1
|
Henriques PM, Almeida GG, Rimkute I, dos Santos LI, Liechti T, Marino AP, do Vale INPC, Vasconcelos‐Santos DV, Martins‐Filho OA, Gazzinelli RT, Roederer M, Sher A, Teixeira‐Carvalho A, Jankovic D, Antonelli LRDV. Cytotoxic Signature and IFN-γ Production Dominate CD4 + T-Cell Response During Human Toxoplasmosis. Immunology 2025; 175:151-164. [PMID: 40035468 PMCID: PMC12052435 DOI: 10.1111/imm.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Toxoplasma gondii is a highly versatile parasite that infects most warm-blooded animals and is a major cause of retinochoroiditis and uveitis in humans. The pathophysiology of these conditions remains poorly understood. Both parasite virulence and host inflammatory response contribute to the development of ocular disease. While CD4+ T cells play a critical role in host resistance to Toxoplasma infection, their kinetics and effector functions, as well as their contribution to the clinical outcome of the infection, including ocular involvement, remain poorly understood. To address this question, we investigated the immune response during acute and convalescent toxoplasmosis and stratified patients further based on the presence or absence of ocular disease. We found that T. gondii infection leads to decreased and increased proportions of central and effector memory CD4+ T cells, respectively. Applying unsupervised analysis, distinct CD4+ T-cell subsets were determined. Among 50 clusters, 10 produced cytotoxic proteins (granzyme B and perforin) and one produced cytokines upon antigen-specific stimulation. We observed that proportions of five CD4+ T-cell clusters out of 50 were different during acute disease between T. gondii-infected patients with and without ocular lesions. Interestingly, three of the five displayed a cytotoxic signature indicating their possible involvement in ocular immunopathology. Taken together, our results reveal that during T. gondii infection, CD4+ T cells not only develop a Th1 cytokine profile, but also acquire previously unappreciated cytotoxic capacity/function. These results, while underscoring the complexity of the CD4+ T-cell response to T. gondii, suggest that specific subsets may be involved in the development of pathology and provide possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Priscilla Miranda Henriques
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | - Gregório Guilherme Almeida
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | - Inga Rimkute
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Luara Isabela dos Santos
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
- Department of Basic Science, Faculty of Medical Sciences of Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Thomas Liechti
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ana Paula Marino
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | | | - Daniel Vitor Vasconcelos‐Santos
- Department of Ophthalmology and Otorhinolaryngology, Faculty of MedicineFederal University of Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Olindo Assis Martins‐Filho
- Integrated Research Group in Biomarkers, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | - Ricardo Tostes Gazzinelli
- Laboratory of Immunopathology, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Andréa Teixeira‐Carvalho
- Integrated Research Group in Biomarkers, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Lis Ribeiro do Valle Antonelli
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou InstituteOswaldo Cruz Foundation‐FIOCRUZBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
2
|
Reinhold-Larsson NV, Starnbach MN. Type I IFNs contribute to upregulation of PD-L1 during Chlamydia trachomatis infection. Infect Immun 2025; 93:e0004025. [PMID: 40071913 PMCID: PMC11977314 DOI: 10.1128/iai.00040-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that if left untreated can cause reproductive harm. Failure of natural adaptive immunity results in chronic and repeat infections. In efforts to understand the failure of adaptive immunity, we have previously discovered that CD8+ T cells, normally integral for controlling intracellular pathogen infections, are misprogrammed by PD-1/PD-L1 signaling during in vivo C. trachomatis infection and fail to mount a protective response. Seeking to uncover the pathways and host factors involved in PD-L1 upregulation that may lead to CD8+ T-cell inhibition, we discovered that C. trachomatis triggers the secretion of host type I interferons (IFNs) that are necessary and sufficient to upregulate PD-L1 in vitro. Additionally, secretion of type I IFNs is dependent on C. trachomatis development and its type III secretion system. We have also validated that type I IFNs contribute to upregulation of PD-L1 during C. trachomatis infection in vivo using a mouse model of infection. Overall, these findings reveal that C. trachomatis induction of this host pathway may contribute to adaptive immune evasion.
