1
|
Sharaf-Eldin W. Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies. J Mol Neurosci 2025; 75:28. [PMID: 39998573 PMCID: PMC11861012 DOI: 10.1007/s12031-025-02320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Dystroglycanopathies (DGPs) are a group of autosomal recessive neuromuscular diseases with significant clinical and genetic heterogeneity. They originate due to defects in the O-mannosyl glycosylation of α-dystroglycan (α-DG), a prominent linker between the intracellular cytoskeleton and the extracellular matrix (ECM). Fundamentally, such interactions are crucial for the integrity of muscle fibers and neuromuscular synapses, where their defects are mainly associated with muscle and brain dysfunction. To date, biallelic variants in 18 genes have been associated with DGPs, where the underlying cause is still undefined in a significant proportion of patients. Glycosylation of α-DG generates three core motifs where the core M3 is responsible for interaction with the basement membrane. Consistently, all gene defects that corrupt core M3 maturation have been identified as causes of DGPs. POMGNT1 which stimulates the generation of core M1 is also associated with DGPs, as it plays a central role in core M3 processing. Other genes involved in the glycosylation of α-DG seem unrelated to DPGs. The current review illustrates the O-mannosylation pathway of α-DG highlighting the functional properties of related genes and their contribution to the progression of DPGs. Different classes of DPGs are also elaborated characterizing the clinical features of each distinct type and phenotypes associated with each single gene. Finally, current therapeutic approaches with favorable outcomes are addressed. Potential achievements of preclinical and clinical studies would introduce effective curative therapies for this group of disorders in the near future.
Collapse
Affiliation(s)
- Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
2
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
4
|
Thewissen RMJ, Post MA, Maas DM, Veizaj R, Wagenaar I, Alsady M, Kools J, Bouman K, Zweers H, Meregalli PG, van der Kooi AJ, van Doorn PA, Groothuis JT, Lefeber DJ, Voermans NC. Oral ribose supplementation in dystroglycanopathy: A single case study. JIMD Rep 2024; 65:171-181. [PMID: 38736632 PMCID: PMC11078721 DOI: 10.1002/jmd2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 05/14/2024] Open
Abstract
Three forms of muscular dystrophy-dystroglycanopathies are linked to the ribitol pathway. These include mutations in the isoprenoid synthase domain-containing protein (ISPD), fukutin-related protein (FKRP), and fukutin (FKTN) genes. The aforementioned enzymes are required for generation of the ribitol phosphate linkage in the O-glycan of alpha-dystroglycan. Mild cases of dystroglycanopathy present with slowly progressive muscle weakness, while in severe cases the eyes and brain are also involved. Previous research showed that ribose increased the intracellular concentrations of cytidine diphosphate-ribitol (CDP-ribitol) and had a therapeutic effect. Here, we report the safety and effects of oral ribose supplementation during 6 months in a patient with limb girdle muscular dystrophy type 2I (LGMD2I) due to a homozygous FKRP mutation. Ribose was well tolerated in doses of 9 g or 18 g/day. Supplementation with 18 g of ribose resulted in a decrease of creatine kinase levels of 70%. Moreover, metabolomics showed a significant increase in CDP-ribitol levels with 18 g of ribose supplementation (p < 0.001). Although objective improvement in clinical and patient-reported outcome measures was not observed, the patient reported subjective improvement of muscle strength, fatigue, and pain. This case study indicates that ribose supplementation in patients with dystroglycanopathy is safe and highlights the importance for future studies regarding its potential effects.
Collapse
Affiliation(s)
- R. M. J. Thewissen
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - M. A. Post
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. M. Maas
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - R. Veizaj
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - I. Wagenaar
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - M. Alsady
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - J. Kools
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - K. Bouman
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Pediatric NeurologyDonders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
| | - H. Zweers
- Department of GastroenterologyRadboud University Medical CenterNijmegenThe Netherlands
| | - P. G. Meregalli
- Department of CardiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - J. T. Groothuis
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Lefeber
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - N. C. Voermans
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
5
|
Hoshino S, Manya H, Imae R, Kobayashi K, Kanagawa M, Endo T. Endogenous reductase activities for the generation of ribitol-phosphate, a CDP-ribitol precursor, in mammals. J Biochem 2024; 175:418-425. [PMID: 38140954 DOI: 10.1093/jb/mvad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.
