1
|
Mohamed KA, Laprairie RB. In Vitro Signaling Properties of Cannabinoid and Orexin Receptors: How Orexin Receptors Influence Cannabinoid Receptor-Mediated Signaling. Pharmacol Res Perspect 2025; 13:e70078. [PMID: 40001198 PMCID: PMC11860274 DOI: 10.1002/prp2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The co-expression of different types of G protein-coupled receptors (GPCRs) in the same cells can have implications for receptor signaling and receptor cross-talk, potentially altering the apparent potency or efficacy of ligands targeting each receptor. The endocannabinoid and orexinergic systems, consisting of class A GPCRs and their endogenous ligands, are highly complex and regulate processes such as appetite, sleep, nociception, and energy homeostasis. The shared anatomical distribution of cannabinoid and orexin receptors in various regions of the central nervous system (CNS), coupled with data from previous studies exploring physical and functional interactions between these receptors, suggests that the endocannabinoid and orexinergic systems engage in crosstalk. In this study, we explored how orexin receptors (OX1, OX2) altered the in vitro signaling of cannabinoid receptors (CB1, CB2) in Chinese hamster ovary (CHO)-K1 cells by quantifying cyclic adenosine monophosphate (cAMP) inhibition and βarrestin2 recruitment. Our results suggest that orexin receptors alter agonist-dependent signaling at the cannabinoid receptors by enhancing cannabinoid receptor-mediated cAMP inhibition while increasing or decreasing cannabinoid receptor-mediated βarrestin2 recruitment. These initial results are important for understanding the effects associated with cannabinoid ligands and may provide novel insights for therapeutics targeting physiological processes modulated by both systems.
Collapse
Affiliation(s)
- Kawthar A. Mohamed
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Robert B. Laprairie
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSaskatchewanCanada
- Department of Pharmacology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Leyva Garcia B, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul KA, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. Neuron 2025:S0896-6273(25)00177-1. [PMID: 40147437 DOI: 10.1016/j.neuron.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Within adult rodent hippocampus (HPC), opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), disinhibiting local microcircuits. However, it is unknown whether this disinhibitory motif is conserved across cortical regions, species, or development. We observed that PV-IN-mediated inhibition is robustly suppressed by opioids in HPC proper but not primary neocortex in mice and non-human primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif is established in early development when PV-INs and opioids regulate early population activity. Morphine pretreatment partially occludes this acute opioid-mediated suppression, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Our findings demonstrate that PV-INs exhibit divergent opioid sensitivity across brain regions, which is remarkably conserved over evolution, and highlight the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. Cell Rep 2025; 44:115293. [PMID: 39923239 PMCID: PMC11938346 DOI: 10.1016/j.celrep.2025.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Garcia BL, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul K, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.20.576455. [PMID: 38313283 PMCID: PMC10836073 DOI: 10.1101/2024.01.20.576455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Within the adult rodent hippocampus, opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting local micro-circuits. However, it is unknown if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in hippocampus proper but not primary neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when PV-INs and opioids were found to regulate early population activity. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Dong C, Gowrishankar R, Jin Y, He XJ, Gupta A, Wang H, Sayar-Atasoy N, Flores RJ, Mahe K, Tjahjono N, Liang R, Marley A, Or Mizuno G, Lo DK, Sun Q, Whistler JL, Li B, Gomes I, Von Zastrow M, Tejeda HA, Atasoy D, Devi LA, Bruchas MR, Banghart MR, Tian L. Unlocking opioid neuropeptide dynamics with genetically encoded biosensors. Nat Neurosci 2024; 27:1844-1857. [PMID: 39009835 PMCID: PMC11374718 DOI: 10.1038/s41593-024-01697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.
Collapse
Affiliation(s)
- Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nilüfer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Karan Mahe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Nikki Tjahjono
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Aaron Marley
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Grace Or Mizuno
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Darren K Lo
- College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Qingtao Sun
- Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Bo Li
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mark Von Zastrow
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA.
