supervised non-linear approach for inferring individual geographic genetic structure that could rectify the limitations of these approaches by preserving the multimodal space of samples. We tested the power of KLFDAPC to infer population structure and to predict individual geographic origin using neural networks. Simulation results showed that KLFDAPC has higher discriminatory power than PCA and DAPC. The application of our method to empirical European and East Asian genome-wide genetic datasets indicated that the first two reduced features of KLFDAPC correctly recapitulated the geography of individuals and significantly improved the accuracy of predicting individual geographic origin when compared to PCA and DAPC. Therefore, KLFDAPC can be useful for geographic ancestry inference, design of genome scans and correction for spatial stratification in GWAS that link genes to adaptation or disease susceptibility.
Collapse
Affiliation(s)
- Xinghu Qin
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine & Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| |
Collapse
|
29
|
Preska Steinberg A, Lin M, Kussell E. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 2022; 11:78533. [PMID: 35801696 PMCID: PMC9444244 DOI: 10.7554/elife.78533] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.
Collapse
Affiliation(s)
| | - Mingzhi Lin
- Department of Biology, New York University, New York, United States
| | - Edo Kussell
- Department of Biology, New York University, New York, United States
| |
Collapse
|
30
|
Abstract
Bacteria have evolved numerous strategies to use resources efficiently. However, bacterial economies depend on both the physiological context of the organisms as well as their growth state - whether they are growing, non-growing or reinitiating growth. In this essay, we discuss some of the features that make bacteria efficient under these different conditions and during the transitions between them. We also highlight the many outstanding questions regarding the physiology of non-growing bacterial cells. Lastly, we examine how efficiency is apparent in both the mode and tempo of bacterial evolution.
Collapse
Affiliation(s)
- Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathalie Balaban
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Thomas Julou
- Biozentrum and Swiss Institute of Bioinformatics, University of Basel, Basel, CH 4056, Switzerland
| |
Collapse
|
31
|
Gene regulation in Escherichia coli is commonly selected for both high plasticity and low noise. Nat Ecol Evol 2022; 6:1165-1179. [PMID: 35726087 DOI: 10.1038/s41559-022-01783-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Bacteria often respond to dynamically changing environments by regulating gene expression. Despite this regulation being critically important for growth and survival, little is known about how selection shapes gene regulation in natural populations. To better understand the role natural selection plays in shaping bacterial gene regulation, here we compare differences in the regulatory behaviour of naturally segregating promoter variants from Escherichia coli (which have been subject to natural selection) to randomly mutated promoter variants (which have never been exposed to natural selection). We quantify gene expression phenotypes (expression level, plasticity and noise) for hundreds of promoter variants across multiple environments and show that segregating promoter variants are enriched for mutations with minimal effects on expression level. In many promoters, we infer that there is strong selection to maintain high levels of plasticity, and direct selection to decrease or increase cell-to-cell variability in expression. Taken together, these results expand our knowledge of how gene regulation is affected by natural selection and highlight the power of comparing naturally segregating polymorphisms to de novo random mutations to quantify the action of selection.
Collapse
|
32
|
Annotation-free delineation of prokaryotic homology groups. PLoS Comput Biol 2022; 18:e1010216. [PMID: 35675326 PMCID: PMC9212150 DOI: 10.1371/journal.pcbi.1010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are homologous across their length. However, processes such as horizontal gene transfer or gene duplication and loss may disrupt this homology by recombining only parts of genes, causing gene fission or fusion. We show using simulation that it is necessary to delineate homology groups in a set of bacterial genomes without relying on gene annotations to define the boundaries of homologous regions. To solve this problem, we have developed a graph-based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups of sequences (MHGs) where each MHG is a maximal set of maximum-length sequences which are homologous across the entire sequence alignment. We applied our algorithm to a dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater proportions of genomes than markers and, relatedly, are less biased in terms of the functions of the genes they cover. We zoomed in on the correlation between each individual marker and their overlapping MHGs, and show that few phylogenetic splits supported by the markers are supported by the MHGs while many marker-supported splits are contradicted by the MHGs. A comparison of the species tree inferred from marker genes with the species tree inferred from MHGs suggests that the increased bias and lack of genome coverage by markers causes incorrect inferences as to the overall relationship between bacterial taxa. Assuming genes to be the basic evolutionary unit has been commonplace in bacterial genomics. For example, when quantifying the extent of horizontal gene transfer it is common to infer gene trees and reconcile them against a species tree to account for recombination-based processes. We have developed a new method which challenges this assumption by identifying contiguous regions of true homology without regards to gene boundaries and applied it to Enterobacteriaceae, a family of bacteria containing several important human pathogens. Our results show that genes are composed of distinct homologous regions with conflicting phylogenetic histories. We further demonstrate that failing to take account of this conflict, together with the functional biases we show exist among single-copy marker genes, significantly changes the consensus evolutionary tree of Enterobacteriaceae.
