1
|
Fuhrmann F, Nebeling FC, Musacchio F, Mittag M, Poll S, Müller M, Ambrad Giovannetti E, Maibach M, Schaffran B, Burnside E, Chan ICW, Lagurin AS, Reichenbach N, Kaushalya S, Fried H, Linden S, Petzold GC, Tavosanis G, Bradke F, Fuhrmann M. Three-photon in vivo imaging of neurons and glia in the medial prefrontal cortex with sub-cellular resolution. Commun Biol 2025; 8:795. [PMID: 40410447 PMCID: PMC12102176 DOI: 10.1038/s42003-025-08079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/11/2025] [Indexed: 05/25/2025] Open
Abstract
The medial prefrontal cortex (mPFC) is important for higher cognitive functions, including working memory, decision making, and emotional control. In vivo recordings of neuronal activity in the mPFC have been achieved via invasive electrical and optical approaches. Here we apply low invasive three-photon in vivo imaging in the mPFC of the mouse at unprecedented depth. Specifically, we measure neuronal and astrocytic Ca2+-transient parameters in awake head-fixed mice up to a depth of 1700 µm. Furthermore, we longitudinally record dendritic spine density (0.41 ± 0.07 µm-1) deeper than 1 mm for a week. Using 1650 nm wavelength to excite red fluorescent microglia, we quantify their processes' motility (58.9 ± 2% turnover rate) at previously unreachable depths (1100 µm). We establish three-photon imaging of the mPFC enabling neuronal and glial recordings with subcellular resolution that will pave the way for novel discoveries in this brain region.
Collapse
Affiliation(s)
- Falko Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Felix C Nebeling
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Fabrizio Musacchio
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefanie Poll
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- IEECR, University Clinic Bonn, Bonn, Germany
| | - Monika Müller
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Michael Maibach
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Barbara Schaffran
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emily Burnside
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Alex Simon Lagurin
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicole Reichenbach
- Vascular Neurology Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sanjeev Kaushalya
- Core Research Facilities and Services, Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hans Fried
- Core Research Facilities and Services, Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Linden
- Department of Physics, Nanophotonics, University of Bonn, Bonn, Germany
| | - Gabor C Petzold
- Vascular Neurology Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Gaia Tavosanis
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES, University of Bonn, Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
2
|
Huda A, Vaden TJ, Bai H, Rawls RT, Peppers RJ, Monck CF, Holley HD, Castaneda AN, Ni L. Behavioral Assays for Optogenetic Manipulation of Neural Circuits in Drosophila melanogaster. J Vis Exp 2025:10.3791/67964. [PMID: 39995158 PMCID: PMC12051042 DOI: 10.3791/67964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Optogenetics has become a fundamental technique in neuroscience, enabling precise control of neuronal activity through light stimulation. This study introduces easy-to-implement setups for applying optogenetic methods in Drosophila melanogaster. Two optogenetic tools, CsChrimson, a red-light-activated cation channel, and GtACR2, a blue-light-activated anion channel, were employed in four experimental approaches. Three of these approaches involve single-fly experiments: (1) a blue-light optogenetic thermotactic positional preference assay targeting temperature-sensitive heating cells, (2) a red-light optogenetic positional preference assay activating bitter sensing neurons, and (3) a proboscis extension response assay activating the sweet-sensing neurons. The fourth approach (4) is a fly maze setup to assess avoidance behaviors using multiple flies. The ability to manipulate neural activity temporally and spatially offers powerful insights into sensory processing and decision-making, underscoring the potential of optogenetics to advance our knowledge of neural function. These methods provide an accessible and robust framework for future research in neuroscience to enhance the understanding of specific neural pathways and their behavioral outcomes.
