1
|
Orellana-Vera G, Auffray T, Montúfar R, Gibernau M, Pincebourde S, Guasti A, Casas J, Dangles O. Experimental evidence of pollination by deception in a dioecious palm. BMC Ecol Evol 2025; 25:46. [PMID: 40350463 PMCID: PMC12067733 DOI: 10.1186/s12862-025-02388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Flower traits and pollinator activity patterns can vary over the course of a single day. Therefore, the pollination processes occurring over short time scales are crucial to sustain the complex dynamics of plant-pollinator interactions. Here, we characterized the diel patterns of flower opening (e.g. anthesis), scent emission, and insect visits in highly dimorphic male (rewarding) and female (deceptive) inflorescences of the ivory palm (Phytelephas aequatorialis), a thermogenic dioecious species endemic to western Ecuador. We conducted field experiments using artificial scented-baits (designated as artificial flowers) consisting of a heating plate (simulating thermogenesis) and p-methylanisole (the primary odor compound in inflorescences of both sexes) in two different amounts to mimic female and male inflorescences. RESULTS We found that female inflorescences open synchronously at dawn and dusk, while male inflorescences can open at any time throughout the day. Both sexes emitted floral odors consistently throughout the day. Even though male inflorescences emitted greater quantities of p-methylanisole, artificial flowers with different amounts of p-methylanisole attracted a similar diversity and abundance of insects throughout the day. Furthermore, male and female artificial flower attracted an equal abundance of visitors within five minutes of the emission of p-methylanisole. CONCLUSIONS The findings suggest that, despite sexual dimorphism in opening time, intersexual mimicry in P. aequatorialis is sustained by a consistent odor release, which optimizes the probability of both sexes being visited by the same insect community during the day.
Collapse
Affiliation(s)
| | - Thomas Auffray
- CEFE, Université de Montpellier, CNRS, EPHE, Montpellier, IRD, France
| | - Rommel Montúfar
- PUCE, Facultad de Ciencias Exactas y Naturales, Quito, Ecuador
| | | | | | | | | | - Olivier Dangles
- PUCE, Facultad de Ciencias Exactas y Naturales, Quito, Ecuador
- CEFE, Université de Montpellier, CNRS, EPHE, Montpellier, IRD, France
| |
Collapse
|
2
|
Leung K, Beukeboom LW, Zwaan BJ. Inbreeding and Outbreeding Depression in Wild and Captive Insect Populations. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:271-292. [PMID: 39874143 DOI: 10.1146/annurev-ento-022924-020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to (a) more comprehensively account for important variables in insect inbreeding and outbreeding depression, (b) standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and (c) outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Xia Z, Chen BJW, Korpelainen H, Niinemets Ü, Li C. Belowground ecological interactions in dioecious plants: why do opposites attract but similar ones repel? TRENDS IN PLANT SCIENCE 2024; 29:630-637. [PMID: 38485646 DOI: 10.1016/j.tplants.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024]
Abstract
Dioecious plant species exhibit sexual dimorphism in various aspects, including morphology, physiology, life history, and behavior, potentially influencing sex-specific interactions. While it is generally accepted that intersexual interactions in dioecious species are less intense compared with intrasexual interactions, the mechanisms underlying belowground facilitation in intersexual combinations remain less understood. Here, we explore these mechanisms, which encompass resource complementarity, mycorrhizal fungal networks, root exudate-mediated belowground chemical communication, as well as plant-soil feedback. We address the reason for the lack of consistency in the strength of inter- and intrasexual interactions. We also propose that a comprehensive understanding of the potential positive consequences of sex-specific interactions can contribute to maintaining ecological equilibrium, conserving biodiversity, and enhancing the productivity of agroforestry.
Collapse
Affiliation(s)
- Zhichao Xia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Bin J W Chen
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Malawsky DS, van Walree E, Jacobs BM, Heng TH, Huang QQ, Sabir AH, Rahman S, Sharif SM, Khan A, Mirkov MU, Kuwahara H, Gao X, Alkuraya FS, Posthuma D, Newman WG, Griffiths CJ, Mathur R, van Heel DA, Finer S, O'Connell J, Martin HC. Influence of autozygosity on common disease risk across the phenotypic spectrum. Cell 2023; 186:4514-4527.e14. [PMID: 37757828 PMCID: PMC10580289 DOI: 10.1016/j.cell.2023.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.
Collapse
Affiliation(s)
| | - Eva van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Benjamin M Jacobs
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Teng Hiang Heng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ataf H Sabir
- West Midlands Regional Clinical Genetics Unit, Birmingham Women's and Children's NHS FT, Birmingham, UK; Institute of Cancer and Genomics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Saadia Rahman
- Queen Square Institute of Neurology, University College London, London, UK
| | - Saghira Malik Sharif
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ahsan Khan
- Waltham Forest Council, Waltham Forest Town Hall, Forest Road, Walthamstow E17 4JF, UK
| | - Maša Umićević Mirkov
- Congenica Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, UK
| | - Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Danielle Posthuma
- Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - William G Newman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christopher J Griffiths
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Rohini Mathur
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Finer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
5
|
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. BIOLOGY 2023; 12:926. [PMID: 37508357 PMCID: PMC10376054 DOI: 10.3390/biology12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Drosophila melanogaster has long been used to demonstrate the effect of inbreeding, particularly in relation to reproductive fitness and stress tolerance. In comparison, less attention has been given to exploring the influence of inbreeding on the innate behavior of D. melanogaster. In this study, multiple replicates of six different types of crosses were set in pair conformation of the laboratory-maintained wild-type D. melanogaster. This resulted in progeny with six different levels of inbreeding coefficients. Larvae and adult flies of varied inbreeding coefficients were subjected to different behavioral assays. In addition to the expected inbreeding depression in the-egg to-adult viability, noticeable aberrations were observed in the crawling and phototaxis behaviors of larvae. Negative geotactic behavior as well as positive phototactic behavior of the flies were also found to be adversely affected with increasing levels of inbreeding. Interestingly, positively phototactic inbred flies demonstrated improved learning compared to outbred flies, potentially the consequence of purging. Flies with higher levels of inbreeding exhibited a delay in the manifestation of aggression and courtship. In summary, our findings demonstrate that inbreeding influences the innate behaviors in D. melanogaster, which in turn may affect the overall biological fitness of the flies.
