1
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
2
|
Viteri JA, Bueschke N, Santin JM, Arnold WD. Age-related increase in the excitability of mouse layer V pyramidal neurons in the primary motor cortex is accompanied by an increased persistent inward current. GeroScience 2025; 47:2199-2222. [PMID: 39472350 PMCID: PMC11979039 DOI: 10.1007/s11357-024-01405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sarcopenia, or pathological age-related loss of muscle strength and mass, contributes to physical function impairment in older adults. While current understanding of sarcopenia is centered mostly on neuromuscular mechanisms, mounting evidence supports that deficits at the level of the primary motor cortex (PMC) play a significant role. Despite the importance of the PMC to initiate movement, understanding of how age affects the excitability of layer V pyramidal neurons (LVPNs) of the PMC is limited. To address this, we used the whole-cell patch clamp technique to measure the excitability of LVPNs of the PMC in young, late adulthood, and old mice. Old LVPNs had increased firing frequency and membrane input resistance, but no differences in action potential kinetics versus young and late adulthood mice. Since changes in the persistent inward current (PIC) are known to contribute to changes in motor neuron excitability, we measured LVPN PICs as a putative contributor to LVPN excitability. The PIC amplitude was increased in old LVPN via increases in Na+ and Ca2+ PICs, in addition to being active across a wider voltage range. Given that LVPN function is integral to initiation of voluntary muscle contraction, altered LVPN excitability likely contributes to age-related impairment of physical function.
Collapse
Affiliation(s)
- Jose A Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Nikolaus Bueschke
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA.
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Yadav G, Vassiliadis P, Dubuc C, Hummel FC, Derosiere G, Duque J. Effect of Extrinsic Reward on Motor Plasticity during Skill Learning. eNeuro 2025; 12:ENEURO.0410-24.2025. [PMID: 40139803 PMCID: PMC11984755 DOI: 10.1523/eneuro.0410-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025] Open
Abstract
Human motor skill acquisition is improved by performance feedback, and coupling such feedback with extrinsic reward (such as money) can enhance skill learning. However, the neurophysiology underlying such behavioral effect is unclear. To bridge this gap, we assessed the effects of reward on multiple forms of motor plasticity during skill learning. Sixty-five healthy participants divided into three groups performed a pinch-grip skill task with sensory feedback only, sensory and reinforcement feedback, or both feedback coupled with an extrinsic monetary reward during skill training. To probe motor plasticity, we applied transcranial magnetic stimulation at rest, on the left primary motor cortex before, at an early-training time point, and after training in the three groups and measured motor-evoked potentials from task-relevant muscle of the right arm. This allowed us to evaluate the amplitude and variability of corticospinal output, GABAergic short-intracortical inhibition, and use-dependent plasticity before training and at two additional time points (early and end training). At the behavioral level, monetary reward accelerated skill learning. In parallel, corticospinal output became less variable early on during training in the presence of extrinsic reward. Interestingly, this effect was particularly pronounced for participants who were more sensitive to reward, as evaluated in an independent questionnaire. Other measures of motor excitability remained comparable across groups. These findings highlight that a mechanism underlying the benefit of reward on motor skill learning is the fine-tuning of early-training resting-state corticospinal variability.
Collapse
Affiliation(s)
- Goldy Yadav
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion 1951, Switzerland
| | - Cecile Dubuc
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva 1202, Switzerland
| | - Gerard Derosiere
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), U1028 UMR5292, Impact Team, Bron F-69500, France
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
4
|
Derosiere G, Shokur S, Vassiliadis P. Reward signals in the motor cortex: from biology to neurotechnology. Nat Commun 2025; 16:1307. [PMID: 39900901 PMCID: PMC11791067 DOI: 10.1038/s41467-024-55016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Over the past decade, research has shown that the primary motor cortex (M1), the brain's main output for movement, also responds to rewards. These reward signals may shape motor output in its final stages, influencing movement invigoration and motor learning. In this Perspective, we highlight the functional roles of M1 reward signals and propose how they could guide advances in neurotechnologies for movement restoration, specifically brain-computer interfaces and non-invasive brain stimulation. Understanding M1 reward signals may open new avenues for enhancing motor control and rehabilitation.