Collapse
|
33
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
34
|
Chen DW, Garud NR. Rapid evolution and strain turnover in the infant gut microbiome. Genome Res 2022; 32:1124-1136. [PMID: 35545448 PMCID: PMC9248880 DOI: 10.1101/gr.276306.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Although the ecological dynamics of the infant gut microbiome have been intensely studied, relatively little is known about evolutionary dynamics in the infant gut microbiome. Here we analyze longitudinal fecal metagenomic data from more than 700 infants and their mothers over the first year of life and find that the evolutionary dynamics in infant gut microbiomes are distinct from those of adults. We find evidence for more than a 10-fold increase in the rate of evolution and strain turnover in the infant gut compared with healthy adults, with the mother-infant transition at delivery being a particularly dynamic period in which gene loss dominates. Within a few months after birth, these dynamics stabilize, and gene gains become increasingly frequent as the microbiome matures. We furthermore find that evolutionary changes in infants show signatures of being seeded by a mixture of de novo mutations and transmissions of pre-evolved lineages from the broader family. Several of these evolutionary changes occur in parallel across infants, highlighting candidate genes that may play important roles in the development of the infant gut microbiome. Our results point to a picture of a volatile infant gut microbiome characterized by rapid evolutionary and ecological change in the early days of life.
Collapse
Affiliation(s)
- Daisy W Chen
- Computational and Systems Biology, University of California, Los Angeles, California 90095-1606, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, California 92093, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA
- Department of Human Genetics, University of California, Los Angeles, California 90095-1606, USA
| |
Collapse
|
35
|
Sabin S, Morales-Arce AY, Pfeifer SP, Jensen JD. The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis. G3 (BETHESDA, MD.) 2022; 12:jkac055. [PMID: 35253851 PMCID: PMC9073693 DOI: 10.1093/g3journal/jkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.
Collapse
Affiliation(s)
- Susanna Sabin
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ana Y Morales-Arce
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
36
|
Bowers RM, Nayfach S, Schulz F, Jungbluth SP, Ruhl IA, Sheremet A, Lee J, Goudeau D, Eloe-Fadrosh EA, Stepanauskas R, Malmstrom RR, Kyrpides NC, Dunfield PF, Woyke T. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. THE ISME JOURNAL 2022; 16:1337-1347. [PMID: 34969995 PMCID: PMC9039060 DOI: 10.1038/s41396-021-01178-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.
Collapse
Affiliation(s)
- Robert M. Bowers
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Stephen Nayfach
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Frederik Schulz
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Sean P. Jungbluth
- grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ilona A. Ruhl
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada ,grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Andriy Sheremet
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Janey Lee
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Danielle Goudeau
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Emiley A. Eloe-Fadrosh
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME USA
| | - Rex R. Malmstrom
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Nikos C. Kyrpides
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Peter F. Dunfield
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
37
|
Shalon N, Relman DA, Yaffe E. Precise genotyping of circular mobile elements from metagenomic data uncovers human-associated plasmids with recent common ancestors. Genome Res 2022; 32:986-1003. [PMID: 35414589 PMCID: PMC9104695 DOI: 10.1101/gr.275894.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial communities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We present DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called 'dominant' graph cycles. In the implementation we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nucleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse natural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prevalent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the study of microbial communities that evolve through horizontal gene transfer.
Collapse
|
38
|
Recombination resolves the cost of horizontal gene transfer in experimental populations of Helicobacter pylori. Proc Natl Acad Sci U S A 2022; 119:e2119010119. [PMID: 35298339 PMCID: PMC8944584 DOI: 10.1073/pnas.2119010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT)—the transfer of DNA between lineages—is responsible for a large proportion of the genetic variation that contributes to evolution in microbial populations. While HGT can bring beneficial genetic innovation, the transfer of DNA from other species or strains can also have deleterious effects. In this study, we evolve populations of the bacteria Helicobacter pylori and use DNA sequencing to identify over 40,000 genetic variants transferred by HGT. We measure the cost of many of these and find that both strongly beneficial mutations and deleterious mutations are genetic variants transferred by natural transformation. Importantly, we also show how recombination that separates linked beneficial and deleterious mutations resolves the cost of HGT. Horizontal gene transfer (HGT) is important for microbial evolution, yet we know little about the fitness effects and dynamics of horizontally transferred genetic variants. In this study, we evolve laboratory populations of Helicobacter pylori, which take up DNA from their environment by natural transformation, and measure the fitness effects of thousands of transferred genetic variants. We find that natural transformation increases the rate of adaptation but comes at the cost of significant genetic load. We show that this cost is circumvented by recombination, which increases the efficiency of selection by decoupling deleterious and beneficial genetic variants. Our results show that adaptation with HGT, pervasive in natural microbial populations, is shaped by a combination of selection, recombination, and genetic drift not accounted for in existing models of evolution.