Collapse
|
3
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat Commun 2025; 16:2636. [PMID: 40097414 PMCID: PMC11914476 DOI: 10.1038/s41467-025-57819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA.
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634376. [PMID: 39896548 PMCID: PMC11785196 DOI: 10.1101/2025.01.22.634376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Pereira SH, Alves FP, Teixeira SMR. Animal Trypanosomiasis: Challenges and Prospects for New Vaccination Strategies. Microorganisms 2024; 12:2575. [PMID: 39770779 PMCID: PMC11678697 DOI: 10.3390/microorganisms12122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Animal trypanosomiasis, such as nagana, surra, and dourine, represent a significant challenge to animal health and economic development, especially in tropical and subtropical regions where livestock production is an essential component of a country's economy. Despite advances in the control of human trypanosomiasis, animal diseases caused by several species of trypanosomes remain neglected. The lack of funding for the development of new treatments and vaccines contributes to sustaining the severe economic impacts these diseases have on the farming industry, especially in low-income rural areas. Recent advances in the understanding of the immune processes involved during infection have been essential for the development of new approaches towards disease control including vaccines. These new approaches must be part of integrated control programs, which must also include vector management and the awareness of good veterinary practices. Addressing the challenges posed by the control of animal trypanosomiasis requires collaborative and continuous efforts shared among scientists, governments, and the farming industry, if significant progress is to be made to mitigate the impact of these diseases. In this literature review, we discuss the main challenges for the development of vaccines for animal trypanosomiasis and the research underway, including the prospects for employing new vaccine platforms, such as an mRNA vaccine, vector-based vaccine, and CRISPR-attenuated parasite vaccine.
Collapse
Affiliation(s)
- Samille Henriques Pereira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
| | - Felipe Paladino Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, MG, Brazil
| |
Collapse
|
6
|
Covre LP, Fantecelle CH, Garcia de Moura R, Oliveira Lopes P, Sarmento IV, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL, da Fonsceca-Martins AM, de Carvalho LP, de Carvalho EM, Mosser DM, Falqueto A, Akbar AN, Gomes DCO. Lesional senescent CD4 + T cells mediate bystander cytolysis and contribute to the skin pathology of human cutaneous leishmaniasis. Front Immunol 2024; 15:1475146. [PMID: 39497830 PMCID: PMC11532160 DOI: 10.3389/fimmu.2024.1475146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4+ granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57. Notably, CD4+ T cells freshly isolated from CL lesions demonstrated remarkable capacity to mediate NL-like bystander cytolysis. Phenotypic analyses revealed that lesional CD4+ T cells are mainly composed of late-differentiated effector (CD27-CD45RA-) and terminally differentiated (senescent) TEMRA (CD27-CD45RA+) subsets. Interestingly, the TEMRA CD4+ T cells exhibited higher expression of granzyme B and CD107a. Collectively, our results provide the first evidence that senescent cytotoxic CD4+ T cells may support the skin pathology of human cutaneous leishmaniasis and, together with our previous findings, support the notion that multiple subsets of cytotoxic senescent cells may be involved in inducing the skin lesions in these patients.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Paola Oliveira Lopes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Debora Decote-Ricardo
- Departamento de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Olivas J, Nogueira C, Helble J, Starnbach MN. Cytotoxic CD4+ T Cells Are Induced during Infection with Chlamydia trachomatis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:328-338. [PMID: 38905023 PMCID: PMC11279525 DOI: 10.4049/jimmunol.2300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.