Collapse
Affiliation(s)
| | | | - Hua Bai
- School of Neuroscience, Virginia Tech
| | | | | | | | | | - Allison N Castaneda
- School of Neuroscience, Virginia Tech; Fairfax County Public Schools, Westfield High School
| | - Lina Ni
- School of Neuroscience, Virginia Tech;
| |
Collapse
|
3
|
Eisenberg Y, Wang W, Zhao S, Hebert ES, Chen YH, Ouzounov DG, Takahashi H, Gruzdeva A, LaViolette AK, Labaz M, Sidorenko P, Antonio-Lopez E, Amezcua-Correa R, Yapici N, Xu C, Wise F. Efficient, broadly tunable, hollow-fiber source of megawatt pulses for multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2025; 16:415-425. [PMID: 39958867 PMCID: PMC11828453 DOI: 10.1364/boe.546888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 02/18/2025]
Abstract
Three-photon fluorescence microscopy (3PM) has driven rapid progress in deep-tissue imaging beyond the depth limit of two-photon microscopy, with impacts in neuroscience, immunology, and cancer biology. Three-photon excitation places a premium on ultrashort pulses with high peak power in the 1300- and 1700-nm wavelength bands, which allow deepest imaging. The inefficiency and cost of current sources of these pulses present major barriers to the use of 3PM in biomedical research labs. Fiber sources of such pulses could potentially alleviate these problems, but the peak-power limitations of optical fibers have limited their use in 3PM. Here, we describe a fiber-based source of femtosecond pulses with multi-megawatt peak power. Femtosecond pulses at 1030 nm are launched into an antiresonant hollow-core fiber filled with argon. By varying only the gas pressure, pulses with hundreds of nanojoules of energy and sub-100 fs duration are obtained at wavelengths between 850 and 1700 nm. This approach is a new route to an efficient and potentially low-cost source for deep-tissue imaging. In particular, 960-nJ and 50-fs pulses are generated at 1300 nm with a conversion efficiency of 10%. The nearly 20-MW peak power is an order of magnitude higher than the previous best from a femtosecond solid-core fiber source at 1300 nm. As an example of the capabilities of the source, these pulses are used to image structure and neuronal activity in a mouse brain as deep as 1.1 mm below the dura.
Collapse
Affiliation(s)
- Yishai Eisenberg
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Wenchao Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Shitong Zhao
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Eric S. Hebert
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Yi-Hao Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Hazuki Takahashi
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Aaron K. LaViolette
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Moshe Labaz
- Department of Physics and Solid-State Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Pavel Sidorenko
- Department of Electrical and Computer Engineering and Solid-State Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Enrique Antonio-Lopez
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
| | - Rodrigo Amezcua-Correa
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Frank Wise
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
5
|
Casas-Tintó S. Drosophila as a Model for Human Disease: Insights into Rare and Ultra-Rare Diseases. INSECTS 2024; 15:870. [PMID: 39590469 PMCID: PMC11594678 DOI: 10.3390/insects15110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Rare and ultra-rare diseases constitute a significant medical challenge due to their low prevalence and the limited understanding of their origin and underlying mechanisms. These disorders often exhibit phenotypic diversity and molecular complexity that represent a challenge to biomedical research. There are more than 6000 different rare diseases that affect nearly 300 million people worldwide. However, the prevalence of each rare disease is low, and in consequence, the biomedical resources dedicated to each rare disease are limited and insufficient to effectively achieve progress in the research. The use of animal models to investigate the mechanisms underlying pathogenesis has become an invaluable tool. Among the animal models commonly used in research, Drosophila melanogaster has emerged as an efficient and reliable experimental model for investigating a wide range of genetic disorders, and to develop therapeutic strategies for rare and ultra-rare diseases. It offers several advantages as a research model including short life cycle, ease of laboratory maintenance, rapid life cycle, and fully sequenced genome that make it highly suitable for studying genetic disorders. Additionally, there is a high degree of genetic conservation from Drosophila melanogaster to humans, which allows the extrapolation of findings at the molecular and cellular levels. Here, I examine the role of Drosophila melanogaster as a model for studying rare and ultra-rare diseases and highlight its significant contributions and potential to biomedical research. High-throughput next-generation sequencing (NGS) technologies, such as whole-exome sequencing and whole-genome sequencing (WGS), are providing massive amounts of information on the genomic modifications present in rare diseases and common complex traits. The sequencing of exomes or genomes of individuals affected by rare diseases has enabled human geneticists to identify rare variants and identify potential loci associated with novel gene-disease relationships. Despite these advances, the average rare disease patient still experiences significant delay until receiving a diagnosis. Furthermore, the vast majority (95%) of patients with rare conditions lack effective treatment or a cure. This scenario is enhanced by frequent misdiagnoses leading to inadequate support. In consequence, there is an urgent need to develop model organisms to explore the molecular mechanisms underlying these diseases and to establish the genetic origin of these maladies. The aim of this review is to discuss the advantages and limitations of Drosophila melanogaster, hereafter referred as Drosophila, as an experimental model for biomedical research, and the applications to study human disease. The main question to address is whether Drosophila is a valid research model to study human disease, and in particular, rare and ultra-rare diseases.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| |
Collapse
|
6
|
