1
|
Torres AS, Robison MK, Brewer GA. The Role of the LC-NE System in Attention: From Cells, to Systems, to Sensory-Motor Control. Neurosci Biobehav Rev 2025:106233. [PMID: 40412462 DOI: 10.1016/j.neubiorev.2025.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Attention control is a fundamental cognitive function that enables individuals to sustain focus, shift attention flexibly, and filter distractions in a goal-directed manner. The locus coeruleus-norepinephrine (LC-NE) system plays a pivotal role in this process by dynamically regulating arousal, prioritizing salient stimuli, and optimizing cognitive performance. This review synthesizes evidence from molecular, cellular, systems, cognitive neuroscience, and behavioral studies to elucidate the LC-NE system's role in attention control. We first examine the neurophysiological mechanisms of the LC, highlighting its distinct firing patterns-tonic and phasic activity-and their impact on attention. Next, we integrate findings from animal models, human neuroimaging, electrophysiology, and computational modeling, demonstrating how LC-NE activity influences sensory processing, cognitive flexibility, and executive function. We interpret these findings through the lens of three major theoretical frameworks: Adaptive Gain Theory (AGT), which describes how LC activity optimizes task engagement, the Network Reset Hypothesis (NRH), which describes how optimizes network connectivity, and the Glutamate Amplifies NE Effects (GANE) model, which explains how NE enhances neural selectivity and suppresses irrelevant signals. Collectively, the evidence underscores the LC-NE system's role in modulating the signal-to-noise ratio in cortical and subcortical circuits, thereby shaping attention and behavior. We conclude by discussing implications for individual differences, age-related cognitive decline, and emphasizing the need for interdisciplinary research that integrates emerging technologies to further unravel the complexities of LC function.
Collapse
|
2
|
Matyjek M, Bast N, Faraco SS. Preference for Social Motion in Autistic Adults. Psychophysiology 2025; 62:e70053. [PMID: 40241325 DOI: 10.1111/psyp.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Autism is often linked to attenuated social attention, including a lowered looking preference for biological motion in autistic compared to non-autistic children. This looking preference has been suggested as an autism marker in childhood. However, few studies have investigated whether this bias persists into adulthood. Furthermore, the underlying cognitive mechanism of this group difference is largely unknown. Pupillary responses have been established as an index of salience processing and are thus a promising measurement of the cognitive bases of looking preference. The present study examined differences in looking preference and pupillary responses to social versus geometric motion between autistic and non-autistic adults (N = 66). In terms of preference, autistic adults demonstrated a reduced spontaneous looking toward social stimuli compared to the non-autistic group. Whereas the former displayed no clear preference for either motion type, the latter showed a strong preference for social motion. In terms of pupillary responses, the autistic group showed faster and larger pupil dilation for social motion compared to the non-autistic group, which indicated heightened cognitive effort and arousal. These results suggest persistent differences in social attention across the developmental lifespan in autism.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nico Bast
- Goethe University Frankfurt, Frankfurt, Germany
| | - Salvador Soto Faraco
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Fiorentini G, Massé E, Ficarella SC, Torromino G. Peripheral transcutaneous electrical stimulation to improve cognition: a review of the main effects in healthy humans and in mildly cognitively impaired patient populations. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111290. [PMID: 39938732 DOI: 10.1016/j.pnpbp.2025.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral nerve stimulation (PNS) is an ancient technique, up to now mainly used for pain management. The least invasive approach for PNS is transcutaneous electrical stimulation (TENS), which is performed by delivering mild electric currents through the skin and, depending on the stimulation pattern, activates the somatosensory Aβ-, Aδ- and C-fibers. In addition to its use for pain relief, accumulating data indicates that TENS can have broad-spectrum cognitive effects through the activation of neuromodulatory brain pathways. This review aims to summarize the current evidence on the cognitive effects of TENS, from healthy participants and mildly cognitively affected patients. Most studies on this topic have investigated the effects of TENS on memory, while fewer studies have explored attention, executive functions, and verbal fluency. Overall, promising evidence suggests that TENS may exert positive effects on specific cognitive functions. Further research is needed to build consensus on the most effective stimulation protocols, for both neurorehabilitation and enhancement, and to better understand the neurobiological mechanisms underlying the cognitive effects of TENS.
Collapse
Affiliation(s)
- Giulia Fiorentini
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - Eva Massé
- Information Processing and Systems, Office National d'Etudes et de Recherches Aérospatiales, Salon de Provence, France; Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, Marseille, France
| | - Stefania C Ficarella
- Information Processing and Systems, Office National d'Etudes et de Recherches Aérospatiales, Salon de Provence, France
| | - Giulia Torromino
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Issar D. The Frequency and State-Dependent Relationship between Pupil Size and Respiration. J Neurosci 2025; 45:e2410242025. [PMID: 40107726 PMCID: PMC11924983 DOI: 10.1523/jneurosci.2410-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Deepa Issar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
5
|
Ruuskanen V, Boehler CN, Mathôt S. The Interplay of Spontaneous Pupil-Size Fluctuations and EEG Power in Near-Threshold Detection. Psychophysiology 2025; 62:e70035. [PMID: 40090881 PMCID: PMC11911296 DOI: 10.1111/psyp.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/18/2025]
Abstract
Detection of near-threshold stimuli depends on the properties of the stimulus and the state of the observer. In visual detection tasks, improved accuracy is associated with larger prestimulus pupil size. However, it is still unclear whether this association is due to optical effects (more light entering the eye), correlations with arousal, correlations with cortical excitability (as reflected in alpha power), or a mix of these. To better understand this, we investigated the relative contributions of pupil size and power in the alpha, beta, and theta frequency bands on near-threshold detection. We found that larger prestimulus pupil size is associated with improved accuracy and more stimulus-present responses, and these effects were not mediated by spectral power in the EEG. Pupil size was also positively correlated with power in the beta and alpha bands. Taken together, our results show an independent effect of pupil size on detection performance that is not driven by cortical excitability but may be driven by optical effects, physiological arousal, or a mix of both.
Collapse
Affiliation(s)
- Veera Ruuskanen
- Department of Experimental PsychologyUniversity of GroningenGroningenthe Netherlands
| | - C. Nico Boehler
- Department of Experimental PsychologyGhent UniversityGentBelgium
| | - Sebastiaan Mathôt
- Department of Experimental PsychologyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
6
|
Fieldwalker A, Patel R, Zhao L, Kucharczyk MW, Mansfield M, Bannister K. A Parallel Human and Rat Investigation of the Interaction Between Descending and Spinal Modulatory Mechanisms. Eur J Pain 2025; 29:e4775. [PMID: 39853871 PMCID: PMC11758248 DOI: 10.1002/ejp.4775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation. METHODS Perceptual (quantitative sensory testing) and spinal neuronal (in vivo electrophysiology) assessment was performed in healthy humans and rats respectively upon application of parallel CPM/diffuse noxious inhibitory controls (cuff algometry) and TSP/wind-up (pinprick) paradigms alongside pupillometry. RESULTS In humans, repetitive pinprick stimulation produced TSP while concurrent application of a noxious conditioning stimulus did not affect pain ratings to a single pinprick stimulus, repetitive stimulation or the wind-up ratio. In rats, repetitive pinprick produced neuronal wind-up while concurrent application of a noxious conditioning stimulus inhibited neuronal responses to a single stimulus and repetitive stimulation but not the wind-up ratio. For pupillometry experiments, dilatory responses did not increase during application of a TSP or CPM paradigm in humans, while reliable rat responses were not obtained. CONCLUSIONS Under the conditions of our study, spinal amplification mechanisms surpassed descending inhibitory controls while pupillometry did not offer a reliable indicator of endogenous pain modulatory mechanism function. SIGNIFICANCE In this translational healthy human and rat study, activity in descending inhibitory controls did not counter spinal amplification processes underpinned by wind up. Despite pupil dilation being previously linked to modulatory mechanisms, dilatory responses did not offer a reliable indicator of functionality. For pro-nociceptive individuals exhibiting inefficient conditioned pain modulation and/or high temporal summation of pain, dampening faciliatory mechanisms rather than augmenting top-down inhibitory processes may be a more effective pain-relief strategy.