Collapse
Affiliation(s)
- Shunsuke Hoshino
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kazuhiro Kobayashi
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime 791-0295, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
6
|
Esapa CT, McIlhinney RAJ, Waite AJ, Benson MA, Mirzayan J, Piko H, Herczegfalvi Á, Horvath R, Karcagi V, Walter MC, Lochmüller H, Rizkallah PJ, Lu QL, Blake DJ. Misfolding of fukutin-related protein (FKRP) variants in congenital and limb girdle muscular dystrophies. Front Mol Biosci 2023; 10:1279700. [PMID: 38161385 PMCID: PMC10755465 DOI: 10.3389/fmolb.2023.1279700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Fukutin-related protein (FKRP, MIM ID 606596) variants cause a range of muscular dystrophies associated with hypo-glycosylation of the matrix receptor, α-dystroglycan. These disorders are almost exclusively caused by homozygous or compound heterozygous missense variants in the FKRP gene that encodes a ribitol phosphotransferase. To understand how seemingly diverse FKRP missense mutations may contribute to disease, we examined the synthesis, intracellular dynamics, and structural consequences of a panel of missense mutations that encompass the disease spectrum. Under non-reducing electrophoresis conditions, wild type FKRP appears to be monomeric whereas disease-causing FKRP mutants migrate as high molecular weight, disulfide-bonded aggregates. These results were recapitulated using cysteine-scanning mutagenesis suggesting that abnormal disulfide bonding may perturb FKRP folding. Using fluorescence recovery after photobleaching, we found that the intracellular mobility of most FKRP mutants in ATP-depleted cells is dramatically reduced but can, in most cases, be rescued with reducing agents. Mass spectrometry showed that wild type and mutant FKRP differentially associate with several endoplasmic reticulum (ER)-resident chaperones. Finally, structural modelling revealed that disease-associated FKRP missense variants affected the local environment of the protein in small but significant ways. These data demonstrate that protein misfolding contributes to the molecular pathophysiology of FKRP-deficient muscular dystrophies and suggest that molecules that rescue this folding defect could be used to treat these disorders.
Collapse
Affiliation(s)
| | | | - Adrian J. Waite
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Jasmin Mirzayan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Henriett Piko
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ágnes Herczegfalvi
- Semmelweis University Pediatric Center Tűzoltó Street Unit, Budapest, Hungary
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Veronika Karcagi
- National Institute of Environmental Health, Department of Molecular Genetics and Diagnostics, Istenhegyi Genetic Diagnostic Centre, Budapest, Hungary
| | - Maggie C. Walter
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Munich, Germany
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Qi L. Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Charlotte, United States
| | - Derek J. Blake
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Huang X, Guo H, Cheng X, Zhang J, Qu W, Ding Q, Sun Q, Shu Q, Li X. NAD+ Modulates the Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells via Akt Signaling Pathway. Cells 2022; 11:cells11081283. [PMID: 35455963 PMCID: PMC9029130 DOI: 10.3390/cells11081283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide hydrate (NAD+) acts as the essential component of the tricarboxylic citric acid (TCA) cycle and has important functions in diverse biological processes. However, the roles of NAD+ in regulating adult neural stem/progenitor cells (aNSPCs) remain largely unknown. Here, we show that NAD+ exposure leads to the reduced proliferation and neuronal differentiation of aNSPCs and induces the apoptosis of aNSPCs. In addition, NAD+ exposure inhibits the morphological development of neurons. Mechanistically, RNA sequencing revealed that the transcriptome of aNSPCs is altered by NAD+ exposure. NAD+ exposure significantly decreases the expression of multiple genes related to ATP metabolism and the PI3k-Akt signaling pathway. Collectively, our findings provide some insights into the roles and mechanisms in which NAD+ regulates aNSPCs and neuronal development.
Collapse
Affiliation(s)
- Xiaoli Huang
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hongfeng Guo
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xuejun Cheng
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jinyu Zhang
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Wenzheng Qu
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
| | - Qianyun Ding
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
| | - Qihang Sun
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qiang Shu
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- Correspondence: (Q.S.); (X.L.)
| | - Xuekun Li
- The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China; (X.H.); (H.G.); (X.C.); (J.Z.); (W.Q.); (Q.D.); (Q.S.)
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China
- Correspondence: (Q.S.); (X.L.)
| |
Collapse
|
8
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
9
|
Ortiz-Cordero C, Bincoletto C, Dhoke NR, Selvaraj S, Magli A, Zhou H, Kim DH, Bang AG, Perlingeiro RCR. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports 2021; 16:2752-2767. [PMID: 34653404 PMCID: PMC8581053 DOI: 10.1016/j.stemcr.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell–derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell–derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis. The lysosome pathway is deregulated in FKRP-deficient myotubes Autophagy is decreased in patient-specific LGMDR9 and WWS iPS cell–derived myotubes FKRP WWS and LGMDR9 iPS cell–derived myotubes have increased apoptosis FKRP correction in WWS myotubes rescues changes in autophagy and apoptosis
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia Bincoletto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Ortiz-Cordero C, Magli A, Dhoke NR, Kuebler T, Selvaraj S, Oliveira NA, Zhou H, Sham YY, Bang AG, Perlingeiro RC. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. eLife 2021; 10:65443. [PMID: 33513091 PMCID: PMC7924940 DOI: 10.7554/elife.65443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Taylor Kuebler
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Nelio Aj Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Rita Cr Perlingeiro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|