Collapse
Affiliation(s)
- Anusha Amanullah
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Shabana Arzoo
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Ayesha Aslam
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Iffat Waqar Qureshi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| |
Collapse
|
6
|
Zhang Y, Lin W, Chu C, Ni M. Sex-specific outbreeding advantages and sexual dimorphism in the seedlings of dioecious trees. AMERICAN JOURNAL OF BOTANY 2023; 110:e16153. [PMID: 36905311 DOI: 10.1002/ajb2.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Dioecious trees are important components of many forest ecosystems. Outbreeding advantage and sexual dimorphism are two major mechanisms that explain the persistence of dioecious plants; however, they have rarely been studied in dioecious trees. METHODS We investigated the influence of sex and genetic distance between parental trees (GDPT) on the growth and functional traits of multiple seedlings of a dioecious tree, Diospyros morrisiana. RESULTS We found significant positive relationships between GDPT and seedling sizes and tissue density. However, the positive outbreeding effects on seedling growth mainly manifested in female seedlings, but were not prominent in males. Among seedlings, the male ones generally had higher biomass and leaf area than female seedlings, but such differences diminished as GDPT increased. CONCLUSIONS Our research highlights that outbreeding advantage in plants can be sex-specific and that sexual dimorphism begins from the seedling stage of dioecious trees.
Collapse
Affiliation(s)
- Yonghua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Wei Lin
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Ming Ni
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
8
|
Sandner TM, Gemeinholzer B, Lemmer J, Matthies D, Ensslin A. Continuous inbreeding affects genetic variation, phenology, and reproductive strategy in ex situ cultivated Digitalis lutea. AMERICAN JOURNAL OF BOTANY 2022; 109:1545-1559. [PMID: 36164840 DOI: 10.1002/ajb2.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Ex situ cultivation is important for plant conservation, but cultivation in small populations may result in genetic changes by drift, inbreeding, or unconscious selection. Repeated inbreeding potentially influences not only plant fitness, but also floral traits and interactions with pollinators, which has not yet been studied in an ex situ context. METHODS We studied the molecular genetic variation of Digitalis lutea from a botanic garden population cultivated for 30 years, a frozen seed bank conserving the original genetic structure, and two current wild populations including the source population. In a common garden, we studied the effects of experimental inbreeding and between-population crosses on performance, reproductive traits, and flower visitation of plants from the garden and a wild population. RESULTS Significant genetic differentiation was found between the garden population and the wild population from which the seeds had originally been gathered. After experimental selfing, inbreeding depression was only found for germination and leaf size of plants from the wild population, indicating a history of inbreeding in the smaller garden population. Moreover, garden plants flowered earlier and had floral traits related to selfing, whereas wild plants had traits related to attracting pollinators. Bumblebees visited more flowers of outbred than inbred plants and of wild than garden plants. CONCLUSIONS Our case study suggests that high levels of inbreeding during ex situ cultivation can influence reproductive traits and thus interactions with pollinators. Together with the effects of genetic erosion and unconscious selection, these changes may affect the success of reintroductions into natural habitats.
Collapse
Affiliation(s)
- Tobias M Sandner
- Plant Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | | | - Diethart Matthies
- Plant Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
9
|
Schrieber K, Paul SC, Höche LV, Salas AC, Didszun R, Mößnang J, Müller C, Erfmeier A, Eilers EJ. Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators. eLife 2021; 10:65610. [PMID: 33988502 PMCID: PMC8159375 DOI: 10.7554/elife.65610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022] Open
Abstract
We study the effects of inbreeding in a dioecious plant on its interaction with pollinating insects and test whether the magnitude of such effects is shaped by plant individual sex and the evolutionary histories of plant populations. We recorded spatial, scent, colour, and rewarding flower traits as well as pollinator visitation rates in experimentally inbred and outbred, male and female Silene latifolia plants from European and North American populations differing in their evolutionary histories. We found that inbreeding specifically impairs spatial flower traits and floral scent. Our results support that sex-specific selection and gene expression may have partially magnified these inbreeding costs for females, and that divergent evolutionary histories altered the genetic architecture underlying inbreeding effects across population origins. Moreover, the results indicate that inbreeding effects on floral scent may have a huge potential to disrupt interactions among plants and nocturnal moth pollinators, which are mediated by elaborate chemical communication.
Collapse
Affiliation(s)
- Karin Schrieber
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Sarah Catherine Paul
- Bielefeld University, Faculty of Biology, Department of Chemical Ecology, Bielefeld, Germany
| | - Levke Valena Höche
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | | | - Rabi Didszun
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Jakob Mößnang
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Caroline Müller
- Bielefeld University, Faculty of Biology, Department of Chemical Ecology, Bielefeld, Germany
| | - Alexandra Erfmeier
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | |
Collapse
|