Boto T, Tomchik SM. Functional Imaging of Learning-Induced Plasticity in the Central Nervous System with Genetically Encoded Reporters in Drosophila. Cold Spring Harb Protoc 2024; 2024:pdb.top107799. [PMID: 37197830 DOI: 10.1101/pdb.top107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Learning and memory allow animals to adjust their behavior based on the predictive value of their past experiences. Memories often exist in complex representations, spread across numerous cells and synapses in the brain. Studying relatively simple forms of memory provides insights into the fundamental processes that underlie multiple forms of memory. Associative learning occurs when an animal learns the relationship between two previously unrelated sensory stimuli, such as when a hungry animal learns that a particular odor is followed by a tasty reward. Drosophila is a particularly powerful model to study how this type of memory works. The fundamental principles are widely shared among animals, and there is a wide range of genetic tools available to study circuit function in flies. In addition, the olfactory structures that mediate associative learning in flies, such as the mushroom body and its associated neurons, are anatomically organized, relatively well-characterized, and readily accessible to imaging. Here, we review the olfactory anatomy and physiology of the olfactory system, describe how plasticity in the olfactory pathway mediates learning and memory, and explain the general principles underlying calcium imaging approaches.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
7
|
LaViolette AK, Rebec MR, Xu C. Measurement of third order coherence by in situ autocorrelation for determining three-photon cross-sections. BIOMEDICAL OPTICS EXPRESS 2024; 15:3555-3562. [PMID: 38867794 PMCID: PMC11166442 DOI: 10.1364/boe.521529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
We show theoretically that the third order coherence at zero delay can be obtained by measuring the second and third order autocorrelation traces of a pulsed laser. Our theory enables the measurement of a fluorophore's three-photon cross-section without prior knowledge of the temporal profile of the excitation pulse by using the same fluorescent medium for both the measurement of the third order coherence at zero delay as well as the cross-section. Such an in situ measurement needs no assumptions about the pulse shape nor group delay dispersion of the optical system. To verify the theory experimentally, we measure the three-photon action cross-section of Alexa Fluor 350 and show that the measured value of the three-photon cross-section remains approximately constant despite varied amounts of chirp on the excitation pulses.
Collapse
Affiliation(s)
- Aaron K. LaViolette
- School of Applied and Engineering Physics. Cornell University, Ithaca, New York 14853, USA
| | | | - Chris Xu
- School of Applied and Engineering Physics. Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Cheng YT, Lett KM, Xu C, Schaffer CB. Three-photon excited fluorescence microscopy enables imaging of blood flow, neural structure and inflammatory response deep into mouse spinal cord in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588110. [PMID: 38617307 PMCID: PMC11014502 DOI: 10.1101/2024.04.04.588110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Nonlinear optical microscopy enables non-invasive imaging in scattering samples with cellular resolution. The spinal cord connects the brain with the periphery and governs fundamental behaviors such as locomotion and somatosensation. Because of dense myelination on the dorsal surface, imaging to the spinal grey matter is challenging, even with two-photon microscopy. Here we show that three-photon excited fluorescence (3PEF) microscopy enables multicolor imaging at depths of up to ~550 μm into the mouse spinal cord, in vivo. We quantified blood flow across vessel types along the spinal vascular network. We then followed the response of neurites and microglia after occlusion of a surface venule, where we observed depth-dependent structural changes in neurites and interactions of perivascular microglia with vessel branches upstream from the clot. This work establishes that 3PEF imaging enables studies of functional dynamics and cell type interactions in the top 550 μm of the murine spinal cord, in vivo.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kawasi M. Lett
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Pospisil DA, Aragon MJ, Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Costa M, Eichler K, Jefferis GS, Murthy M, Pillow JW. From connectome to effectome: learning the causal interaction map of the fly brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564922. [PMID: 37961285 PMCID: PMC10635032 DOI: 10.1101/2023.10.31.564922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A long-standing goal of neuroscience is to obtain a causal model of the nervous system. This would allow neuroscientists to explain animal behavior in terms of the dynamic interactions between neurons. The recently reported whole-brain fly connectome [1-7] specifies the synaptic paths by which neurons can affect each other but not whether, or how, they do affect each other in vivo. To overcome this limitation, we introduce a novel combined experimental and statistical strategy for efficiently learning a causal model of the fly brain, which we refer to as the "effectome". Specifically, we propose an estimator for a dynamical systems model of the fly brain that uses stochastic optogenetic perturbation data to accurately estimate causal effects and the connectome as a prior to drastically improve estimation efficiency. We then analyze the connectome to propose circuits that have the greatest total effect on the dynamics of the fly nervous system. We discover that, fortunately, the dominant circuits significantly involve only relatively small populations of neurons-thus imaging, stimulation, and neuronal identification are feasible. Intriguingly, we find that this approach also re-discovers known circuits and generates testable hypotheses about their dynamics. Overall, our analyses of the connectome provide evidence that global dynamics of the fly brain are generated by a large collection of small and often anatomically localized circuits operating, largely, independently of each other. This in turn implies that a causal model of a brain, a principal goal of systems neuroscience, can be feasibly obtained in the fly.