Collapse
Affiliation(s)
- Anna Fieldwalker
- Mroue Fateh Centre for Pain ManagementGreat Ormond Street Hospital for ChildrenGuildford StreetLondonUK
| | - Ryan Patel
- Wolfson Sensory, Pain and Regeneration CentreKing's College London, Guy's CampusLondonUK
| | - Lucy Zhao
- Wolfson Sensory, Pain and Regeneration CentreKing's College London, Guy's CampusLondonUK
| | - Mateusz W. Kucharczyk
- Wolfson Sensory, Pain and Regeneration CentreKing's College London, Guy's CampusLondonUK
| | - Michael Mansfield
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kirsty Bannister
- Department of Life SciencesSouth KensingtonImperial College LondonLondonUK
| |
Collapse
|
7
|
Carro-Domínguez M, Huwiler S, Oberlin S, Oesch TL, Badii G, Lüthi A, Wenderoth N, Meissner SN, Lustenberger C. Pupil size reveals arousal level fluctuations in human sleep. Nat Commun 2025; 16:2070. [PMID: 40021662 PMCID: PMC11871316 DOI: 10.1038/s41467-025-57289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Recent animal research has revealed the intricate dynamics of arousal levels that are important for maintaining proper sleep resilience and memory consolidation. In humans, changes in arousal level are believed to be a determining characteristic of healthy and pathological sleep but tracking arousal level fluctuations has been methodologically challenging. Here we measured pupil size, an established indicator of arousal levels, by safely taping the right eye open during overnight sleep and tested whether pupil size affects cortical response to auditory stimulation. We show that pupil size dynamics change as a function of important sleep events across different temporal scales. In particular, our results show pupil size to be inversely related to the occurrence of sleep spindle clusters, a marker of sleep resilience. Additionally, we found pupil size prior to auditory stimulation to influence the evoked response, most notably in delta power, a marker of several restorative and regenerative functions of sleep. Recording pupil size dynamics provides insights into the interplay between arousal levels and sleep oscillations.
Collapse
Affiliation(s)
- Manuel Carro-Domínguez
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stephanie Huwiler
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stella Oberlin
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Timona Leandra Oesch
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Center, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland.
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Wu J, Toporek A, Lin Q, Goldstein FC, Loring DW, Kelberman MA, Weinshenker D, Levey AI, Lah JJ, Qiu D. Probing locus coeruleus functional network in healthy aging and its association with Alzheimer's disease biomarkers using pupillometry. Alzheimers Res Ther 2025; 17:53. [PMID: 40016783 PMCID: PMC11866666 DOI: 10.1186/s13195-025-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, and the early detection of the disease-associated changes allows early interventions. The locus coeruleus (LC) has been reported to be the first brain region to develop tau pathology in AD. However, the functional brain network of the LC in both healthy aging and AD pathology is largely unknown due to technical difficulties associated with the small size of the LC. In this study, we used the measurement of spontaneous pupil constriction/dilation as a surrogate for LC activity to study LC brain network changes during healthy aging. METHODS Thirty-seven healthy younger and thirty-nine healthy older adults were included from the Emory Healthy Brain Study and underwent resting-state functional MRI while simultaneously tracking pupil diameter. The measurements of pupil diameter dynamics were used as reference signals in brain connectivity analysis. The connectivity of the identified networks was then compared between younger and older participants. Correlations of the identified regions with neuropsychological assessments and cerebrospinal fluid (CSF) biomarkers were also evaluated. RESULTS A brain network of 20 clusters associated with pupil diameter dynamics was identified, including the LC as well as brain regions functionally connected to the LC. The pupil diameter network was found to positively correlate with the salience network and negatively correlate with the central executive network. Functional connectivity decreased within the pupil diameter network with healthy aging. The pupil diameter connectivity was associated with memory, executive, and visuospatial functioning. CSF total tau closely correlated with pupil diameter network. CONCLUSIONS Pupil diameter dynamics provide valuable insights into LC-related processes. While they are not solely influenced by LC activity, spontaneous pupil constrictor/dilatory activity shows promise as a non-invasive approach to probe the LC network and warrants further studies to evaluate its value as an early biomarker of AD.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Aaron Toporek
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qixiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Felicia C Goldstein
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - David W Loring
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Michael A Kelberman
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Doekemeijer RA, Cabooter Q, Wardhani IK, Verbruggen F, Boehler CN. From pupil to performance: Exploring the role of tonic norepinephrine levels in response inhibition using pretrial pupil measures. Psychophysiology 2025; 62:e14738. [PMID: 39655543 DOI: 10.1111/psyp.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/03/2025]
Abstract
Response inhibition is key to flexible behavior. Importantly, performance in any task, including response inhibition tasks, fluctuates on a moment-to-moment basis. Using pupillometry, we investigated the relationship between these behavioral fluctuations in response inhibition and naturally occurring fluctuations of norepinephrine (NE) levels in the brain before a given trial has even started. This was motivated by earlier pharmacological work suggesting a pivotal role of NE in response inhibition, in particular. We specifically used two pupillometry proxies for pretrial (tonic) NE levels, the absolute pretrial pupil size and its derivative, and investigated whether and to which degree they were related to response-inhibition performance in a stop-signal task. Specifically, we investigated the relationship to stopping success, and the speed of the go response (GoRT) and that of the stop response (SSRT). In two experiments, we showed that larger pretrial pupil measures predicted (1) lower stopping success, (2) faster GoRTs (particularly so when the go response needed to be executed in a stop context), and some evidence for (3) faster SSRTs. Taken together, our findings show a clear pattern that pretrial pupil measures predict behavioral fluctuations in response inhibition, which suggests that tonic levels of NE are involved in the regulation of these behavioral fluctuations. Yet, our work furthermore indicates that this involvement is not stopping-specific, given its effect on both the go and the stop response.
Collapse
Affiliation(s)
| | - Quinn Cabooter
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Imec-Mict-UGent, Department of Communication Sciences, Ghent University, Ghent, Belgium
| | - Intan K Wardhani
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Frederick Verbruggen
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Phillips I, Johns MA, Pandža NB, Calloway RC, Karuzis VP, Kuchinsky SE. Three Hundred Hertz Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) Impacts Pupil Size Non-Linearly as a Function of Intensity. Psychophysiology 2025; 62:e70011. [PMID: 40013407 PMCID: PMC11866280 DOI: 10.1111/psyp.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that may have numerous potential health and human performance benefits. However, optimal stimulation parameters for maximizing taVNS efficacy are unknown. Progress is impeded by disagreement on the identification of a biomarker that reliably indexes activation of neuromodulatory systems targeted by taVNS, including the locus coeruleus-norepinephrine (LC-NE) system. Pupil size varies with LC-NE activity and is one potential taVNS biomarker that has shown inconsistent sensitivity to taVNS in prior studies. The present study examined the relationship between pupil size and taVNS using stimulation parameters that have shown promising behavioral effects in prior studies but have received comparatively little attention. Participants received trains of 50 μs taVNS pulses delivered continuously below perceptual threshold at 300 Hz to the left external acoustic meatus (EAM) while pupil size was recorded during a pupillary light reflex task. Analysis of pupil size using generalized additive mixed modeling (GAMM) revealed a non-linear relationship between taVNS intensity and pupil diameter. Active taVNS increased pupil size during stimulation for participants who received taVNS between 2 and approximately 4.8 mA, but not for participants who received higher-intensity taVNS (up to 8.1 mA). In addition, taVNS effects persisted in subsequent blocks, mitigating decreases in pupil size over the course of the task. These findings suggest 300 Hz taVNS activates the LC-NE system when applied to the EAM, but its effects may be counteracted at higher intensities.
Collapse
Affiliation(s)
- Ian Phillips
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
- National Military Audiology and Speech Pathology CenterWalter Reed National Military Medical CenterBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, IncBethesdaMarylandUSA
| | - Michael A. Johns
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMarylandUSA
| | - Nick B. Pandža
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
- Program in Second Language AcquisitionUniversity of MarylandCollege ParkMarylandUSA
| | - Regina C. Calloway
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
- Institute for Systems ResearchUniversity of MarylandCollege ParkMarylandUSA
| | - Valerie P. Karuzis
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
| | - Stefanie E. Kuchinsky
- Applied Research Lab for Intelligence & SecurityUniversity of MarylandCollege ParkMarylandUSA
- National Military Audiology and Speech Pathology CenterWalter Reed National Military Medical CenterBethesdaMarylandUSA
| |
Collapse
|
11
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
12
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
13
|
Ortiz-Juza MM, Tormes-Vaquerano J, Hegel SM, Curtis VR, Alghorazi RA, Miller NW, McTaggart EM, Pégard NC, Rodriguez-Romaguera J. Protocol for an open-source system to integrate calcium imaging, pupillometry, and locomotion-estimated tracking in head-fixed mice. STAR Protoc 2024; 5:103331. [PMID: 39352810 PMCID: PMC11472613 DOI: 10.1016/j.xpro.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
A wide selection of behavioral assays in systems neuroscience relies on head-fixation protocols to integrate in vivo multi-photon imaging approaches. For this, simultaneous pupillometry and locomotion tracking in head-fixed mice are used to measure behavioral responses and identify neural correlates. Here, we present an open-source protocol for assembling a complete head-fixation system that integrates pupillometry and locomotion-estimated tracking with multi-photon calcium imaging. We include detailed procedures for head-fixation and for data collection.
