1
|
Vega-Zuniga T, Sumser A, Symonova O, Koppensteiner P, Schmidt FH, Joesch M. A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics. Nat Neurosci 2025; 28:627-639. [PMID: 39930095 PMCID: PMC11893466 DOI: 10.1038/s41593-025-01874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/19/2024] [Indexed: 03/12/2025]
Abstract
For accurate perception and motor control, an animal must distinguish between sensory experiences elicited by external stimuli and those elicited by its own actions. The diversity of behaviors and their complex influences on the senses make this distinction challenging. Here, we uncover an action-cue hub that coordinates motor commands with visual processing in the brain's first visual relay. We show that the ventral lateral geniculate nucleus (vLGN) acts as a corollary discharge center, integrating visual translational optic flow signals with motor copies from saccades, locomotion and pupil dynamics. The vLGN relays these signals to correct action-specific visual distortions and to refine perception, as shown for the superior colliculus and in a depth-estimation task. Simultaneously, brain-wide vLGN projections drive corrective actions necessary for accurate visuomotor control. Our results reveal an extended corollary discharge architecture that refines early visual transformations and coordinates actions via a distributed hub-and-spoke network to enable visual perception during action.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Anton Sumser
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Division of Neuroscience, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Florian H Schmidt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
2
|
English D, Gilbert E, Klaver L, Arndt K, Kim J, Jia X, Mckenzie S. Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events. RESEARCH SQUARE 2025:rs.3.rs-5844238. [PMID: 39989976 PMCID: PMC11844635 DOI: 10.21203/rs.3.rs-5844238/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are > 20 types of GABAergic interneurons in CA1. Axo-axonic cells (AAC) are defined by their synaptic targeting of the axon initial segment of pyramidal cells, potently controlling spike output. The impact of AAC activity on SPW-R is controversial, due mainly to ambiguity of AAC identification. Here we monitored and manipulated opto-tagged AACs in behaving mice using silicon probe recordings. We found a large variability of AAC neurons, varying from enhanced to suppressed spiking during SPW-Rs, in contrast to the near-uniform excitation of other parvalbumin-expressing interneurons. AACs received convergent monosynaptic inputs from local pyramidal cell assemblies, which strongly influenced their participation in SPW-Rs. Optogenetic silencing of AACs increased power and duration of SPW-Rs, recruiting a greater number of PYR, suggesting AACs control SPW-R dynamics. We hypothesize that lateral inhibition by reciprocal PYR-AAC interactions thus supports the organization of cell assemblies in SPW-R.
Collapse
Affiliation(s)
| | - Earl Gilbert
- Virginia Polytechnic Institute and State University
| | | | | | | | - Xiaoting Jia
- Virginia Polytechnic Institute and State University
| | | |
Collapse
|
3
|
Gilbert ET, Klaver LMF, Arndt KC, Kim J, Jia X, McKenzie S, English DF. Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.02.601726. [PMID: 39868302 PMCID: PMC11761640 DOI: 10.1101/2024.07.02.601726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1. Axo-axonic cells (AAC) are defined by their synaptic targeting of the axon initial segment of pyramidal cells, potently controlling spike output. The impact of AAC activity on SPW-R is controversial, due mainly to ambiguity of AAC identification. Here we monitored and manipulated opto-tagged AACs in behaving mice using silicon probe recordings. We found a large variability of AAC neurons, varying from enhanced to suppressed spiking during SPW-Rs, in contrast to the near-uniform excitation of other parvalbumin-expressing interneurons. AACs received convergent monosynaptic inputs from local pyramidal cell assemblies, which strongly influenced their participation in SPW-Rs. Optogenetic silencing of AACs increased power and duration of SPW-Rs, recruiting a greater number of PYR, suggesting AACs control SPW-R dynamics. We hypothesize that lateral inhibition by reciprocal PYR-AAC interactions thus supports the organization of cell assemblies in SPW-R.