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
6
|
Borjas NC, Anstötz M, Maccaferri G. Multiple layers of diversity govern the cell type specificity of GABAergic input received by mouse subicular pyramidal neurons. J Physiol 2024; 602:4195-4213. [PMID: 39141819 PMCID: PMC11665487 DOI: 10.1113/jp286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
Collapse
Affiliation(s)
- Nancy Castro Borjas
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Max Anstötz
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| |
Collapse
|
7
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607246. [PMID: 39149233 PMCID: PMC11326311 DOI: 10.1101/2024.08.08.607246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without a liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels, but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P. D. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J. Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
9
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Kan BF, Liu XY, Han MM, Yang CW, Zhu X, Jin Y, Wang D, Huang X, Wu WJ, Fu T, Kang F, Zhang Z, Li J. Nerve Growth Factor/Tyrosine Kinase A Receptor Pathway Enhances Analgesia in an Experimental Mouse Model of Bone Cancer Pain by Increasing Membrane Levels of δ-Opioid Receptors. Anesthesiology 2024; 140:765-785. [PMID: 38118180 DOI: 10.1097/aln.0000000000004880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
BACKGROUND The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bu-Fan Kan
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing-Yun Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Ming Han
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng-Wei Yang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xia Zhu
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Stroke Center and Department of Neurology, Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Wang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Jie Wu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Tong Fu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Fang Kang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; and Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Li
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
McClain SP, Ma X, Johnson DA, Johnson CA, Layden AE, Yung JC, Lubejko ST, Livrizzi G, He XJ, Zhou J, Chang-Weinberg J, Ventriglia E, Rizzo A, Levinstein M, Gomez JL, Bonaventura J, Michaelides M, Banghart MR. In vivo photopharmacology with light-activated opioid drugs. Neuron 2023; 111:3926-3940.e10. [PMID: 37848025 PMCID: PMC11188017 DOI: 10.1016/j.neuron.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo, we developed photoactivatable oxymorphone (PhOX) and photoactivatable naloxone (PhNX), photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry in response to chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action.
Collapse
Affiliation(s)
- Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Caroline A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan T Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - X Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jingjing Zhou
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Janie Chang-Weinberg
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilya Ventriglia
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Marjorie Levinstein
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Lubejko ST, Livrizzi G, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561768. [PMID: 37873091 PMCID: PMC10592708 DOI: 10.1101/2023.10.10.561768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. Unexpectedly, given prior emphasis on descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We also report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings significantly revise current models of the DPMS and establish a novel supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Layden A, Ma X, Johnson CA, He XJ, Buczynski SA, Banghart MR. A Biomimetic C-Terminal Extension Strategy for Photocaging Amidated Neuropeptides. J Am Chem Soc 2023; 145:19611-19621. [PMID: 37649440 PMCID: PMC10510324 DOI: 10.1021/jacs.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/01/2023]
Abstract
Photoactivatable neuropeptides offer a robust stimulus-response relationship that can drive mechanistic studies into the physiological mechanisms of neuropeptidergic transmission. The majority of neuropeptides contain a C-terminal amide, which offers a potentially general site for installation of a C-terminal caging group. Here, we report a biomimetic caging strategy in which the neuropeptide C-terminus is extended via a photocleavable amino acid to mimic the proneuropeptides found in large dense-core vesicles. We explored this approach with four prominent neuropeptides: gastrin-releasing peptide (GRP), oxytocin (OT), substance P (SP), and cholecystokinin (CCK). C-terminus extension greatly reduced the activity of all four peptides at heterologously expressed receptors. In cell type-specific electrophysiological recordings from acute brain slices, subsecond flashes of ultraviolet light produced rapidly activating membrane currents via activation of endogenous G protein-coupled receptors. Subsequent mechanistic studies with caged CCK revealed a role for extracellular proteases in shaping the temporal dynamics of CCK signaling, and a striking switch-like, cell-autonomous anti-opioid effect of transient CCK signaling in hippocampal parvalbumin interneurons. These results suggest that C-terminus extension with a photocleavable linker may be a general strategy for photocaging amidated neuropeptides and demonstrate how photocaged neuropeptides can provide mechanistic insights into neuropeptide signaling that are inaccessible using conventional approaches.