Collapse
|
39
|
Mallawaarachchi S, Tonkin-Hill G, Croucher NJ, Turner P, Speed D, Corander J, Balding D. Genome-wide association, prediction and heritability in bacteria with application to Streptococcus pneumoniae. NAR Genom Bioinform 2022; 4:lqac011. [PMID: 35211669 PMCID: PMC8862724 DOI: 10.1093/nargab/lqac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
Whole-genome sequencing has facilitated genome-wide analyses of association, prediction and heritability in many organisms. However, such analyses in bacteria are still in their infancy, being limited by difficulties including genome plasticity and strong population structure. Here we propose a suite of methods including linear mixed models, elastic net and LD-score regression, adapted to bacterial traits using innovations such as frequency-based allele coding, both insertion/deletion and nucleotide testing and heritability partitioning. We compare and validate our methods against the current state-of-art using simulations, and analyse three phenotypes of the major human pathogen Streptococcus pneumoniae, including the first analyses of minimum inhibitory concentrations (MIC) for penicillin and ceftriaxone. We show that the MIC traits are highly heritable with high prediction accuracy, explained by many genetic associations under good population structure control. In ceftriaxone MIC, this is surprising because none of the isolates are resistant as per the inhibition zone criteria. We estimate that half of the heritability of penicillin MIC is explained by a known drug-resistance region, which also contributes a quarter of the ceftriaxone MIC heritability. For the within-host carriage duration phenotype, no associations were observed, but the moderate heritability and prediction accuracy indicate a moderately polygenic trait.
Collapse
Affiliation(s)
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- Faculty of Medicine, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap 1710, Cambodia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Doug Speed
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark,Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark,UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK,Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway,Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland
| | - David Balding
- Correspondence may also be addressed to David Balding.
| |
Collapse
|
40
|
Genomic structure predicts metabolite dynamics in microbial communities. Cell 2022; 185:530-546.e25. [PMID: 35085485 DOI: 10.1016/j.cell.2021.12.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The metabolic activities of microbial communities play a defining role in the evolution and persistence of life on Earth, driving redox reactions that give rise to global biogeochemical cycles. Community metabolism emerges from a hierarchy of processes, including gene expression, ecological interactions, and environmental factors. In wild communities, gene content is correlated with environmental context, but predicting metabolite dynamics from genomes remains elusive. Here, we show, for the process of denitrification, that metabolite dynamics of a community are predictable from the genes each member of the community possesses. A simple linear regression reveals a sparse and generalizable mapping from gene content to metabolite dynamics for genomically diverse bacteria. A consumer-resource model correctly predicts community metabolite dynamics from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can predict community metabolite dynamics, enabling the prediction of metabolite dynamics from metagenomes, designing denitrifying communities, and discovering how genome evolution impacts metabolism.
Collapse
|
41
|
Shoemaker WR, Chen D, Garud NR. Comparative Population Genetics in the Human Gut Microbiome. Genome Biol Evol 2022; 14:evab116. [PMID: 34028530 PMCID: PMC8743038 DOI: 10.1093/gbe/evab116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation in the human gut microbiome is responsible for conferring a number of crucial phenotypes like the ability to digest food and metabolize drugs. Yet, our understanding of how this variation arises and is maintained remains relatively poor. Thus, the microbiome remains a largely untapped resource, as the large number of coexisting species in the microbiome presents a unique opportunity to compare and contrast evolutionary processes across species to identify universal trends and deviations. Here we outline features of the human gut microbiome that, while not unique in isolation, as an assemblage make it a system with unparalleled potential for comparative population genomics studies. We consciously take a broad view of comparative population genetics, emphasizing how sampling a large number of species allows researchers to identify universal evolutionary dynamics in addition to new genes, which can then be leveraged to identify exceptional species that deviate from general patterns. To highlight the potential power of comparative population genetics in the microbiome, we reanalyze patterns of purifying selection across ∼40 prevalent species in the human gut microbiome to identify intriguing trends which highlight functional categories in the microbiome that may be under more or less constraint.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Daisy Chen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Department of Human Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
42
|
Abstract
Horizontal gene transfer (HGT) is an important factor in bacterial evolution that can act across species boundaries. Yet, we know little about rate and genomic targets of cross-lineage gene transfer and about its effects on the recipient organism's physiology and fitness. Here, we address these questions in a parallel evolution experiment with two Bacillus subtilis lineages of 7% sequence divergence. We observe rapid evolution of hybrid organisms: gene transfer swaps ∼12% of the core genome in just 200 generations, and 60% of core genes are replaced in at least one population. By genomics, transcriptomics, fitness assays, and statistical modeling, we show that transfer generates adaptive evolution and functional alterations in hybrids. Specifically, our experiments reveal a strong, repeatable fitness increase of evolved populations in the stationary growth phase. By genomic analysis of the transfer statistics across replicate populations, we infer that selection on HGT has a broad genetic basis: 40% of the observed transfers are adaptive. At the level of functional gene networks, we find signatures of negative, positive, and epistatic selection, consistent with hybrid incompatibilities and adaptive evolution of network functions. Our results suggest that gene transfer navigates a complex cross-lineage fitness landscape, bridging epistatic barriers along multiple high-fitness paths.
Collapse
|
43
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|