Collapse
Affiliation(s)
- Maria M Ortiz-Juza
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jovan Tormes-Vaquerano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sophia M Hegel
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Vincent R Curtis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rizk A Alghorazi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Noah W Miller
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ellora M McTaggart
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nicolas C Pégard
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Institute for Development Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
14
|
Silva Tortorelli L, Garad M, Megemont M, Haga-Yamanaka S, Goel A, Yang H. Variations of neuronal properties in the region of locus coeruleus of mice. Brain Res 2024; 1845:149289. [PMID: 39442646 DOI: 10.1016/j.brainres.2024.149289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.
Collapse
Affiliation(s)
- Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Demiral ŞB, Volkow ND. Blink-induced changes in pupil dynamics are consistent and heritable. Sci Rep 2024; 14:28421. [PMID: 39557891 PMCID: PMC11574171 DOI: 10.1038/s41598-024-79527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Pupil size and blink rates are heritable but the extent to which they interact with one another has not been properly investigated. Though changes in pupil size due to eye blinks have been reported, they are considered a pupillary artifact. In this study we used the HCP 7T fMRI dataset with resting state eye-tracking data obtained in monozygotic and dizygotic twins to assess their heritability and their interactions. For this purpose, we characterized the pupil dilation (positive peak) and constriction (negative peak) that followed blink events, which we describe as blink-induced pupillary response (BIPR). We show that the BIPR is highly consistent with a positive dilatory peak (D-peak) around 500ms and a negative constricting peak (C-peak) around 1s. These patterns were reproducible within- and between-subjects across two time points and differed by vigilance state (vigilant versus drowsy). By comparing BIPR between monozygotic and dizygotic twins we show that BIPR have a heritable component with significant additive genetic (A) and environmental (E) factors dominating the structural equation models, particularly in the time-domain for both D- and C-peaks (a2 between 42 and 49%) and shared effects (C) as observed in the amplitude domain for the C-peak. Blink duration, pupil size and blink rate were also found to be highly heritable (a2 up to 62% for pupil size). Our study provides evidence of that shared environmental and additive genetic factors influence BIPR and indicates that BIPR should not be treated as a coincidental artefact. Instead BIPR appears to be a component of a larger oculomotor system that we label here as Oculomotor Adaptive System, that is genetically determined.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
17
|
Márquez I, Treviño M. Visuomotor predictors of interception. PLoS One 2024; 19:e0308642. [PMID: 39283837 PMCID: PMC11404793 DOI: 10.1371/journal.pone.0308642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Intercepting moving targets is a fundamental skill in human behavior, influencing various domains such as sports, gaming, and other activities. In these contexts, precise visual processing and motor control are crucial for adapting and navigating effectively. Nevertheless, there are still some gaps in our understanding of how these elements interact while intercepting a moving target. This study explored the dynamic interplay among eye movements, pupil size, and interceptive hand movements, with visual and motion uncertainty factors. We developed a simple visuomotor task in which participants used a joystick to interact with a computer-controlled dot that moved along two-dimensional trajectories. This virtual system provided the flexibility to manipulate the target's speed and directional uncertainty during chase trials. We then conducted a geometric analysis based on optimal angles for each behavior, enabling us to distinguish between simple tracking and predictive trajectories that anticipate future positions of the moving target. Our results revealed the adoption of a strong interception strategy as participants approached the target. Notably, the onset and amount of optimal interception strategy depended on task parameters, such as the target's speed and frequency of directional changes. Furthermore, eye-tracking data showed that participants continually adjusted their gaze speed and position, continuously adapting to the target's movements. Finally, in successful trials, pupillary responses predicted the amount of optimal interception strategy while exhibiting an inverse relationship in trials without collisions. These findings reveal key interactions among visuomotor parameters that are crucial for solving complex interception tasks.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, México
- Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, México
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
18
|
McKenzie S, Sommer AL, Donaldson TN, Pimentel I, Kakani M, Choi IJ, Newman EL, English DF. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605900. [PMID: 39131365 PMCID: PMC11312532 DOI: 10.1101/2024.07.30.605900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Episodic memories are temporally segmented around event boundaries that tend to coincide with moments of environmental change. During these times, the state of the brain should change rapidly, or reset, to ensure that the information encountered before and after an event boundary is encoded in different neuronal populations. Norepinephrine (NE) is thought to facilitate this network reorganization. However, it is unknown whether event boundaries drive NE release in the hippocampus and, if so, how NE release relates to changes in hippocampal firing patterns. The advent of the new GRABNE sensor now allows for the measurement of NE binding with sub-second resolution. Using this tool in mice, we tested whether NE is released into the dorsal hippocampus during event boundaries defined by unexpected transitions between spatial contexts and presentations of novel objections. We found that NE binding dynamics were well explained by the time elapsed after each of these environmental changes, and were not related to conditioned behaviors, exploratory bouts of movement, or reward. Familiarity with a spatial context accelerated the rate in which phasic NE binding decayed to baseline. Knowing when NE is elevated, we tested how hippocampal coding of space differs during these moments. Immediately after context transitions we observed relatively unique patterns of neural spiking which settled into a modal state at a similar rate in which NE returned to baseline. These results are consistent with a model wherein NE release drives hippocampal representations away from a steady-state attractor. We hypothesize that the distinctive neural codes observed after each event boundary may facilitate long-term memory and contribute to the neural basis for the primacy effect.
Collapse
Affiliation(s)
- Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Alexandra L. Sommer
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Tia N. Donaldson
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Infania Pimentel
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Mechanical Engineering, Tufts School of Engineering, Medford MA 02155
| | - Meenakshi Kakani
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Irene Jungyeon Choi
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
| | - Ehren L. Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405
| | | |
Collapse
|
19
|
Kristensen SS, Kesgin K, Jörntell H. High-dimensional cortical signals reveal rich bimodal and working memory-like representations among S1 neuron populations. Commun Biol 2024; 7:1043. [PMID: 39179675 PMCID: PMC11344095 DOI: 10.1038/s42003-024-06743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Complexity is important for flexibility of natural behavior and for the remarkably efficient learning of the brain. Here we assessed the signal complexity among neuron populations in somatosensory cortex (S1). To maximize our chances of capturing population-level signal complexity, we used highly repeatable resolvable visual, tactile, and visuo-tactile inputs and neuronal unit activity recorded at high temporal resolution. We found the state space of the spontaneous activity to be extremely high-dimensional in S1 populations. Their processing of tactile inputs was profoundly modulated by visual inputs and even fine nuances of visual input patterns were separated. Moreover, the dynamic activity states of the S1 neuron population signaled the preceding specific input long after the stimulation had terminated, i.e., resident information that could be a substrate for a working memory. Hence, the recorded high-dimensional representations carried rich multimodal and internal working memory-like signals supporting high complexity in cortical circuitry operation.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Kaan Kesgin
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Galazka MA, Thorsson M, Lundin Kleberg J, Hadjikhani N, Åsberg Johnels J. Pupil contagion variation with gaze, arousal, and autistic traits. Sci Rep 2024; 14:18282. [PMID: 39112540 PMCID: PMC11306570 DOI: 10.1038/s41598-024-68670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Pupillary contagion occurs when one's pupil size unconsciously adapts to the pupil size of an observed individual and is presumed to reflect the transfer of arousal. Importantly, when estimating pupil contagion, low level stimuli properties need to be controlled for, to ensure that observations of pupillary changes are due to internal change in arousal rather than the external differences between stimuli. Here, naturalistic images of children's faces depicting either small or large pupils were presented to a group of children and adolescents with a wide range of autistic traits, a third of whom had been diagnosed with autism. We examined the extent to which pupillary contagion reflects autonomic nervous system reaction through pupil size change, heart rate and skin conductance response. Our second aim was to determine the association between arousal reaction to stimuli and degree of autistic traits. Results show that pupil contagion and concomitant heart rate change, but not skin conductance change, was evident when gaze was restricted to the eye region of face stimuli. A positive association was also observed between pupillary contagion and autistic traits when participants' gaze was constrained to the eye region. Findings add to a broader understanding of the mechanisms underlying pupillary contagion and its association with autism.
