1
|
Grossman AS, Mucci NC, Kauffman SJ, Rafi J, Goodrich-Blair H. Bioinformatic discovery of type 11 secretion system (T11SS) cargo across the Proteobacteria. Microb Genom 2025; 11. [PMID: 40397007 DOI: 10.1099/mgen.0.001406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Type 11 secretion systems (T11SS) are broadly distributed amongst Proteobacteria, with more than 3,000 T11SS family outer membrane proteins (OMPs) comprising ten major sequence similarity network clusters. Of these, only seven, all from animal-associated cluster 1, have been experimentally verified as secretins of cargo, including adhesins, haemophores and metal-binding proteins. To identify novel cargo of a more diverse set of T11SS, we identified gene families co-occurring in gene neighbourhoods with either cluster 1 or marine microbe-associated cluster 3 T11SS OMP genes. We developed bioinformatic controls to ensure that perceived co-occurrences are specific to T11SS, and not general to OMPs. We found that both cluster 1 and cluster 3 T11SS OMPs frequently co-occur with single-carbon metabolism and nucleotide synthesis pathways, but that only cluster 1 T11SS OMPs had significant co-occurrence with metal and haem pathways, as well as with mobile genetic islands, potentially indicating the diversified function of this cluster. Cluster 1 T11SS co-occurrences included 2,556 predicted cargo proteins, unified by the presence of a C-terminal β-barrel domain, which fall into 141 predicted UniRef50 clusters and approximately ten different architectures: four similar to known cargo and six uncharacterized types. We experimentally demonstrate T11SS-dependent secretion of an uncharacterized cargo type with homology to plasmin-sensitive protein. Unexpectedly, genes encoding marine cluster 3 T11SS OMPs only rarely co-occurred with the C-terminal β-barrel domain and instead frequently co-occurred with DUF1194-containing genes. Overall, our results show that with sufficiently large-scale and controlled genomic data, T11SS-dependent cargo proteins can be accurately predicted.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
- Present address: The ADA Forsyth Institute, 100 Chestnut St, Somerville, MA 02143, USA
| | - Nicholas C Mucci
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Sarah J Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Jahirul Rafi
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
2
|
Grossman AS, Gell DA, Wu DG, Carper DL, Hettich RL, Goodrich-Blair H. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. J Bacteriol 2024; 206:e0044423. [PMID: 38506530 PMCID: PMC11332152 DOI: 10.1128/jb.00444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Derek G. Wu
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dana L. Carper
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Shin HE, Pan C, Curran DM, Bateman TJ, Chong DHY, Ng D, Shah M, Moraes TF. Prevalence of Slam-dependent hemophilins in Gram-negative bacteria. J Bacteriol 2024; 206:e0002724. [PMID: 38814789 PMCID: PMC11332172 DOI: 10.1128/jb.00027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.
Collapse
Affiliation(s)
- Hyejin Esther Shin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M. Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
6
|
Islam ST, Jolivet NY, Cuzin C, Belgrave AM, My L, Fleuchot B, Faure LM, Mahanta U, Kezzo AA, Saïdi F, Sharma G, Fiche JB, Bratton BP, Herrou J, Nollmann M, Shaevitz JW, Durand E, Mignot T. Unmasking of the von Willebrand A-domain surface adhesin CglB at bacterial focal adhesions mediates myxobacterial gliding motility. SCIENCE ADVANCES 2023; 9:eabq0619. [PMID: 36812310 PMCID: PMC9946355 DOI: 10.1126/sciadv.abq0619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM β barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.
Collapse
Affiliation(s)
- Salim T. Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Nicolas Y. Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Clémence Cuzin
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Akeisha M. Belgrave
- Integrated Sciences Program, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Laetitia My
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Betty Fleuchot
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Laura M. Faure
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru-560100, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana-502284, India
| | - Ahmad A. Kezzo
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Laval, QC G1V 0A6, Canada
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru-560100, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana-502284, India
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, 34090 Montpellier, France
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN 37232, USA
| | - Julien Herrou
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, 34090 Montpellier, France
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Eric Durand
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS - Université Aix-Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|