Collapse
Affiliation(s)
- Joanna Olivas
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Caterina Nogueira
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Helble
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Song J, Li Y, Wu K, Hu Y, Fang L. MyD88 and Its Inhibitors in Cancer: Prospects and Challenges. Biomolecules 2024; 14:562. [PMID: 38785969 PMCID: PMC11118248 DOI: 10.3390/biom14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The interplay between the immune system and cancer underscores the central role of immunotherapy in cancer treatment. In this context, the innate immune system plays a critical role in preventing tumor invasion. Myeloid differentiation factor 88 (MyD88) is crucial for innate immunity, and activation of MyD88 promotes the production of inflammatory cytokines and induces infiltration, polarization, and immune escape of immune cells in the tumor microenvironment. Additionally, abnormal MyD88 signaling induces tumor cell proliferation and metastasis, which are closely associated with poor prognosis. Therefore, MyD88 could serve as a novel tumor biomarker and is a promising target for cancer therapy. Current strategies targeting MyD88 including inhibition of signaling pathways and protein multimerization, have made substantial progress, especially in inflammatory diseases and chronic inflammation-induced cancers. However, the specific role of MyD88 in regulating tumor immunity and tumorigenic mechanisms remains unclear. Therefore, this review describes the involvement of MyD88 in tumor immune escape and disease therapy. In addition, classical and non-classical MyD88 inhibitors were collated to provide insights into potential cancer treatment strategies. Despite several challenges and complexities, targeting MyD88 is a promising avenue for improving cancer treatment and has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiali Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yuying Li
- Ruian People’s Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325000, China;
| | - Ke Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yan Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| |
Collapse
|
9
|
Liu X, Sun Y, Su Y, Gao Y, Zhang T, Wang Q, Zhang X, Zhang D, Sun C, Li J, Li Z, Zhang B. The compensatory role of T cells from lymph nodes in mice with splenectomy. J Cell Mol Med 2024; 28:e18363. [PMID: 38770891 PMCID: PMC11107144 DOI: 10.1111/jcmm.18363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
The spleen is a vital organ for the immune system, while splenectomy may be necessary for various reasons. However, there is limited research on the impact of splenectomy on T cell function in peripheral lymph nodes as a compensatory mechanism in preventing infections. This study aimed to investigate the characteristics and function of CD8+ and CD4+ T cells in different peripheral lymph nodes during viral infection using a well-established splenectomy model. The results revealed that splenectomy caused an increase in CD8+GP33+ T cells in the mesenteric lymph nodes (MLN). Moreover, we demonstrated that splenectomy resulted in an increase of effector KLRG1+ T cells in the MLN. Additionally, the number of CD4+ cytotoxic T cells (CD4 CTLs) was also elevated in the peripheral lymph nodes of mice with splenectomy. Surprisingly, aged mice exhibited a stronger compensatory ability than adult mice, as evidenced by an increase in effector CD8+ T cells in all peripheral lymph nodes. These findings provide compelling evidence that T cells in MLN play a crucial role in protecting individuals with splenectomy against viral infections. The study offers new insights into understanding the changes in the immune system of individuals with splenectomy and highlights the potential compensatory mechanisms involved by T cells in peripheral lymph nodes.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anShaanxiChina
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anShaanxiChina
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Institute of Infection and Immunity, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Institute of Infection and Immunity, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Xiaoran Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Institute of Infection and Immunity, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jun Li
- Department of EmergencyShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Zongfang Li
- National‐Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS‐Shaanxi consortium, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Institute of Infection and Immunity, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
10
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
11
|