Collapse
Affiliation(s)
- Martyna A Galazka
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Division of Cognition and Communication, Department of Applied Information Technology, University of Gothenburg, Gothenburg, Sweden.
| | - Max Thorsson
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Lundin Kleberg
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute, Stockholm, Sweden
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jakob Åsberg Johnels
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Section for Speech and Language Pathology, University of Gothenburg, Gothenburg, Sweden
- Child Neuropsychiatric Clinic, Queen Silvia Children's Hospital, Västra Götalandsregionen, Gothenburg, Sweden
| |
Collapse
|
21
|
Demiral ŞB, Volkow ND. Blink-induced changes in pupil dynamics are consistent and heritable. RESEARCH SQUARE 2024:rs.3.rs-4718613. [PMID: 39149500 PMCID: PMC11326410 DOI: 10.21203/rs.3.rs-4718613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Pupil size and blink rates are heritable but the extent to which they interact with one another has not been properly investigated. Though changes in pupil size due to eye blinks have been reported, they are considered a pupillary artifact. In this study we used the HCP 7T fMRI dataset with resting state eye-tracking data obtained in monozygous and dizygous twins to assess their heritability and their interactions. For this purpose, we characterized the pupil dilation (positive peak) and constriction (negative peak) that followed blink events, which we describe as blink-induced pupillary response (BIPR). We show that the BIPR is highly consistent with a positive dilatory peak (D-peak) around 500ms and a negative constricting peak (C-peak) around 1s. These patterns were reproducible within- and between- subjects across two time points and differed by vigilance state (vigilant versus drowsy). By comparing BIPR between monozygous and dizygous twins we show that BIPR have a heritable component with significant additive genetic (A) and environmental (E) factors dominating the structural equation models, particularly in the time-domain for both D- and C-peaks and amplitude domain for the C-peak. (a2 between 42-49%). Blink duration, pupil size and blink rate were also found to be highly heritable (a2 up to 62% for pupil size). Our study documents an association between BIPR and wakefulness and indicates that BIPR should not be treated as a coincidental artefact, but part of a larger oculomotor system that we label here as Oculomotor Adaptive System, OAS, that is genetically determined.
Collapse
|
22
|
Algermissen J, den Ouden HEM. Pupil dilation reflects effortful action invigoration in overcoming aversive Pavlovian biases. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:720-739. [PMID: 38773022 PMCID: PMC11233311 DOI: 10.3758/s13415-024-01191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
"Pavlovian" or "motivational" biases describe the phenomenon that the valence of prospective outcomes modulates action invigoration: Reward prospect invigorates action, whereas punishment prospect suppresses it. The adaptive role of these biases in decision-making is still unclear. One idea is that they constitute a fast-and-frugal decision strategy in situations characterized by high arousal, e.g., in presence of a predator, which demand a quick response. In this pre-registered study (N = 35), we tested whether such a situation-induced via subliminally presented angry versus neutral faces-leads to increased reliance on Pavlovian biases. We measured trial-by-trial arousal by tracking pupil diameter while participants performed an orthogonalized Motivational Go/NoGo Task. Pavlovian biases were present in responses, reaction times, and even gaze, with lower gaze dispersion under aversive cues reflecting "freezing of gaze." The subliminally presented faces did not affect responses, reaction times, or pupil diameter, suggesting that the arousal manipulation was ineffective. However, pupil dilations reflected facets of bias suppression, specifically the physical (but not cognitive) effort needed to overcome aversive inhibition: Particularly strong and sustained dilations occurred when participants managed to perform Go responses to aversive cues. Conversely, no such dilations occurred when they managed to inhibit responses to Win cues. These results suggest that pupil diameter does not reflect response conflict per se nor the inhibition of prepotent responses, but specifically effortful action invigoration as needed to overcome aversive inhibition. We discuss our results in the context of the "value of work" theory of striatal dopamine.
Collapse
Affiliation(s)
- Johannes Algermissen
- Donders Institute for Brain, Radboud University, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6526 GD, Nijmegen, The Netherlands.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Hanneke E M den Ouden
- Donders Institute for Brain, Radboud University, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6526 GD, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Beckers E, Campbell I, Sharifpour R, Paparella I, Berger A, Aizpurua JFB, Koshmanova E, Mortazavi N, Talwar P, Sherif S, Jacobs HIL, Vandewalle G. Impact of repeated short light exposures on sustained pupil responses in an fMRI environment. J Sleep Res 2024; 33:e14085. [PMID: 37904313 DOI: 10.1111/jsr.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
Light triggers numerous non-image-forming, or non-visual, biological effects. The brain correlates of these non-image-forming effects have been investigated, notably using magnetic resonance imaging and short light exposures varying in irradiance and spectral quality. However, it is not clear whether non-image-forming responses estimation may be biased by having light in sequential blocks, for example, through a potential carryover effect of one light onto the next. We reasoned that pupil light reflex was an easy readout of one of the non-image-forming effects of light that could be used to address this issue. We characterised the sustained pupil light reflex in 13-16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light (0.16 melanopic equivalent daylight illuminance lux) and polychromatic blue-enriched white light of three different levels (37, 92, 190 melanopic equivalent daylight illuminance lux). As expected, higher melanopic irradiance was associated with larger sustained pupil light reflex in each cognitive domain. This result was stable over the light sequence under higher melanopic irradiance levels compared with lower ones. Exploratory frequency-domain analyses further revealed that sustained pupil light reflex was more variable under lower melanopic irradiance levels. Importantly, sustained pupil light reflex varied across tasks independently of the light condition, pointing to a potential impact of light history and/or cognitive context on sustained pupil light reflex. Together, our results emphasise that the distinct contribution and adaptation of the different retinal photoreceptors influence the non-image-forming effects of light and therefore potentially their brain correlates.
Collapse
Affiliation(s)
- Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Puneet Talwar
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
25
|
Menicucci D, Animali S, Malloggi E, Gemignani A, Bonanni E, Fornai F, Giorgi FS, Binda P. Correlated P300b and phasic pupil-dilation responses to motivationally significant stimuli. Psychophysiology 2024; 61:e14550. [PMID: 38433453 DOI: 10.1111/psyp.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Malloggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Chintalacheruvu N, Kalelkar A, Boutin J, Breton-Provencher V, Huda R. A cortical locus for modulation of arousal states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595859. [PMID: 38826269 PMCID: PMC11142248 DOI: 10.1101/2024.05.24.595859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fluctuations in global arousal are key determinants of spontaneous cortical activity and function. Several subcortical structures, including neuromodulator nuclei like the locus coeruleus (LC), are involved in the regulation of arousal. However, much less is known about the role of cortical circuits that provide top-down inputs to arousal-related subcortical structures. Here, we investigated the role of a major subdivision of the prefrontal cortex, the anterior cingulate cortex (ACC), in arousal modulation. Pupil size, facial movements, heart rate, and locomotion were used as non-invasive measures of arousal and behavioral state. We designed a closed loop optogenetic system based on machine vision and found that real time inhibition of ACC activity during pupil dilations suppresses ongoing arousal events. In contrast, inhibiting activity in a control cortical region had no effect on arousal. Fiber photometry recordings showed that ACC activity scales with the magnitude of spontaneously occurring pupil dilations/face movements independently of locomotion. Moreover, optogenetic ACC activation increases arousal independently of locomotion. In addition to modulating global arousal, ACC responses to salient sensory stimuli scaled with the size of evoked pupil dilations. Consistent with a role in sustaining saliency-linked arousal events, pupil responses to sensory stimuli were suppressed with ACC inactivation. Finally, our results comparing arousal-related ACC and norepinephrinergic LC neuron activity support a role for the LC in initiation of arousal events which are modulated in real time by the ACC. Collectively, our experiments identify the ACC as a key cortical site for sustaining momentary increases in arousal and provide the foundation for understanding cortical-subcortical dynamics underlying the modulation of arousal states.
Collapse
Affiliation(s)
- Nithik Chintalacheruvu
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Jöel Boutin
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Vincent Breton-Provencher
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| |
Collapse
|
27
|
Vidal M, Onderdijk KE, Aguilera AM, Six J, Maes PJ, Fritz TH, Leman M. Cholinergic-related pupil activity reflects level of emotionality during motor performance. Eur J Neurosci 2024; 59:2193-2207. [PMID: 37118877 DOI: 10.1111/ejn.15998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Pupil size covaries with the diffusion rate of the cholinergic and noradrenergic neurons throughout the brain, which are essential to arousal. Recent findings suggest that slow pupil fluctuations during locomotion are an index of sustained activity in cholinergic axons, whereas phasic dilations are related to the activity of noradrenergic axons. Here, we investigated movement induced arousal (i.e., by singing and swaying to music), hypothesising that actively engaging in musical behaviour will provoke stronger emotional engagement in participants and lead to different qualitative patterns of tonic and phasic pupil activity. A challenge in the analysis of pupil data is the turbulent behaviour of pupil diameter due to exogenous ocular activity commonly encountered during motor tasks and the high variability typically found between individuals. To address this, we developed an algorithm that adaptively estimates and removes pupil responses to ocular events, as well as a functional data methodology, derived from Pfaffs' generalised arousal, that provides a new statistical dimension on how pupil data can be interpreted according to putative neuromodulatory signalling. We found that actively engaging in singing enhanced slow cholinergic-related pupil dilations and having the opportunity to move your body while performing amplified the effect of singing on pupil activity. Phasic pupil oscillations during motor execution attenuated in time, which is often interpreted as a measure of sense of agency over movement.