Collapse
Affiliation(s)
- Dean A. Pospisil
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Max J. Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R. Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E. McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jonathan W. Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
LaViolette AK, Ouzounov DG, Xu C. Measurement of three-photon excitation cross-sections of fluorescein from 1154 nm to 1500 nm. BIOMEDICAL OPTICS EXPRESS 2023; 14:4369-4382. [PMID: 37799679 PMCID: PMC10549759 DOI: 10.1364/boe.498214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 10/07/2023]
Abstract
Measurements of three-photon action cross-sections for fluorescein (dissolved in water, pH ∼11.5) are presented in the excitation wavelength range from 1154 to 1500 nm in ∼50 nm steps. The excitation source is a femtosecond wavelength tunable non-collinear optical parametric amplifier, which has been spectrally filtered with 50 nm full width at half maximum band pass filters. Cube-law power dependance is confirmed at the measurement wavelengths. The three-photon excitation spectrum is found to differ from both the one- and two-photon excitation spectra. The three-photon action cross-section at 1154 nm is more than an order of magnitude larger than those at 1450 and 1500 nm (approximately three times the wavelength of the one-photon excitation peak), which possibly indicates the presence of resonance enhancement.
Collapse
Affiliation(s)
- Aaron K. LaViolette
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Hamling KR, Zhu Y, Auer F, Schoppik D. Tilt in Place Microscopy: a Simple, Low-Cost Solution to Image Neural Responses to Body Rotations. J Neurosci 2023; 43:936-948. [PMID: 36517242 PMCID: PMC9908314 DOI: 10.1523/jneurosci.1736-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Animals use information about gravity and other destabilizing forces to balance and navigate through their environment. Measuring how brains respond to these forces requires considerable technical knowledge and/or financial resources. We present a simple alternative-Tilt In Place Microscopy (TIPM), a low-cost and noninvasive way to measure neural activity following rapid changes in body orientation. Here, we used TIPM to study vestibulospinal neurons in larval zebrafish during and immediately after roll tilts. Vestibulospinal neurons responded with reliable increases in activity that varied as a function of ipsilateral tilt amplitude. TIPM differentiated tonic (i.e., sustained tilt) from phasic responses, revealing coarse topography of stimulus sensitivity in the lateral vestibular nucleus. Neuronal variability across repeated sessions was minor relative to trial-to-trial variability, allowing us to use TIPM for longitudinal studies of the same neurons across two developmental time points. There, we observed global increases in response strength and systematic changes in the neural representation of stimulus direction. Our data extend classical characterization of the body tilt representation by vestibulospinal neurons and establish the utility of TIPM to study the neural basis of balance, especially in developing animals.SIGNIFICANCE STATEMENT Vestibular sensation influences everything from navigation to interoception. Here, we detail a straightforward, validated, and nearly universal approach to image how the nervous system senses and responds to body tilts. We use our new method to replicate and expand on past findings of tilt sensing by a conserved population of spinal-projecting vestibular neurons. The simplicity and broad compatibility of our approach will democratize the study of the response of the brain to destabilization, particularly across development.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Yunlu Zhu
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Franziska Auer
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - David Schoppik
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
15
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525544. [PMID: 36747836 PMCID: PMC9900824 DOI: 10.1101/2023.01.25.525544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
16
|
Chaudhary S, Moon S, Lu H. Fast, efficient, and accurate neuro-imaging denoising via supervised deep learning. Nat Commun 2022; 13:5165. [PMID: 36056020 PMCID: PMC9440141 DOI: 10.1038/s41467-022-32886-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Volumetric functional imaging is widely used for recording neuron activities in vivo, but there exist tradeoffs between the quality of the extracted calcium traces, imaging speed, and laser power. While deep-learning methods have recently been applied to denoise images, their applications to downstream analyses, such as recovering high-SNR calcium traces, have been limited. Further, these methods require temporally-sequential pre-registered data acquired at ultrafast rates. Here, we demonstrate a supervised deep-denoising method to circumvent these tradeoffs for several applications, including whole-brain imaging, large-field-of-view imaging in freely moving animals, and recovering complex neurite structures in C. elegans. Our framework has 30× smaller memory footprint, and is fast in training and inference (50-70 ms); it is highly accurate and generalizable, and further, trained with only small, non-temporally-sequential, independently-acquired training datasets (∼500 pairs of images). We envision that the framework will enable faster and long-term imaging experiments necessary to study neuronal mechanisms of many behaviors.