Zhang Y, Li S, Chu H, Li J, Lu S, Zheng B. A novel mRNA vaccine, TGGT1_278620 mRNA-LNP, prolongs the survival time in BALB/c mice with acute toxoplasmosis. Microbiol Spectr 2024; 12:e0286623. [PMID: 38038457 PMCID: PMC10783036 DOI: 10.1128/spectrum.02866-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Toxoplasma gondii, an obligate intracellular eukaryotic parasite, can infect about one-third of the world's population. One vaccine, Toxovax, has been developed and licensed commercially; however, it is only used in the sheep industry to reduce the losses caused by congenital toxoplasmosis. Various other vaccine approaches have been explored, including excretory secretion antigen vaccines, subunit vaccines, epitope vaccines, and DNA vaccines. However, current research has not yet developed a safe and effective vaccine for T. gondii. Here, we generated an mRNA vaccine candidate against T. gondii. We investigated the efficacy of vaccination with a novel identified candidate, TGGT1_278620, in a mouse infection model. We screened T. gondii-derived protective antigens at the genome-wide level, combined them with mRNA-lipid nanoparticle vaccine technology against T. gondii, and investigated immune-related factors and mechanisms. Our findings might contribute to developing vaccines for immunizing humans and animals against T. gondii.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hongkun Chu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jing Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Neves EGA, Koh CC, Lucinda PPD, Souza-Silva TG, Medeiros NI, Pantaleão A, Mutarelli A, Gomes JDAS, Silva SDA, Gollob KJ, Nunes MDCP, Dutra WO. Blocking activation of CD4 -CD8 - T cells modulates their cytotoxic potential and decreases the expression of inflammatory and chemotactic receptors. Clin Immunol 2023; 251:109331. [PMID: 37088297 PMCID: PMC10257888 DOI: 10.1016/j.clim.2023.109331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
CD4-CD8- (double negative - DN) T cells represent a small fraction of circulating T lymphocytes but are a major source of pro-inflammatory cytokines in patients with infectious diseases, including chronic Chagas cardiomyopathy (CCC), one of the deadliest cardiopathies known. Chagas disease is caused by an infection with the protozoan parasite Trypanosoma cruzi and can lead to either an asymptomatic form or a high-mortality cardiac disease. While circulating DN T cells represent a major inflammatory cytokine-expressing cell population in Chagas disease, their potential to be recruited to the heart and to perform cytotoxicity has not been determined. Our previous studies showed that blocking DN T cell activation decreases the expression of IFN-gamma, a cytokine involved in the severity of CCC. Here, studying a well-characterized cohort of Chagas patients with CCC or the asymptomatic form of Chagas disease (indeterminate form, IND), we evaluated the expression of cytotoxic molecules, cytokine and chemokine receptors in γδ+ and αβ+ DN T cells by multiparameter flow cytometry, and investigated whether blocking the activation of DN T cells influences the expression of these molecules. We observed that DN T cells from CCC display a higher expression of granzyme A, perforin, inflammatory molecules, and inflammatory chemokine receptors than cells from IND. Messenger RNA coding for these molecules is also upregulated in the heart of CCC patients. Importantly, blocking the activation of DN T cells from CCC modulates their cytotoxic potential and the expression of inflammatory and of chemokine receptors, suggesting that targeting DN T cell activation may be a valid strategy to reduce recruitment to the heart, inflammation, cytotoxicity and, thereby diminish CCC progression and severity.
Collapse
Affiliation(s)
- Eula Graciele Amorim Neves
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Carolina Cattoni Koh
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Pedro Paulo Diniz Lucinda
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Thaiany Goulart Souza-Silva
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Nayara I Medeiros
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Alexandre Pantaleão
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Antônio Mutarelli
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Juliana de Assis Silva Gomes
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Silvana de Araújo Silva
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Kenneth John Gollob
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP 05652-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil
| | - Maria do Carmo Pereira Nunes
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Walderez Ornelas Dutra
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil.