Collapse
Affiliation(s)
- Marc Vidal
- IPEM, Ghent University, Ghent, Belgium
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Ana M Aguilera
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
| | - Joren Six
- IPEM, Ghent University, Ghent, Belgium
| | | | - Thomas Hans Fritz
- IPEM, Ghent University, Ghent, Belgium
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | |
Collapse
|
28
|
Polzer L, Schenk M, Raji N, Kleber S, Lemler C, Kitzerow-Cleven J, Kim Z, Freitag CM, Bast N. Temporal progression of pupil dilation and gaze behavior to emotion expressions in preschoolers with autism spectrum disorder. Sci Rep 2024; 14:7843. [PMID: 38570565 PMCID: PMC10991397 DOI: 10.1038/s41598-024-58480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Previous work has shown divergent pupil dilation (PD) and gaze behavior in individuals with autism spectrum disorder (ASD), which may relate to the development of social difficulties in early life. Here, we investigated temporal dynamics of both phenotypes during naturalistic videos of a person displaying facial emotion expressions in 61 autistic and 61 non-autistic preschoolers. PD was segmented into three serial time components derived from a principal component analysis. Growth curve analysis was applied to analyze changes in looking time on eye and mouth regions over time. Groups did not differ in PD time components. Growth curve analysis revealed initially shorter looking times on the eyes and longer looking times on the mouth in autistic versus non-autistic preschoolers. However, a reversion of this pattern was observed over time, suggesting a delayed compensatory increase in eye attention during prolonged viewing periods in autistic children. Positive and negative associations of PD components and gaze behavior over time indicated a dynamic temporal relationship during emotion viewing. Our findings emphasize the need to apply time-sensitive measures in ecologically valid research, which may index etiological mechanisms of social difficulties in ASD.
Collapse
Affiliation(s)
- Leonie Polzer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany.
| | - Marc Schenk
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Naisan Raji
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Solvejg Kleber
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Christian Lemler
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Janina Kitzerow-Cleven
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Ziyon Kim
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| | - Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Chang YH, Chen HJ, Barquero C, Tsai HJ, Liang WK, Hsu CH, Muggleton NG, Wang CA. Linking tonic and phasic pupil responses to P300 amplitude in an emotional face-word Stroop task. Psychophysiology 2024; 61:e14479. [PMID: 37920144 DOI: 10.1111/psyp.14479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
The locus coeruleus-norepinephrine (LC-NE) system, which regulates arousal levels, is important for cognitive control, including emotional conflict resolution. Additionally, the LC-NE system is implicated in P300 generation. If the P300 is mediated by the LC-NE system, and considering the established correlations between LC activity and pupil dilation, P300 amplitude should correlate with task-evoked (phasic) pupil dilation on a trial-by-trial basis. However, prior studies, predominantly utilizing oddball-type paradigms, have not demonstrated correlations between concurrently recorded task-evoked pupil dilation and P300 responses. Using a recently developed emotional face-word Stroop task that links pupil dilation to the LC-NE system, here, we examined both intra- and inter-individual correlations between task-evoked pupil dilation and P300 amplitude. We found that lower accuracy, slower reaction times, and larger task-evoked pupil dilation were obtained in the incongruent compared to the congruent condition. Furthermore, we observed intra-individual correlations between task-evoked pupil dilation and P300 amplitude, with larger pupil dilation correlating with a greater P300 amplitude. In contrast, pupil dilation did not exhibit consistent correlations with N450 and N170 amplitudes. Baseline (tonic) pupil size also showed correlations with P300 and N170 amplitudes, with smaller pupil size corresponding to larger amplitude. Moreover, inter-individual differences in task-evoked pupil dilation between the congruent and incongruent conditions correlated with differences in reaction time and P300 amplitude, though these effects only approached significance. To summarize, our study provides evidence for a connection between task-evoked pupil dilation and P300 amplitude at the single-trial level, suggesting the involvement of the LC-NE system in P300 generation.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - He-Jun Chen
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cesar Barquero
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hsu Jung Tsai
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Chun-Hsien Hsu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Chin-An Wang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
30
|
Megemont M, Tortorelli LS, McBurney-Lin J, Cohen JY, O'Connor DH, Yang H. Simultaneous recordings of pupil size variation and locus coeruleus activity in mice. STAR Protoc 2024; 5:102785. [PMID: 38127625 PMCID: PMC10772391 DOI: 10.1016/j.xpro.2023.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
An extensive literature describes how pupil size reflects neuromodulatory activity, including the noradrenergic system. Here, we present a protocol for the simultaneous recording of optogenetically identified locus coeruleus (LC) units and pupil diameter in mice under different conditions. We describe steps for building an optrode, performing surgery to implant the optrode and headpost, searching for opto-tagged LC units, and performing dual LC-pupil recording. We then detail procedures for data processing and analysis. For complete details on the use and execution of this protocol, please refer to Megemont et al.1.
Collapse
Affiliation(s)
- Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Lucas S Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience & Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience & Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
31
|
Zhao S, Contadini-Wright C, Chait M. Cross-Modal Interactions Between Auditory Attention and Oculomotor Control. J Neurosci 2024; 44:e1286232024. [PMID: 38331581 PMCID: PMC10941240 DOI: 10.1523/jneurosci.1286-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Microsaccades are small, involuntary eye movements that occur during fixation. Their role is debated with recent hypotheses proposing a contribution to automatic scene sampling. Microsaccadic inhibition (MSI) refers to the abrupt suppression of microsaccades, typically evoked within 0.1 s after new stimulus onset. The functional significance and neural underpinnings of MSI are subjects of ongoing research. It has been suggested that MSI is a component of the brain's attentional re-orienting network which facilitates the allocation of attention to new environmental occurrences by reducing disruptions or shifts in gaze that could interfere with processing. The extent to which MSI is reflexive or influenced by top-down mechanisms remains debated. We developed a task that examines the impact of auditory top-down attention on MSI, allowing us to disentangle ocular dynamics from visual sensory processing. Participants (N = 24 and 27; both sexes) listened to two simultaneous streams of tones and were instructed to attend to one stream while detecting specific task "targets." We quantified MSI in response to occasional task-irrelevant events presented in both the attended and unattended streams (frequency steps in Experiment 1, omissions in Experiment 2). The results show that initial stages of MSI are not affected by auditory attention. However, later stages (∼0.25 s postevent onset), affecting the extent and duration of the inhibition, are enhanced for sounds in the attended stream compared to the unattended stream. These findings provide converging evidence for the reflexive nature of early MSI stages and robustly demonstrate the involvement of auditory attention in modulating the later stages.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | | | - Maria Chait
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| |
Collapse
|
32
|
Claußen L, Heidelbach T. Resistance exercising on unstable surface leads to Pupil Dilation. BMC Sports Sci Med Rehabil 2024; 16:62. [PMID: 38439063 PMCID: PMC10913668 DOI: 10.1186/s13102-024-00858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Chronic resistance training and acute resistance exercises improve physical performance and can enhance cognitive performance. However, there is still uncertainty about the mechanism(s) responsible for cognitive improvement following resistance training and exercise. Recent findings suggest that resistance exercise has metabolic as well as cognitive demands, which potentially activate similar neural circuitry associated with higher-order cognitive function tasks. Exercising on unstable devices increases the coordinative and metabolic demands and thus may further increase cognitive activation during resistance exercise. The measurement of pupil diameter could provide indications of cognitive activation and arousal during resistance exercise. Pupil dilation is linked to the activity in multiple neuromodulatory systems (e.g., activation of the locus coeruleus and the release of the neurotransmitter norepinephrine (LC-NE system)), which are involved in supporting processes for executive control. Therefore, the purpose of this study was to compare the cognitive activation measured by pupil diameter during an acute bout of resistance exercise on stable and unstable surfaces. METHODS 18 participants (23.5 ± 1.5 years; 10 females) performed ten kettlebell squats in a preferred repetition velocity in stable and unstable (BOSU® Balance Trainer) ground conditions. Pupil diameter was recorded with eye tracking glasses (SMI ETG) during standing (baseline) and during squatting. Raw pupil data were cleaned of artifacts (missing values were linearly interpolated) and subjected to a subtractive baseline correction. A student t-test was used to compare mean pupil diameter between ground conditions. RESULTS The mean pupil diameter was significantly greater during squats in the unstable condition than in the stable condition, t (17) = -2.63, p =.018, Cohen's dZ = -0.62; stable: 0.49 ± 0.32 mm; unstable: 0.61 ± 0.25 mm). CONCLUSION As indicated by pupil dilation, the use of unstable devices can increase the cognitive activation and effort during acute bouts of resistance exercise. Since pupil dilation is only an indirect method, further investigations are necessary to describe causes and effects of neuromodulatory system activity during resistance exercise. Resistance training with and without surface instability can be recommended to people of all ages as a physically and cognitively challenging training program contributing to the preservation of both physical and cognitive functioning.