Collapse
Affiliation(s)
- Shivesh Chaudhary
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sihoon Moon
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
17
|
Wu W, Liu Q, Brandt C, Tang S. Dual-wavelength multimodal multiphoton microscope with SMA-based depth scanning. BIOMEDICAL OPTICS EXPRESS 2022; 13:2754-2771. [PMID: 35774327 PMCID: PMC9203102 DOI: 10.1364/boe.456390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We report on a multimodal multiphoton microscopy (MPM) system with depth scanning. The multimodal capability is realized by an Er-doped femtosecond fiber laser with dual output wavelengths of 1580 nm and 790 nm that are responsible for three-photon and two-photon excitation, respectively. A shape-memory-alloy (SMA) actuated miniaturized objective enables the depth scanning capability. Image stacks combined with two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and third harmonic generation (THG) signals have been acquired from animal, fungus, and plant tissue samples with a maximum depth range over 200 µm.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Qihao Liu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Christoph Brandt
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Shuo Tang
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
18
|
Lin A, Witvliet D, Hernandez-Nunez L, Linderman SW, Samuel ADT, Venkatachalam V. Imaging whole-brain activity to understand behavior. NATURE REVIEWS. PHYSICS 2022; 4:292-305. [PMID: 37409001 PMCID: PMC10320740 DOI: 10.1038/s42254-022-00430-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 07/07/2023]
Abstract
The brain evolved to produce behaviors that help an animal inhabit the natural world. During natural behaviors, the brain is engaged in many levels of activity from the detection of sensory inputs to decision-making to motor planning and execution. To date, most brain studies have focused on small numbers of neurons that interact in limited circuits. This allows analyzing individual computations or steps of neural processing. During behavior, however, brain activity must integrate multiple circuits in different brain regions. The activities of different brain regions are not isolated, but may be contingent on one another. Coordinated and concurrent activity within and across brain areas is organized by (1) sensory information from the environment, (2) the animal's internal behavioral state, and (3) recurrent networks of synaptic and non-synaptic connectivity. Whole-brain recording with cellular resolution provides a new opportunity to dissect the neural basis of behavior, but whole-brain activity is also mutually contingent on behavior itself. This is especially true for natural behaviors like navigation, mating, or hunting, which require dynamic interaction between the animal, its environment, and other animals. In such behaviors, the sensory experience of an unrestrained animal is actively shaped by its movements and decisions. Many of the signaling and feedback pathways that an animal uses to guide behavior only occur in freely moving animals. Recent technological advances have enabled whole-brain recording in small behaving animals including nematodes, flies, and zebrafish. These whole-brain experiments capture neural activity with cellular resolution spanning sensory, decision-making, and motor circuits, and thereby demand new theoretical approaches that integrate brain dynamics with behavioral dynamics. Here, we review the experimental and theoretical methods that are being employed to understand animal behavior and whole-brain activity, and the opportunities for physics to contribute to this emerging field of systems neuroscience.
Collapse
Affiliation(s)
- Albert Lin
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Daniel Witvliet
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Luis Hernandez-Nunez
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Vivek Venkatachalam
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|