| |
Collapse
|
13
|
Arce-Fonseca M, Gutiérrez-Ocejo RA, Rosales-Encina JL, Aranda-Fraustro A, Cabrera-Mata JJ, Rodríguez-Morales O. Nitazoxanide: A Drug Repositioning Compound with Potential Use in Chagas Disease in a Murine Model. Pharmaceuticals (Basel) 2023; 16:826. [PMID: 37375773 DOI: 10.3390/ph16060826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is the most serious parasitosis in the western hemisphere. Benznidazole and nifurtimox, the only two trypanocidal drugs, are expensive, difficult to obtain, and have severe side effects. Nitazoxanide has shown to be effective against protozoa, bacteria, and viruses. This study aimed to evaluate the nitazoxanide efficacy against the Mexican T. cruzi Ninoa strain in mice. Infected animals were orally treated for 30 days with nitazoxanide (100 mg/kg) or benznidazole (10 mg/kg). The clinical, immunological, and histopathological conditions of the mice were evaluated. Nitazoxanide- or benznidazole-treated mice had longer survival and less parasitemia than those without treatment. Antibody production in the nitazoxanide-treated mice was of the IgG1-type and not of the IgG2-type as in the benznidazole-treated mice. Nitazoxanide-treated mice had significantly high IFN-γ levels compared to the other infected groups. Serious histological damage could be prevented with nitazoxanide treatment compared to without treatment. In conclusion, nitazoxanide decreased parasitemia levels, indirectly induced the production of IgG antibodies, and partially prevented histopathological damage; however, it did not show therapeutic superiority compared to benznidazole in any of the evaluated aspects. Therefore, the repositioning of nitazoxanide as an alternative treatment against ChD could be considered, since it did not trigger adverse effects that worsened the pathological condition of the infected mice.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo Andrés Gutiérrez-Ocejo
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Insituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Juan José Cabrera-Mata
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
14
|
Oliveira AC, Vicentino ARR, Andrade D, Pereira IR, Saboia-Vahia L, Moreira ODC, Carvalho-Pinto CE, Mota JBD, Maciel L, Vilar-Pereira G, Pesquero JB, Lannes-Vieira J, Sirois P, Campos de Carvalho AC, Scharfstein J. Genetic Ablation and Pharmacological Blockade of Bradykinin B1 Receptor Unveiled a Detrimental Role for the Kinin System in Chagas Disease Cardiomyopathy. J Clin Med 2023; 12:jcm12082888. [PMID: 37109224 PMCID: PMC10144326 DOI: 10.3390/jcm12082888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.
Collapse
Affiliation(s)
- Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Daniele Andrade
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabela Resende Pereira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Saboia-Vahia
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Otacílio da Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Carla Eponina Carvalho-Pinto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Julia Barbalho da Mota
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Maciel
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias Campus, Rio de Janeiro 21941-902, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antônio Carlos Campos de Carvalho
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bio-Imagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro 21941-902, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
15
|
Chen Z, Zhang M, Liu Y, Chen Z, Wang L, Wang W, Wang J, He M, Shi B, Wang Y. VEGF-A enhances the cytotoxic function of CD4 + cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway. J Transl Med 2023; 21:74. [PMID: 36737819 PMCID: PMC9896805 DOI: 10.1186/s12967-023-03926-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND CD4+ cytotoxic T cells (CD4 CTLs) are CD4+ T cells with major histocompatibility complex-II-restricted cytotoxic function. Under pathologic conditions, CD4 CTLs hasten the development of autoimmune disease or viral infection by enhancing cytotoxicity. However, the regulators of the cytotoxicity of CD4 CTLs are not fully understood. METHODS To explore the potential regulators of the cytotoxicity of CD4 CTLs, bulk RNA and single-cell RNA sequencing (scRNA-seq), enzyme-linked immunosorbent assay, flow cytometry, quantitative PCR, and in-vitro stimulation and inhibition assays were performed. RESULTS In this study, we found that VEGF-A promoted the cytotoxicity of CD4 CTLs through scRNA-seq and flow cytometry. Regarding the specific VEGF receptor (R) involved, VEGF-R1/R2 signaling was activated in CD4 CTLs with increased cytotoxicity, and the VEGF-A effects were inhibited when anti-VEGF-R1/R2 neutralizing antibodies were applied. Mechanistically, VEGF-A treatment activated the AKT/mTOR pathway in CD4 CTLs, and the increases of cytotoxic molecules induced by VEGF-A were significantly reduced when the AKT/mTOR pathway was inhibited. CONCLUSION In conclusion, VEGF-A enhances the cytotoxicity of CD4 CTLs through the VEGF-R1/VEGF-R2/AKT/mTOR pathway, providing insights for the development of novel treatments for disorders associated with CD4 CTLs.