Collapse
Affiliation(s)
- Lisa Claußen
- Institute of Sports and Sport Science, University of Kassel, Kassel, Germany.
| | - Tabea Heidelbach
- Institute of Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
33
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
34
|
Berger A, Beckers E, Joris V, Duchêne G, Danthine V, Delinte N, Cakiroglu I, Sherif S, Morrison EIG, Sánchez AT, Macq B, Dricot L, Vandewalle G, El Tahry R. Locus coeruleus features are linked to vagus nerve stimulation response in drug-resistant epilepsy. Front Neurosci 2024; 18:1296161. [PMID: 38469571 PMCID: PMC10926962 DOI: 10.3389/fnins.2024.1296161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
The locus coeruleus-norepinephrine system is thought to be involved in the clinical effects of vagus nerve stimulation. This system is known to prevent seizure development and induce long-term plastic changes, particularly with the release of norepinephrine in the hippocampus. However, the requisites to become responder to the therapy and the mechanisms of action are still under investigation. Using MRI, we assessed the structural and functional characteristics of the locus coeruleus and microstructural properties of locus coeruleus-hippocampus white matter tracts in patients with drug-resistant epilepsy responding or not to the therapy. Twenty-three drug-resistant epileptic patients with cervical vagus nerve stimulation were recruited for this pilot study, including 13 responders or partial responders and 10 non-responders. A dedicated structural MRI acquisition allowed in vivo localization of the locus coeruleus and computation of its contrast (an accepted marker of LC integrity). Locus coeruleus activity was estimated using functional MRI during an auditory oddball task. Finally, multi-shell diffusion MRI was used to estimate the structural properties of locus coeruleus-hippocampus tracts. These characteristics were compared between responders/partial responders and non-responders and their association with therapy duration was also explored. In patients with a better response to the therapy, trends toward a lower activity and a higher contrast were found in the left medial and right caudal portions of the locus coeruleus, respectively. An increased locus coeruleus contrast, bilaterally over its medial portions, correlated with duration of the treatment. Finally, a higher integrity of locus coeruleus-hippocampus connections was found in patients with a better response to the treatment. These new insights into the neurobiology of vagus nerve stimulation may provide novel markers of the response to the treatment and may reflect neuroplasticity effects occurring in the brain following the implantation.
Collapse
Affiliation(s)
- Alexandre Berger
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer’s Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Vincent Joris
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurosurgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Gaëtan Duchêne
- GE Center MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Venethia Danthine
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Nicolas Delinte
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Inci Cakiroglu
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | | | - Andres Torres Sánchez
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Innoviris, Brussels Institute for Research and Innovation, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Dricot
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
35
|
Meissner SN, Bächinger M, Kikkert S, Imhof J, Missura S, Carro Dominguez M, Wenderoth N. Self-regulating arousal via pupil-based biofeedback. Nat Hum Behav 2024; 8:43-62. [PMID: 37904022 PMCID: PMC10810759 DOI: 10.1038/s41562-023-01729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jenny Imhof
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Manuel Carro Dominguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| |
Collapse
|
36
|
Mathôt S, Berberyan H, Büchel P, Ruuskanen V, Vilotijević A, Kruijne W. Effects of pupil size as manipulated through ipRGC activation on visual processing. Neuroimage 2023; 283:120420. [PMID: 37871758 DOI: 10.1016/j.neuroimage.2023.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023] Open
Abstract
The size of the eyes' pupils determines how much light enters the eye and also how well this light is focused. Through this route, pupil size shapes the earliest stages of visual processing. Yet causal effects of pupil size on vision are poorly understood and rarely studied. Here we introduce a new way to manipulate pupil size, which relies on activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) to induce sustained pupil constriction. We report the effects of both experimentally induced and spontaneous changes in pupil size on visual processing as measured through EEG. We compare these to the effects of stimulus intensity and covert visual attention, because previous studies have shown that these factors all have comparable effects on some common measures of early visual processing, such as detection performance and steady-state visual evoked potentials; yet it is still unclear whether these are superficial similarities, or rather whether they reflect similar underlying processes. Using a mix of neural-network decoding, ERP analyses, and time-frequency analyses, we find that induced pupil size, spontaneous pupil size, stimulus intensity, and covert visual attention all affect EEG responses, mainly over occipital and parietal electrodes, but-crucially-that they do so in qualitatively different ways. Induced and spontaneous pupil-size changes mainly modulate activity patterns (but not overall power or intertrial coherence) in the high-frequency beta range; this may reflect an effect of pupil size on oculomotor activity and/ or visual processing. In addition, spontaneous (but not induced) pupil size tends to correlate positively with intertrial coherence in the alpha band; this may reflect a non-causal relationship, mediated by arousal. Taken together, our findings suggest that pupil size has qualitatively different effects on visual processing from stimulus intensity and covert visual attention. This shows that pupil size as manipulated through ipRGC activation strongly affects visual processing, and provides concrete starting points for further study of this important yet understudied earliest stage of visual processing.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.
| | | | - Philipp Büchel
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Veera Ruuskanen
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Ana Vilotijević
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Wouter Kruijne
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
37
|
Narasimhan S, Schriver BJ, Wang Q. Adaptive decision-making depends on pupil-linked arousal in rats performing tactile discrimination tasks. J Neurophysiol 2023; 130:1541-1551. [PMID: 37964751 PMCID: PMC11068411 DOI: 10.1152/jn.00309.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Perceptual decision-making is a dynamic cognitive process and is shaped by many factors, including behavioral state, reward contingency, and sensory environment. To understand the extent to which adaptive behavior in decision-making is dependent on pupil-linked arousal, we trained head-fixed rats to perform perceptual decision-making tasks and systematically manipulated the probability of Go and No-go stimuli while simultaneously measuring their pupil size in the tasks. Our data demonstrated that the animals adaptively modified their behavior in response to the changes in the sensory environment. The response probability to both Go and No-go stimuli decreased as the probability of the Go stimulus being presented decreased. Analyses within the signal detection theory framework showed that while the animals' perceptual sensitivity was invariant, their decision criterion increased as the probability of the Go stimulus decreased. Simulation results indicated that the adaptive increase in the decision criterion will increase possible water rewards during the task. Moreover, the adaptive decision-making is dependent on pupil-linked arousal as the increase in the decision criterion was the largest during low pupil-linked arousal periods. Taken together, our results demonstrated that the rats were able to adjust their decision-making to maximize rewards in the tasks, and that adaptive behavior in perceptual decision-making is dependent on pupil-linked arousal.NEW & NOTEWORTHY Perceptual decision-making is a dynamic cognitive process and is shaped by many factors. However, the extent to which changes in sensory environment result in adaptive decision-making remains poorly understood. Our data provided new experimental evidence demonstrating that the rats were able to adaptively modify their decision criterion to maximize water reward in response to changes in the statistics of the sensory environment. Furthermore, the adaptive decision-making is dependent on pupil-linked arousal.