Collapse
|
4
|
Olson WP, Chokshi VB, Kim JJ, Cowan NJ, O'Connor DH. Muscle spindles provide flexible sensory feedback for movement sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612899. [PMID: 39345532 PMCID: PMC11429703 DOI: 10.1101/2024.09.13.612899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sensory feedback is essential for motor performance and must adapt to task demands. Muscle spindle afferents (MSAs) are a major primary source of feedback about movement, and their responses are readily modulated online by gain-controller fusimotor neurons and other mechanisms. They are therefore a powerful site for implementing flexible sensorimotor control. We recorded from MSAs innervating the jaw musculature during performance of a directed lick sequence task. Jaw MSAs encoded complex jaw-tongue kinematics. However, kinematic encoding alone accounted for less than half of MSA spiking variability. MSA coding of kinematics changed based on sequence progression (beginning, middle, or end of the sequence, or reward consumption), suggesting that MSAs are flexibly tuned across the task. Dynamic control of incoming feedback signals from MSAs may be a strategy for adaptable sensorimotor control during performance of complex behaviors.
Collapse
|
5
|
Weiler S, Velez-Fort M, Margrie TW. Overcoming off-target optical stimulation-evoked cortical activity in the mouse brain in vivo. iScience 2024; 27:111152. [PMID: 39524362 PMCID: PMC11543908 DOI: 10.1016/j.isci.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Exogenous opsins allow for in vivo interrogation of brain circuits at unprecedented temporal and spatial precision. Here, we found that optical fiber laser stimulation at wavelengths of 637, 594, or 473 nm within the cortex of mice lacking expression of exogenous opsins resulted in a strong neuronal response in the contralateral visual cortex. Evoked responses were observed even at low laser intensities (fiber tip power 1 mW) and most pronounced at 637 nm. We took advantage of retinal light adaptation by using a dim external light source (20 lux) that abolished the 594 and 473 nm-evoked neuronal responses even at high laser intensities (15 mW). The prevention of 637 nm-evoked responses, however, could only be achieved for stimulation intensities ≤ 2.5 mW. This highlights the need for careful selection of light wavelengths and intensities for optogenetic experiments. Additionally, retinal light adaptation offers an effective solution to minimize unintended activation.
Collapse
Affiliation(s)
- Simon Weiler
- Sainsbury Wellcome Centre for Neuronal Circuits and Behavior, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Mateo Velez-Fort
- Sainsbury Wellcome Centre for Neuronal Circuits and Behavior, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Troy W. Margrie
- Sainsbury Wellcome Centre for Neuronal Circuits and Behavior, University College London, 25 Howland Street, London W1T 4JG, UK
| |
Collapse
|
6
|
Peysakhovich B, Zhu O, Tetrick SM, Shirhatti V, Silva AA, Li S, Ibos G, Rosen MC, Johnston WJ, Freedman DJ. Primate superior colliculus is causally engaged in abstract higher-order cognition. Nat Neurosci 2024; 27:1999-2008. [PMID: 39300307 PMCID: PMC12068555 DOI: 10.1038/s41593-024-01744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
The superior colliculus is an evolutionarily conserved midbrain region that is thought to mediate spatial orienting, including saccadic eye movements and covert spatial attention. Here, we reveal a role for the superior colliculus in higher-order cognition, independent of its role in spatial orienting. We trained rhesus macaques to perform an abstract visual categorization task that involved neither instructed eye movements nor differences in covert attention. We compared neural activity in the superior colliculus and the posterior parietal cortex, a region previously shown to causally contribute to abstract category decisions. The superior colliculus exhibits robust encoding of learned visual categories, which is stronger than in the posterior parietal cortex and arises at a similar latency in the two areas. Moreover, inactivation of the superior colliculus markedly impaired animals' category decisions. These results demonstrate that the primate superior colliculus mediates abstract, higher-order cognitive processes that have traditionally been attributed to the neocortex.
Collapse
Affiliation(s)
| | - Ou Zhu
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Vinay Shirhatti
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Guilhem Ibos
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| | - Matthew C Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Hunt JB, Buteau A, Hanson S, Poleg-Polsky A, Felsen G. Neural substrates for saccadic modulation of visual representations in mouse superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613770. [PMID: 39386422 PMCID: PMC11463470 DOI: 10.1101/2024.09.21.613770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
How do sensory systems account for stimuli generated by natural behavior? We addressed this question by examining how an ethologically relevant class of saccades modulates visual representations in the mouse superior colliculus (SC), a key region for sensorimotor integration. We quantified saccadic modulation by recording SC responses to visual probes presented at stochastic saccade-probe latencies. Saccades significantly impacted population representations of the probes, with early enhancement that began prior to saccades and pronounced suppression for several hundred milliseconds following saccades, independent of units' visual response properties or directional tuning. To determine the cause of saccadic modulation, we presented fictive saccades that simulated the visual experience during saccades without motor output. Some units exhibited similar modulation by fictive and real saccades, suggesting a sensory-driven origin of saccadic modulation, while others had dissimilar modulation, indicating a motor contribution. These findings advance our understanding of the neural basis of natural visual coding.