Collapse
Affiliation(s)
- Ziyi Chen
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Zhang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- grid.452452.00000 0004 1757 9282Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ling Wang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenjuan Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jincheng Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingqian He
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China. .,Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Almeida GG, Rimkute I, do Vale INPC, Liechti T, Henriques PM, Roffe E, de Araújo FF, da Costa Rocha MO, Santos SME, Martins-Filho OA, Jankovic D, Sher A, Teixeira-Carvalho A, Roederer M, do Valle Antonelli LR. Chagasic cardiomyopathy is marked by a unique signature of activated CD4 + T cells. J Transl Med 2022; 20:551. [PMID: 36447264 PMCID: PMC9708147 DOI: 10.1186/s12967-022-03761-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Chagas disease is a neglected tropical disease in Latin America and an imported emerging disease worldwide. Chronic Chagas disease cardiomyopathy (CCC) is the most prominent clinical form and can lead to heart failure, thromboembolism, and sudden death. While previous reports have supported a role for CD4+ T lymphocytes in the pathogenesis of CCC a comprehensive analysis of these cells during different clinical forms is lacking. Here, we used high-dimensional flow cytometry to assess the diversity of circulating CD4+ T cells in patients with distinct clinical forms. We found increased frequencies of CD4+CD69+ T cells in patients compared to controls. CD39+ regulatory T cells, represented by mesocluster 6 were reduced in mild CCC patients compared to controls. Cytotoxic CD4+ T cells co-expressing granzyme B and perforin were expanded in patients with Chagas disease and were higher in patients with mild CCC compared to controls. Furthermore, patients with mild CCC displayed higher frequencies of multifunctional effector memory CD4+ T cells. Our results demonstrate an expansion in activated CD4+ T cells and a decrease in a functional subset of regulatory T cells associated with the onset of Chagas cardiomyopathy, suggesting their role in the establishment of cardiac lesions and as potential biomarkers for disease aggravation.
Collapse
Affiliation(s)
- Gregório Guilherme Almeida
- grid.418068.30000 0001 0723 0931Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Minas Gerais Belo Horizonte, Brazil
| | - Inga Rimkute
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Isabela Natália Pascoal Campos do Vale
- grid.418068.30000 0001 0723 0931Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Minas Gerais Belo Horizonte, Brazil
| | - Thomas Liechti
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Priscilla Miranda Henriques
- grid.418068.30000 0001 0723 0931Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Minas Gerais Belo Horizonte, Brazil
| | - Ester Roffe
- grid.94365.3d0000 0001 2297 5165Laboratory of Molecular Immunology, Molecular Signaling Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Fernanda Fortes de Araújo
- grid.418068.30000 0001 0723 0931Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais Brasil
| | - Manoel Otávio da Costa Rocha
- grid.8430.f0000 0001 2181 4888Departamento de Clínica Médica, Curso de Pós-Graduação em Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Silvana Maria Elói Santos
- grid.8430.f0000 0001 2181 4888Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- grid.418068.30000 0001 0723 0931Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais Brasil
| | - Dragana Jankovic
- grid.94365.3d0000 0001 2297 5165Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Alan Sher
- grid.94365.3d0000 0001 2297 5165Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Andrea Teixeira-Carvalho
- grid.418068.30000 0001 0723 0931Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais Brasil
| | - Mario Roederer
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Lis Ribeiro do Valle Antonelli
- grid.418068.30000 0001 0723 0931Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|