Collapse
Affiliation(s)
- Shreya Narasimhan
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Brian J Schriver
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| |
Collapse
|
38
|
Mathar D, Wiebe A, Tuzsus D, Knauth K, Peters J. Erotic cue exposure increases physiological arousal, biases choices toward immediate rewards, and attenuates model-based reinforcement learning. Psychophysiology 2023; 60:e14381. [PMID: 37435973 DOI: 10.1111/psyp.14381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Computational psychiatry focuses on identifying core cognitive processes that appear altered across distinct psychiatric disorders. Temporal discounting of future rewards and model-based control during reinforcement learning have proven as two promising candidates. Despite its trait-like stability, temporal discounting may be at least partly under contextual control. Highly arousing cues were shown to increase discounting, although evidence to date remains somewhat mixed. Whether model-based reinforcement learning is similarly affected by arousing cues remains unclear. Here, we tested cue-reactivity effects (erotic pictures) on subsequent temporal discounting and model-based reinforcement learning in a within-subjects design in n = 39 healthy heterosexual male participants. Self-reported and physiological arousal (cardiac activity and pupil dilation) were assessed before and during cue exposure. Arousal was increased during exposure of erotic versus neutral cues both on the subjective and autonomic level. Erotic cue exposure increased discounting as reflected by more impatient choices. Hierarchical drift diffusion modeling (DDM) linked increased discounting to a shift in the starting point bias of evidence accumulation toward immediate options. Model-based control during reinforcement learning was reduced following erotic cues according to model-agnostic analysis. Notably, DDM linked this effect to attenuated forgetting rates of unchosen options, leaving the model-based control parameter unchanged. Our findings replicate previous work on cue-reactivity effects in temporal discounting and for the first time show similar effects in model-based reinforcement learning in a heterosexual male sample. This highlights how environmental cues can impact core human decision processes and reveal that comprehensive modeling approaches can yield novel insights in reward-based decision processes.
Collapse
Affiliation(s)
- David Mathar
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Annika Wiebe
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Deniz Tuzsus
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Kilian Knauth
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Mazancieux A, Mauconduit F, Amadon A, Willem de Gee J, Donner TH, Meyniel F. Brainstem fMRI signaling of surprise across different types of deviant stimuli. Cell Rep 2023; 42:113405. [PMID: 37950868 PMCID: PMC10698303 DOI: 10.1016/j.celrep.2023.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023] Open
Abstract
Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine). We combine human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items in a "local-global" paradigm that distinguishes between deviance based on the stimulus probability and the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the detection of task-relevant deviant items recruits the same multiple subcortical systems across computationally different types of deviance.
Collapse
Affiliation(s)
- Audrey Mazancieux
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.
| | - Franck Mauconduit
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Alexis Amadon
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Jan Willem de Gee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florent Meyniel
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Institut de neuromodulation, GHU Paris, psychiatrie et neurosciences, centre hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France.
| |
Collapse
|
40
|
Bang D, Luo Y, Barbosa LS, Batten SR, Hadj-Amar B, Twomey T, Melville N, White JP, Torres A, Celaya X, Ramaiah P, McClure SM, Brewer GA, Bina RW, Lohrenz T, Casas B, Chiu PH, Vannucci M, Kishida KT, Witcher MR, Montague PR. Noradrenaline tracks emotional modulation of attention in human amygdala. Curr Biol 2023; 33:5003-5010.e6. [PMID: 37875110 PMCID: PMC10957395 DOI: 10.1016/j.cub.2023.09.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The noradrenaline (NA) system is one of the brain's major neuromodulatory systems; it originates in a small midbrain nucleus, the locus coeruleus (LC), and projects widely throughout the brain.1,2 The LC-NA system is believed to regulate arousal and attention3,4 and is a pharmacological target in multiple clinical conditions.5,6,7 Yet our understanding of its role in health and disease has been impeded by a lack of direct recordings in humans. Here, we address this problem by showing that electrochemical estimates of sub-second NA dynamics can be obtained using clinical depth electrodes implanted for epilepsy monitoring. We made these recordings in the amygdala, an evolutionarily ancient structure that supports emotional processing8,9 and receives dense LC-NA projections,10 while patients (n = 3) performed a visual affective oddball task. The task was designed to induce different cognitive states, with the oddball stimuli involving emotionally evocative images,11 which varied in terms of arousal (low versus high) and valence (negative versus positive). Consistent with theory, the NA estimates tracked the emotional modulation of attention, with a stronger oddball response in a high-arousal state. Parallel estimates of pupil dilation, a common behavioral proxy for LC-NA activity,12 supported a hypothesis that pupil-NA coupling changes with cognitive state,13,14 with the pupil and NA estimates being positively correlated for oddball stimuli in a high-arousal but not a low-arousal state. Our study provides proof of concept that neuromodulator monitoring is now possible using depth electrodes in standard clinical use.
Collapse
Affiliation(s)
- Dan Bang
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA.
| | - Yi Luo
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, East China Normal University, Shanghai 200050, China
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | | | - Thomas Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Natalie Melville
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Alexis Torres
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Xavier Celaya
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Priya Ramaiah
- Department of Neurosurgery, Banner University Medical Center, Phoenix, AZ 85006, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center, Phoenix, AZ 85006, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Brooks Casas
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pearl H Chiu
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mark R Witcher
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - P Read Montague
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
41
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
42
|
Hussain S, Menchaca I, Shalchy MA, Yaghoubi K, Langley J, Seitz AR, Hu XP, Peters MAK. Locus coeruleus integrity predicts ease of attaining and maintaining neural states of high attentiveness. Brain Res Bull 2023; 202:110733. [PMID: 37586427 DOI: 10.1016/j.brainresbull.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
The locus coeruleus (LC), a small subcortical structure in the brainstem, is the brain's principal source of norepinephrine. It plays a primary role in regulating stress, the sleep-wake cycle, and attention, and its degradation is associated with aging and neurodegenerative diseases associated with cognitive deficits (e.g., Parkinson's, Alzheimer's). Yet precisely how norepinephrine drives brain networks to support healthy cognitive function remains poorly understood - partly because LC's small size makes it difficult to study noninvasively in humans. Here, we characterized LC's influence on brain dynamics using a hidden Markov model fitted to functional neuroimaging data from healthy young adults across four attention-related brain networks and LC. We modulated LC activity using a behavioral paradigm and measured individual differences in LC magnetization transfer contrast. The model revealed five hidden states, including a stable state dominated by salience-network activity that occurred when subjects actively engaged with the task. LC magnetization transfer contrast correlated with this state's stability across experimental manipulations and with subjects' propensity to enter into and remain in this state. These results provide new insight into LC's role in driving spatiotemporal neural patterns associated with attention, and demonstrate that variation in LC integrity can explain individual differences in these patterns even in healthy young adults.
Collapse
Affiliation(s)
- Sana Hussain
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Isaac Menchaca
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Kimia Yaghoubi
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, CA, USA
| | - Aaron R Seitz
- Department of Psychology, University of California Riverside, Riverside, CA, USA; Department of Psychology, Northeastern University, Boston, MA, USA
| | - Xiaoping P Hu
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Center for Advanced Neuroimaging, University of California, Riverside, CA, USA.
| | - Megan A K Peters
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA; Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Abivardi A, Korn CW, Rojkov I, Gerster S, Hurlemann R, Bach DR. Acceleration of inferred neural responses to oddball targets in an individual with bilateral amygdala lesion compared to healthy controls. Sci Rep 2023; 13:14550. [PMID: 37667022 PMCID: PMC10477323 DOI: 10.1038/s41598-023-41357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Detecting unusual auditory stimuli is crucial for discovering potential threat. Locus coeruleus (LC), which coordinates attention, and amygdala, which is implicated in resource prioritization, both respond to deviant sounds. Evidence concerning their interaction, however, is sparse. Seeking to elucidate if human amygdala affects estimated LC activity during this process, we recorded pupillary responses during an auditory oddball and an illuminance change task, in a female with bilateral amygdala lesions (BG) and in n = 23 matched controls. Neural input in response to oddballs was estimated via pupil dilation, a reported proxy of LC activity, harnessing a linear-time invariant system and individual pupillary dilation response function (IRF) inferred from illuminance responses. While oddball recognition remained intact, estimated LC input for BG was compacted to an impulse rather than the prolonged waveform seen in healthy controls. This impulse had the earliest response mean and highest kurtosis in the sample. As a secondary finding, BG showed enhanced early pupillary constriction to darkness. These findings suggest that LC-amygdala communication is required to sustain LC activity in response to anomalous sounds. Our results provide further evidence for amygdala involvement in processing deviant sound targets, although it is not required for their behavioral recognition.