Collapse
Affiliation(s)
- Joshua B. Hunt
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Anna Buteau
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Spencer Hanson
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | | |
Collapse
|
8
|
Spyropoulos G, Schneider M, van Kempen J, Gieselmann MA, Thiele A, Vinck M. Distinct feedforward and feedback pathways for cell-type specific attention effects. Neuron 2024; 112:2423-2434.e7. [PMID: 38759641 PMCID: PMC7616856 DOI: 10.1016/j.neuron.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Selective attention is thought to depend on enhanced firing activity in extrastriate areas. Theories suggest that this enhancement depends on selective inter-areal communication via gamma (30-80 Hz) phase-locking. To test this, we simultaneously recorded from different cell types and cortical layers of macaque V1 and V4. We find that while V1-V4 gamma phase-locking between local field potentials increases with attention, the V1 gamma rhythm does not engage V4 excitatory-neurons, but only fast-spiking interneurons in L4 of V4. By contrast, attention enhances V4 spike-rates in both excitatory and inhibitory cells, most strongly in L2/3. The rate increase in L2/3 of V4 precedes V1 in time. These findings suggest enhanced signal transmission with attention does not depend on inter-areal gamma phase-locking and show that the endogenous gamma rhythm has cell-type- and layer-specific effects on downstream target areas. Similar findings were made in the mouse visual system, based on opto-tagging of identified interneurons.
Collapse
Affiliation(s)
- Georgios Spyropoulos
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Lewis SM, Suarez LM, Rigolli N, Franks KM, Steinmetz NA, Gire DH. The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582978. [PMID: 38496526 PMCID: PMC10942328 DOI: 10.1101/2024.03.01.582978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In natural odor environments, odor travels in plumes. Odor concentration dynamics change in characteristic ways across the width and length of a plume. Thus, spatiotemporal dynamics of plumes have informative features for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown to follow odor concentration across plumes to a moderate degree (Lewis et al., 2021). However, it is unknown whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the population level. Previous research has explored the responses of individual OB cells to isolated features of plumes, but it is difficult to adequately sample the full feature space of plumes as it is still undetermined which features navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at both the cellular and population level. At the cellular level, responses were elicited at the beginning of the plume for each trial, signaling plume onset. Plumes with high odor concentration elicited responses at the end of the plume, signaling plume offset. Although cellular level tracking of plume dynamics was observed to be weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accurately discern odor presence throughout a plume. Our findings indicate that the full range of odor concentration dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-frequency temporal features of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented in the OB.
Collapse
Affiliation(s)
- Suzanne M. Lewis
- Department of Psychology, University of Washington, Seattle, WA, United States
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Lucas M. Suarez
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), Paris, France
| | - Kevin M. Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Nicholas A. Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Oude Lohuis MN, Marchesi P, Olcese U, Pennartz CMA. Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. Nat Neurosci 2024; 27:758-771. [PMID: 38307971 DOI: 10.1038/s41593-023-01564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Pietro Marchesi
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
12
|
Ferrero JJ, Hassan AR, Yu Z, Zhao Z, Ma L, Wu C, Shao S, Kawano T, Engel J, Doyle W, Devinsky O, Khodagholy D, Gelinas JN. Closed-loop electrical stimulation to prevent focal epilepsy progression and long-term memory impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579660. [PMID: 38405990 PMCID: PMC10888806 DOI: 10.1101/2024.02.09.579660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Interictal epileptiform discharges (IEDs) are ubiquitously expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes as most therapeutics target seizures. We show in a model of progressive hippocampal epilepsy that IEDs produce pathological oscillatory coupling which is associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expands the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human subjects with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation. One-Sentence Summary Targeted closed-loop electrical stimulation prevents spread of the epileptic network and ameliorates long-term spatial memory deficits.