Collapse
Affiliation(s)
| | | | - Caroline A. Johnson
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Stanley A. Buczynski
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | - Matthew R. Banghart
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Blaine AT, van Rijn RM. Receptor expression and signaling properties in the brain, and structural ligand motifs that contribute to delta opioid receptor agonist-induced seizures. Neuropharmacology 2023; 232:109526. [PMID: 37004753 PMCID: PMC11078570 DOI: 10.1016/j.neuropharm.2023.109526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The δ opioid receptor (δOR) is a therapeutic target for the treatment of various neurological disorders, such as migraines, chronic pain, alcohol use, and mood disorders. Relative to μ opioid receptor agonists, δOR agonists show lower abuse liability and may be potentially safer analgesic alternatives. However, currently no δOR agonists are approved for clinical use. A small number of δOR agonists reached Phase II trials, but ultimately failed to progress due to lack of efficacy. One side effect of δOR agonism that remains poorly understood is the ability of δOR agonists to produce seizures. The lack of a clear mechanism of action is partly driven by the fact that δOR agonists range in their propensity to induce seizure behavior, with multiple δOR agonists reportedly not causing seizures. There is a significant gap in our current understanding of why certain δOR agonists are more likely to induce seizures, and what signal-transduction pathway and/or brain area is engaged to produce these seizures. In this review we provide a comprehensive overview of the current state of knowledge of δOR agonist-mediated seizures. The review was structured to highlight which agonists produce seizures, which brain regions have been implicated and which signaling mediators have been examined in this behavior. Our hope is that this review will spur future studies that are carefully designed and aimed to solve the question why certain δOR agonists are seizurogenic. Obtaining such insight may expedite the development of novel δOR clinical candidates without the risk of inducing seizures. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Arryn T Blaine
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science graduate program, West Lafayette, IN, 47907, USA
| | - Richard M van Rijn
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN, 47907, USA; Septerna Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
16
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
17
|
Ma X, Johnson DA, He XJ, Layden AE, McClain SP, Yung JC, Rizzo A, Bonaventura J, Banghart MR. In vivo photopharmacology with a caged mu opioid receptor agonist drives rapid changes in behavior. Nat Methods 2023; 20:682-685. [PMID: 36973548 PMCID: PMC10569260 DOI: 10.1038/s41592-023-01819-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
Photoactivatable drugs and peptides can drive quantitative studies into receptor signaling with high spatiotemporal precision, yet few are compatible with behavioral studies in mammals. We developed CNV-Y-DAMGO-a caged derivative of the mu opioid receptor-selective peptide agonist DAMGO. Photoactivation in the mouse ventral tegmental area produced an opioid-dependent increase in locomotion within seconds of illumination. These results demonstrate the power of in vivo photopharmacology for dynamic studies into animal behavior.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
19
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
McClain SP, Ma X, Johnson DA, Johnson CA, Layden AE, Yung JC, Lubejko ST, Livrizzi G, Jenny He X, Zhou J, Ventriglia E, Rizzo A, Levinstein M, Gomez JL, Bonaventura J, Michaelides M, Banghart MR. In vivo photopharmacology with light-activated opioid drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526901. [PMID: 36778286 PMCID: PMC9915677 DOI: 10.1101/2023.02.02.526901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo , we developed PhOX and PhNX, photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry during chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action. Highlights A photoactivatable opioid agonist (PhOX) and antagonist (PhNX) for in vivo photopharmacology. Systemic pro-drug delivery followed by local photoactivation in the brain. In vivo photopharmacology produces behavioral changes within seconds of photostimulation. In vivo photopharmacology enables all-optical pharmacology and physiology.
Collapse
|
21
|
A photocaged orexin-B for spatiotemporally precise control of orexin signaling. Cell Chem Biol 2022; 29:1729-1738.e8. [PMID: 36481097 PMCID: PMC9794195 DOI: 10.1016/j.chembiol.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Orexin neuropeptides carry out important neuromodulatory functions in the brain, yet tools to precisely control the activation of endogenous orexin signaling are lacking. Here, we developed a photocaged orexin-B (photo-OXB) through a C-terminal photocaging strategy. We show that photo-OXB is unable to activate its cognate receptors in the dark but releases functionally active native orexin-B upon uncaging by illumination with UV-visible (UV-vis) light (370-405 nm). We established an all-optical assay combining photo-OXB with a genetically encoded orexin biosensor and used it to characterize the efficiency and spatial profile of photo-OXB uncaging. Finally, we demonstrated that photo-OXB enables optical control over orexin signaling with fine temporal precision both in vitro and ex vivo. Thus, our photocaging strategy and photo-OXB advance the chemical biological toolkit by introducing a method for the optical control of peptide signaling and physiological function.
Collapse
|
22
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|