Collapse
Affiliation(s)
- Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Adult Psychiatry, Heidelberg University, 69115, Heidelberg, Germany
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ivan Rojkov
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Institute for Quantum Electronics, ETH Zurich, 8093, Zurich, Switzerland
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, Carl von Ossietzky University of Oldenburg, 26160, Bad Zwischenahn, Germany
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, 53012, Bonn, Germany.
| |
Collapse
|
44
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
45
|
Fan H, Burke T, Sambrano DC, Dial E, Phelps EA, Gershman SJ. Pupil Size Encodes Uncertainty during Exploration. J Cogn Neurosci 2023; 35:1508-1520. [PMID: 37382476 DOI: 10.1162/jocn_a_02025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Exploration is an important part of decision making and is crucial to maximizing long-term rewards. Past work has shown that people use different forms of uncertainty to guide exploration. In this study, we investigate the role of the pupil-linked arousal system in uncertainty-guided exploration. We measured participants' (n = 48) pupil dilation while they performed a two-armed bandit task. Consistent with previous work, we found that people adopted a hybrid of directed, random, and undirected exploration, which are sensitive to relative uncertainty, total uncertainty, and value difference between options, respectively. We also found a positive correlation between pupil size and total uncertainty. Furthermore, augmenting the choice model with subject-specific total uncertainty estimates decoded from the pupil size improved predictions of held-out choices, suggesting that people used the uncertainty estimate encoded in pupil size to decide which option to explore. Together, the data shed light on the computations underlying uncertainty-driven exploration. Under the assumption that pupil size reflects locus coeruleus-norepinephrine neuromodulatory activity, these results also extend the theory of the locus coeruleus-norepinephrine function in exploration, highlighting its selective role in driving uncertainty-guided random exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Samuel J Gershman
- Harvard University, Cambridge, MA
- Center for Brains, Minds, and Machines, MIT, Cambridge, MA
| |
Collapse
|
46
|
Chen HY, Marxen M, Dahl MJ, Glöckner F. Effects of Adult Age and Functioning of the Locus Coeruleus Norepinephrinergic System on Reward-Based Learning. J Neurosci 2023; 43:6185-6196. [PMID: 37541835 PMCID: PMC10476638 DOI: 10.1523/jneurosci.2006-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC) magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42, 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41, 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the β parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34, 29 males) showed a lower LC-MRI contrast than younger adults (N = 25, 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning.SIGNIFICANCE STATEMENT Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the LC-NE system may affect reward-based learning. Here, we show that compared with younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural MRI of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Methods of Psychology and Cognitive Modeling, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Davis School of Gerontology, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Franka Glöckner
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
47
|
Lloyd B, de Voogd LD, Mäki-Marttunen V, Nieuwenhuis S. Pupil size reflects activation of subcortical ascending arousal system nuclei during rest. eLife 2023; 12:e84822. [PMID: 37367220 PMCID: PMC10299825 DOI: 10.7554/elife.84822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Neuromodulatory nuclei that are part of the ascending arousal system (AAS) play a crucial role in regulating cortical state and optimizing task performance. Pupil diameter, under constant luminance conditions, is increasingly used as an index of activity of these AAS nuclei. Indeed, task-based functional imaging studies in humans have begun to provide evidence of stimulus-driven pupil-AAS coupling. However, whether there is such a tight pupil-AAS coupling during rest is not clear. To address this question, we examined simultaneously acquired resting-state fMRI and pupil-size data from 74 participants, focusing on six AAS nuclei: the locus coeruleus, ventral tegmental area, substantia nigra, dorsal and median raphe nuclei, and cholinergic basal forebrain. Activation in all six AAS nuclei was optimally correlated with pupil size at 0-2 s lags, suggesting that spontaneous pupil changes were almost immediately followed by corresponding BOLD-signal changes in the AAS. These results suggest that spontaneous changes in pupil size that occur during states of rest can be used as a noninvasive general index of activity in AAS nuclei. Importantly, the nature of pupil-AAS coupling during rest appears to be vastly different from the relatively slow canonical hemodynamic response function that has been used to characterize task-related pupil-AAS coupling.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden UniversityLeidenNetherlands
| | - Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University NijmegenNijmegenNetherlands
- Behavioural Science Institute, Radboud UniversityNijmegenNetherlands
| | | | | |
Collapse
|
48
|
Kraus F, Tune S, Obleser J, Herrmann B. Neural α Oscillations and Pupil Size Differentially Index Cognitive Demand under Competing Audiovisual Task Conditions. J Neurosci 2023; 43:4352-4364. [PMID: 37160365 PMCID: PMC10255021 DOI: 10.1523/jneurosci.2181-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cognitive demand is thought to modulate two often used, but rarely combined, measures: pupil size and neural α (8-12 Hz) oscillatory power. However, it is unclear whether these two measures capture cognitive demand in a similar way under complex audiovisual-task conditions. Here we recorded pupil size and neural α power (using electroencephalography), while human participants of both sexes concurrently performed a visual multiple object-tracking task and an auditory gap detection task. Difficulties of the two tasks were manipulated independent of each other. Participants' performance decreased in accuracy and speed with increasing cognitive demand. Pupil size increased with increasing difficulty for both the auditory and the visual task. In contrast, α power showed diverging neural dynamics: parietal α power decreased with increasing difficulty in the visual task, but not with increasing difficulty in the auditory task. Furthermore, independent of task difficulty, within-participant trial-by-trial fluctuations in pupil size were negatively correlated with α power. Difficulty-induced changes in pupil size and α power, however, did not correlate, which is consistent with their different cognitive-demand sensitivities. Overall, the current study demonstrates that the dynamics of the neurophysiological indices of cognitive demand and associated effort are multifaceted and potentially modality-dependent under complex audiovisual-task conditions.SIGNIFICANCE STATEMENT Pupil size and oscillatory α power are associated with cognitive demand and effort, but their relative sensitivity under complex audiovisual-task conditions is unclear, as is the extent to which they share underlying mechanisms. Using an audiovisual dual-task paradigm, we show that pupil size increases with increasing cognitive demands for both audition and vision. In contrast, changes in oscillatory α power depend on the respective task demands: parietal α power decreases with visual demand but not with auditory task demand. Hence, pupil size and α power show different sensitivity to cognitive demands, perhaps suggesting partly different underlying neural mechanisms.
Collapse
Affiliation(s)
- Frauke Kraus
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
49
|
Bachman SL, Attanti S, Mather M. Isometric handgrip exercise speeds working memory responses in younger and older adults. Psychol Aging 2023; 38:305-322. [PMID: 36931831 PMCID: PMC10238670 DOI: 10.1037/pag0000728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Physiological arousal affects attention and memory, sometimes enhancing and other times impairing what we attend to and remember. In the present study, we investigated how changes in physiological arousal-induced through short bursts of isometric handgrip exercise-affected subsequent working memory performance. A sample of 57 younger (ages 18-29) and 56 older (ages 65-85) participants performed blocks of isometric handgrip exercise in which they periodically squeezed a therapy ball, alternating with blocks of an auditory working memory task. We found that, compared with those in a control group, participants who performed isometric handgrip had faster reaction times on the working memory task. Handgrip-speeded responses were observed for both younger and older participants, across working memory loads. Analysis of multimodal physiological responses indicated that physiological arousal increased during handgrip. Our findings suggest that performing short bouts of isometric handgrip exercise can improve processing speed, and they offer testable possibilities for the mechanism underlying handgrip's effects on performance. The potential for acute isometric exercise to temporarily improve processing speed may be of particular relevance for older adults who show declines in processing speed and working memory. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Sumedha Attanti
- Davis School of Gerontology, University of Southern California
| | - Mara Mather
- Davis School of Gerontology, University of Southern California
| |
Collapse
|
50
|
Bonmassar C, Scharf F, Widmann A, Wetzel N. On the relationship of arousal and attentional distraction by emotional novel sounds. Cognition 2023; 237:105470. [PMID: 37150156 DOI: 10.1016/j.cognition.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Unexpected and task-irrelevant sounds can impair performance in a task. It has been shown that highly arousing emotional distractor sounds impaired performance less compared to moderately arousing neutral distractor sounds. The present study tests whether these differential emotion-related distraction effects are directly related to an enhancement of arousal evoked by processing of emotional distractor sounds. We disentangled costs of orienting of attention and benefits of increased arousal levels during the presentation of highly arousing emotional and moderately arousing neutral novel sounds that were embedded in a sequence of repeated standard sounds. We used sound-related pupil dilation responses as a marker of arousal and RTs as a marker of distraction in a visual categorization task in 57 healthy young adults. Multilevel analyses revealed increased RT and increased pupil dilation in response to novel vs. standard sounds. Emotional novel sounds reduced distraction effects on the behavioral level and increased pupil dilation responses compared to neutral novel sounds. Bayes Factors revealed strong evidence against an inverse proportional relationship between behavioral distraction effects and sound-related pupil dilation responses for emotional sounds. Given that the activity of the locus coeruleus has been linked to both changes in pupil diameter and arousal, it may embody an indirect relationship as a common antecedent by the release of norepinephrine into brain networks involved in attention control and control of the pupil. The present study provides new insights into the relation of changes in arousal and attentional distraction during the processing of emotional task-irrelevant novel sounds.
Collapse
Affiliation(s)
| | | | - Andreas Widmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Leipzig University, Germany
| | - Nicole Wetzel
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences Magdeburg, Germany; University of Applied Sciences Magdeburg-, Stendal, Germany
| |
Collapse
|