Collapse
Affiliation(s)
- Gerard Derosiere
- Lyon Neuroscience Research Center, Impact team, INSERM U1028 - CNRS UMR5292, Lyon 1 University, Bron, France.
| | - Solaiman Shokur
- Translational Neural Engineering Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sensorimotor Neurotechnology Lab (SNL), The BioRobotics Institute, Health Interdisciplinary Center and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
- MINE Lab, Università Vita-Salute San Raffaele, Milano, Italy
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
| |
Collapse
|
5
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
McFarlan AR, Gomez I, Chou CYC, Alcolado A, Costa RP, Sjöström PJ. The short-term plasticity of VIP interneurons in motor cortex. Front Synaptic Neurosci 2024; 16:1433977. [PMID: 39267890 PMCID: PMC11390561 DOI: 10.3389/fnsyn.2024.1433977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Short-term plasticity is an important feature in the brain for shaping neural dynamics and for information processing. Short-term plasticity is known to depend on many factors including brain region, cortical layer, and cell type. Here we focus on vasoactive-intestinal peptide (VIP) interneurons (INs). VIP INs play a key disinhibitory role in cortical circuits by inhibiting other IN types, including Martinotti cells (MCs) and basket cells (BCs). Despite this prominent role, short-term plasticity at synapses to and from VIP INs is not well described. In this study, we therefore characterized the short-term plasticity at inputs and outputs of genetically targeted VIP INs in mouse motor cortex. To explore inhibitory to inhibitory (I → I) short-term plasticity at layer 2/3 (L2/3) VIP IN outputs onto L5 MCs and BCs, we relied on a combination of whole-cell recording, 2-photon microscopy, and optogenetics, which revealed that VIP IN→MC/BC synapses were consistently short-term depressing. To explore excitatory (E) → I short-term plasticity at inputs to VIP INs, we used extracellular stimulation. Surprisingly, unlike VIP IN outputs, E → VIP IN synapses exhibited heterogeneous short-term dynamics, which we attributed to the target VIP IN cell rather than the input. Computational modeling furthermore linked the diversity in short-term dynamics at VIP IN inputs to a wide variability in probability of release. Taken together, our findings highlight how short-term plasticity at VIP IN inputs and outputs is specific to synapse type. We propose that the broad diversity in short-term plasticity of VIP IN inputs forms a basis to code for a broad range of contrasting signal dynamics.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Isabella Gomez
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | - Rui Ponte Costa
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
7
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Zou J, Hires SA. Inhibitory neurons: VIP neurons expect rewards. Curr Biol 2023; 33:R909-R911. [PMID: 37699349 DOI: 10.1016/j.cub.2023.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Inhibitory neurons which express vasoactive intestinal polypeptide, VIPs, are a small subset of the mammalian cortex but in importance live up to their acronym. New research shows that these critical control knobs of cortical activity are specifically activated by actions taken when rewards are anticipated rather than consummated.
Collapse
Affiliation(s)
- Jing Zou
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Ramamurthy DL, Chen A, Zhou J, Park C, Huang PC, Bharghavan P, Krishna G, Liu J, Casale K, Feldman DE. VIP interneurons in sensory cortex encode sensory and action signals but not direct reward signals. Curr Biol 2023; 33:3398-3408.e7. [PMID: 37499665 PMCID: PMC10528032 DOI: 10.1016/j.cub.2023.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Vasoactive intestinal peptide (VIP) interneurons in sensory cortex modulate sensory responses based on global exploratory behavior and arousal state, but their function during non-exploratory, goal-directed behavior is not well understood. In particular, whether VIP cells are activated by sensory cues, reward-seeking actions, or directly by reinforcement is unclear. We trained mice on a Go/NoGo whisker touch detection task that included a delay period and other features designed to separate sensory-evoked, action-related, and reward-related neural activity. Mice had to lick in response to a whisker stimulus to receive a variable-sized reward. Using two-photon calcium imaging, we measured ΔF/F responses of L2/3 VIP neurons in whisker somatosensory cortex (S1) during behavior. In both expert and novice mice, VIP cells were strongly activated by whisker stimuli and goal-directed actions (licking), but not by reinforcement. VIP cells showed somatotopic whisker tuning that was spatially organized relative to anatomical columns in S1, unlike lick-related signals which were spatially widespread. In expert mice, lick-related VIP responses were suppressed, not enhanced, when a reward was delivered, and the amount of suppression increased with reward size. This reward-related suppression was not seen in novice mice, where reward delivery was not yoked to licking. These results indicate that besides arousal and global state variables, VIP cells are activated by local sensory features and goal-directed actions, but not directly by reinforcement. Instead, our results are consistent with a role for VIP cells in encoding the expectation of reward associated with motor actions.