Collapse
|
13
|
Leonard MK, Gwilliams L, Sellers KK, Chung JE, Xu D, Mischler G, Mesgarani N, Welkenhuysen M, Dutta B, Chang EF. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 2024; 626:593-602. [PMID: 38093008 PMCID: PMC10866713 DOI: 10.1038/s41586-023-06839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024]
Abstract
Understanding the neural basis of speech perception requires that we study the human brain both at the scale of the fundamental computational unit of neurons and in their organization across the depth of cortex. Here we used high-density Neuropixels arrays1-3 to record from 685 neurons across cortical layers at nine sites in a high-level auditory region that is critical for speech, the superior temporal gyrus4,5, while participants listened to spoken sentences. Single neurons encoded a wide range of speech sound cues, including features of consonants and vowels, relative vocal pitch, onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar recording exhibited dominant tuning to a primary speech feature while also containing a substantial proportion of neurons that encoded other features contributing to heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to encode similar speech features. Activity across all cortical layers was predictive of high-frequency field potentials (electrocorticography), providing a neuronal origin for macroelectrode recordings from the cortical surface. Together, these results establish single-neuron tuning across the cortical laminae as an important dimension of speech encoding in human superior temporal gyrus.
Collapse
Affiliation(s)
- Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Gwilliams
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Duo Xu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gavin Mischler
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | | | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Cazemier JL, Haak R, Tran TKL, Hsu ATY, Husic M, Peri BD, Kirchberger L, Self MW, Roelfsema P, Heimel JA. Involvement of superior colliculus in complex figure detection of mice. eLife 2024; 13:e83708. [PMID: 38270590 PMCID: PMC10810606 DOI: 10.7554/elife.83708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Object detection is an essential function of the visual system. Although the visual cortex plays an important role in object detection, the superior colliculus can support detection when the visual cortex is ablated or silenced. Moreover, it has been shown that superficial layers of mouse SC (sSC) encode visual features of complex objects, and that this code is not inherited from the primary visual cortex. This suggests that mouse sSC may provide a significant contribution to complex object vision. Here, we use optogenetics to show that mouse sSC is involved in figure detection based on differences in figure contrast, orientation, and phase. Additionally, our neural recordings show that in mouse sSC, image elements that belong to a figure elicit stronger activity than those same elements when they are part of the background. The discriminability of this neural code is higher for correct trials than for incorrect trials. Our results provide new insight into the behavioral relevance of the visual processing that takes place in sSC.
Collapse
Affiliation(s)
- J Leonie Cazemier
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Robin Haak
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - TK Loan Tran
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Ann TY Hsu
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Medina Husic
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Brandon D Peri
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Lisa Kirchberger
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Matthew W Self
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Pieter Roelfsema
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
| | - J Alexander Heimel
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| |
Collapse
|
15
|
Qin Y, Ahmadlou M, Suhai S, Neering P, de Kraker L, Heimel JA, Levelt CN. Thalamic regulation of ocular dominance plasticity in adult visual cortex. eLife 2023; 12:RP88124. [PMID: 37796249 PMCID: PMC10554735 DOI: 10.7554/elife.88124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.
Collapse
Affiliation(s)
- Yi Qin
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- University of StrasbourgStrasbourgFrance
| | - Mehran Ahmadlou
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Samuel Suhai
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Paul Neering
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Leander de Kraker
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - J Alexander Heimel
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
16
|
Montijn JS, Riguccini V, Levelt CN, Heimel JA. Impaired Direction Selectivity in the Nucleus of the Optic Tract of Albino Mice. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37548962 PMCID: PMC10411648 DOI: 10.1167/iovs.64.11.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Human albinos have a low visual acuity. This is partially due to the presence of spontaneous erroneous eye movements called pendular nystagmus. This nystagmus is present in other albino vertebrates and has been hypothesized to be caused by aberrant wiring of retinal ganglion axons to the nucleus of the optic tract (NOT), a part of the accessory optic system involved in the optokinetic response to visual motion. The NOT in pigmented rodents is preferentially responsive to ipsiversive motion (i.e., motion in the contralateral visual field in the temporonasal direction). We compared the response to visual motion in the NOT of albino and pigmented mice to understand if motion coding and preference are impaired in the NOT of albino mice. Methods We recorded neuronal spiking activity with Neuropixels probes in the visual cortex and NOT in C57BL/6JRj mice (pigmented) and DBA/1JRj mice with oculocutaneous albinism (albino). Results We found that in pigmented mice, NOT is retinotopically organized, and neurons are direction tuned, whereas in albino mice, neuronal tuning is severely impaired. Neurons in the NOT of albino mice do not have a preference for ipsiversive movement. In contrast, neuronal tuning in visual cortex was preserved in albino mice and did not differ significantly from the tuning in pigmented mice. Conclusions We propose that excessive interhemispheric crossing of retinal projections in albinos may cause the disrupted left/right direction encoding we found in NOT. This, in turn, impairs the normal horizontal optokinetic reflex and leads to pendular albino nystagmus.