Collapse
Affiliation(s)
- Deepa L Ramamurthy
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA.
| | - Andrew Chen
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Jiayu Zhou
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Chanbin Park
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Patrick C Huang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Priyanka Bharghavan
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Gayathri Krishna
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Jinjian Liu
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Kayla Casale
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
11
|
Si YG, Su WX, Chen XD, Li ZY, Yan B, Zhang JY. Emerging V1 neuronal ensembles with enhanced connectivity after associative learning. Front Neurosci 2023; 17:1176253. [PMID: 37456996 PMCID: PMC10346858 DOI: 10.3389/fnins.2023.1176253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The visual stimulus-specific responses in the primary visual cortex (V1) undergo plastic changes after associative learning. During the learning process, neuronal ensembles, defined as groups of coactive neurons, are well known to be related to learning and memory. However, it remains unclear what effect learning has on ensembles, and which neuronal subgroups within those ensembles play a key role in associative learning. Methods We used two-photon calcium imaging in mice to record the activity of V1 neurons before and after fear conditioning associated with a visual cue (blue light). We first defined neuronal ensembles by thresholding their functional connectivity in response to blue (conditioned) or green (control) light. We defined neurons that existed both before and after conditioning as stable neurons. Neurons which were recruited after conditioning were defined as new neurons. The graph theory-based analysis was performed to quantify the changes in connectivity within ensembles after conditioning. Results A significant enhancement in the connectivity strength (the average correlation with other neurons) was observed in the blue ensembles after conditioning. We found that stable neurons within the blue ensembles showed a significantly smaller clustering coefficient (the value represented the degree of interconnectedness among a node's neighbors) after conditioning than they were before conditioning. Additionally, new neurons within the blue ensembles had a larger clustering coefficient, similar relative degree (the value represented the number of functional connections between neurons) and connectivity strength compared to stable neurons in the same ensembles. Discussion Overall, our results demonstrated that the plastic changes caused by conditioning occurred in subgroups of neurons in the ensembles. Moreover, new neurons from conditioned ensembles may play a crucial role in memory formation, as they exhibited not only similar connection competence in relative degree and connectivity strength as stable neurons, but also showed a significantly larger clustering coefficient compared to the stable neurons within the same ensembles after conditioning.
Collapse
Affiliation(s)
- Yue-Guang Si
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Wen-Xin Su
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Xing-Dong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ze-Yu Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jia-Yi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Lee C, Côté SL, Raman N, Chaudhary H, Mercado BC, Chen SX. Whole-brain mapping of long-range inputs to the VIP-expressing inhibitory neurons in the primary motor cortex. Front Neural Circuits 2023; 17:1093066. [PMID: 37275468 PMCID: PMC10237295 DOI: 10.3389/fncir.2023.1093066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The primary motor cortex (MOp) is an important site for motor skill learning. Interestingly, neurons in MOp possess reward-related activity, presumably to facilitate reward-based motor learning. While pyramidal neurons (PNs) and different subtypes of GABAergic inhibitory interneurons (INs) in MOp all undergo cell-type specific plastic changes during motor learning, the vasoactive intestinal peptide-expressing inhibitory interneurons (VIP-INs) in MOp have been shown to preferentially respond to reward and play a critical role in the early phases of motor learning by triggering local circuit plasticity. To understand how VIP-INs might integrate various streams of information, such as sensory, pre-motor, and reward-related inputs, to regulate local plasticity in MOp, we performed monosynaptic rabies tracing experiments and employed an automated cell counting pipeline to generate a comprehensive map of brain-wide inputs to VIP-INs in MOp. We then compared this input profile to the brain-wide inputs to somatostatin-expressing inhibitory interneurons (SST-INs) and parvalbumin-expressing inhibitory interneurons (PV-INs) in MOp. We found that while all cell types received major inputs from sensory, motor, and prefrontal cortical regions, as well as from various thalamic nuclei, VIP-INs received more inputs from the orbital frontal cortex (ORB) - a region associated with reinforcement learning and value predictions. Our findings provide insight on how the brain leverages microcircuit motifs by both integrating and partitioning different streams of long-range input to modulate local circuit activity and plasticity.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sandrine L. Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nima Raman
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hritvic Chaudhary
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bryan C. Mercado
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simon X. Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|