Collapse
Affiliation(s)
- Jorrit S. Montijn
- Department of Circuits, Structure & Function, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valentina Riguccini
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Christiaan N. Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands
| | - J. Alexander Heimel
- Department of Circuits, Structure & Function, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
17
|
de Vries SEJ, Siegle JH, Koch C. Sharing neurophysiology data from the Allen Brain Observatory. eLife 2023; 12:e85550. [PMID: 37432073 PMCID: PMC10335829 DOI: 10.7554/elife.85550] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Nullius in verba ('trust no one'), chosen as the motto of the Royal Society in 1660, implies that independently verifiable observations-rather than authoritative claims-are a defining feature of empirical science. As the complexity of modern scientific instrumentation has made exact replications prohibitive, sharing data is now essential for ensuring the trustworthiness of one's findings. While embraced in spirit by many, in practice open data sharing remains the exception in contemporary systems neuroscience. Here, we take stock of the Allen Brain Observatory, an effort to share data and metadata associated with surveys of neuronal activity in the visual system of laboratory mice. Data from these surveys have been used to produce new discoveries, to validate computational algorithms, and as a benchmark for comparison with other data, resulting in over 100 publications and preprints to date. We distill some of the lessons learned about open surveys and data reuse, including remaining barriers to data sharing and what might be done to address these.
Collapse
|
18
|
Schneider M, Tzanou A, Uran C, Vinck M. Cell-type-specific propagation of visual flicker. Cell Rep 2023; 42:112492. [PMID: 37195864 PMCID: PMC7617239 DOI: 10.1016/j.celrep.2023.112492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Rhythmic flicker stimulation has gained interest as a treatment for neurodegenerative diseases and as a method for frequency tagging neural activity. Yet, little is known about the way in which flicker-induced synchronization propagates across cortical levels and impacts different cell types. Here, we use Neuropixels to record from the lateral geniculate nucleus (LGN), the primary visual cortex (V1), and CA1 in mice while presenting visual flicker stimuli. LGN neurons show strong phase locking up to 40 Hz, whereas phase locking is substantially weaker in V1 and is absent in CA1. Laminar analyses reveal an attenuation of phase locking at 40 Hz for each processing stage. Gamma-rhythmic flicker predominantly entrains fast-spiking interneurons. Optotagging experiments show that these neurons correspond to either parvalbumin (PV+) or narrow-waveform somatostatin (Sst+) neurons. A computational model can explain the observed differences based on the neurons' capacitative low-pass filtering properties. In summary, the propagation of synchronized activity and its effect on distinct cell types strongly depend on its frequency.
Collapse
Affiliation(s)
- Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| | - Athanasia Tzanou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Peysakhovich B, Tetrick SM, Silva AA, Li S, Zhu O, Ibos G, Johnston WJ, Freedman DJ. Primate superior colliculus is engaged in abstract higher-order cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524416. [PMID: 36711713 PMCID: PMC9882166 DOI: 10.1101/2023.01.17.524416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Categorization is a fundamental cognitive process by which the brain assigns stimuli to behaviorally meaningful groups. Investigations of visual categorization in primates have identified a hierarchy of cortical areas that are involved in the transformation of sensory information into abstract category representations. However, categorization behaviors are ubiquitous across diverse animal species, even those without a neocortex, motivating the possibility that subcortical regions may contribute to abstract cognition in primates. One candidate structure is the superior colliculus (SC), an evolutionarily conserved midbrain region that, although traditionally thought to mediate only reflexive spatial orienting, is involved in cognitive tasks that require spatial orienting. Here, we reveal a novel role of the primate SC in abstract, higher-order visual cognition. We compared neural activity in the SC and the posterior parietal cortex (PPC), a region previously shown to causally contribute to category decisions, while monkeys performed a visual categorization task in which they report their decisions with a hand movement. The SC exhibits stronger and shorter-latency category encoding than the PPC, and inactivation of the SC markedly impairs monkeys' category decisions. These results extend SC's established role in spatial orienting to abstract, non-spatial cognition.
Collapse
|