1
|
Freire CG, Marques J, Bassi das Neves G, Moreira RS, Miletti LC. PCR-based diagnosis of Surra using a newly identified conserved region of the variant surface glycoprotein (VSG) gene. Acta Trop 2025; 265:107618. [PMID: 40250577 DOI: 10.1016/j.actatropica.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Trypanosoma evansi, the causative agent of Surra, is the most widespread pathogenic trypanosome that parasitizes the widest variety of mammals worldwide; however, rapid and easily accessible diagnostics still need to be improved. Proteomic research identified the VSG (Variant Surface Glycoprotein) TevSTIB805.3.100 gene as a potential biomarker for T. evansi diagnosis. The aim of this study was to design primers (called Tev3.100) for the gene encoding this VSG, testing the specificity and sensitivity of these primers on genomic DNA (gDNA) from different species and on biological samples. The specificity of primers was tested against gDNA from T. evansi, T. brucei, T. equiperdum, T. rangeli, T. cruzi, T. vivax, Babesia bovis, B. bigemina, and Anaplasma sp. Seventy-one biological samples from Lageana Creole cattle DNA were used, testing the sensitivity, specificity and concordance in relation to RoTat 1.2 primers. The Tev3.100 primers were able to produce amplicons with a single band of approximately 1800 bp for gDNA from T. evansi, but showed cross-reactions with T. brucei, and T. equiperdum, diverging from the in silico predictions. These primers indicated high sensitivity (98.28 %) and specificity (84.62 %) in the detection of biological samples from Lageano Creole cattle, in addition to high concordance values (κ: 0.854; SE: 0.082; 95 % CI: 0.695-1.000) in relation to RoTat primers results. The Tev3.100 primers are a new molecular tool with good sensitivity and specificity for Surra infections, but the cross-reactions with T. equiperdum, diverging from the databases, indicate that new genomic studies should be carried out for these species in Latin America.
Collapse
Affiliation(s)
- Cassio Geremia Freire
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Julia Marques
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Gabriella Bassi das Neves
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Renato Simões Moreira
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil; Instituto Federal de Santa Catarina (IFSC), Campus Lages, R. Heitor Villa Lobos, 222, São Francisco, Lages, SC, 88506-400, Brazil; Laboratório de Bioinformática, Universidade Federal de Santa Catarina (UFSC), Campus João David Ferreira Lima. Setor F, Bloco G, Sala G809. Trindade, Florianópolis, SC, 88040-970, Brazil
| | - Luiz Claudio Miletti
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
2
|
Markowitz LM, Nearman A, Zhao Z, Boncristiani D, Butenko A, de Pablos LM, Marin A, Xu G, Machado CA, Schwarz RS, Palmer-Young EC, Evans JD. Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim. G3 (BETHESDA, MD.) 2025; 15:jkae258. [PMID: 39501754 PMCID: PMC11708234 DOI: 10.1093/g3journal/jkae258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provided evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.
Collapse
Affiliation(s)
- Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Anthony Nearman
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Zexuan Zhao
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Dawn Boncristiani
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Anzhelika Butenko
- Czech Academy of Sciences, Institute of Parasitology, České Budějovice 370 05, Czech Republic
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Luis Miguel de Pablos
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada 18071, Spain
- Institute of Biotechnology, University of Granada, Granada 18071, Spain
| | - Arturo Marin
- Omics Bioinformatics S.L., Calle Senderos 2, Bajo, Granada 18005, Spain
| | - Guang Xu
- Department of Microbiology, University of Massachusetts, Fernald Hall, Amherst MA 01003, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA
| | - Evan C Palmer-Young
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Reis-Cunha JL, Jeffares DC. Detecting complex infections in trypanosomatids using whole genome sequencing. BMC Genomics 2024; 25:1011. [PMID: 39472783 PMCID: PMC11520695 DOI: 10.1186/s12864-024-10862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Trypanosomatid parasites are a group of protozoans that cause devastating diseases that disproportionately affect developing countries. These protozoans have developed several mechanisms for adaptation to survive in the mammalian host, such as extensive expansion of multigene families enrolled in host-parasite interaction, adaptation to invade and modulate host cells, and the presence of aneuploidy and polyploidy. Two mechanisms might result in "complex" isolates, with more than two haplotypes being present in a single sample: multiplicity of infections (MOI) and polyploidy. We have developed and validated a methodology to identify multiclonal infections and polyploidy using whole genome sequencing reads, based on fluctuations in allelic read depth in heterozygous positions, which can be easily implemented in experiments sequencing genomes from one sample to larger population surveys. RESULTS The methodology estimates the complexity index (CI) of an isolate, and compares real samples with simulated clonal infections at individual and populational level, excluding regions with somy and gene copy number variation. It was primarily validated with simulated MOI and known polyploid isolates respectively from Leishmania and Trypanosoma cruzi. Then, the approach was used to assess the complexity of infection using genome wide SNP data from 497 trypanosomatid samples from four clades, L. donovani/L. infantum, L. braziliensis, T. cruzi and T. brucei providing an overview of multiclonal infection and polyploidy in these cultured parasites. We show that our method robustly detects complex infections in samples with at least 25x coverage, 100 heterozygous SNPs and where 5-10% of the reads correspond to the secondary clone. We find that relatively small proportions (≤ 7%) of cultured trypanosomatid isolates are complex. CONCLUSIONS The method can accurately identify polyploid isolates, and can identify multiclonal infections in scenarios with sufficient genome read coverage. We pack our method in a single R script that requires only a standard variant call format (VCF) file to run ( https://github.com/jaumlrc/Complex-Infections ). Our analyses indicate that multiclonality and polyploidy do occur in all clades, but not very frequently in cultured trypanosomatids. We caution that our estimates are lower bounds due to the limitations of current laboratory and bioinformatic methods.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Daniel Charlton Jeffares
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Bhattacharyya T, Murphy N, Miles MA. Diversity of Chagas disease diagnostic antigens: Successes and limitations. PLoS Negl Trop Dis 2024; 18:e0012512. [PMID: 39352878 PMCID: PMC11444392 DOI: 10.1371/journal.pntd.0012512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a public health issue in endemic regions of the Americas, and is becoming globalised due to migration. In the chronic phase, 2 accordant serological tests are required for diagnosis. In addition to "in-house" assays, commercial tests are available (principally ELISA and rapid diagnostic tests). Herein, we discuss the discovery era of defined T. cruzi serological antigens and their utilisation in commercialised tests. A striking feature is the re-discovery of the same antigens from independent studies, and their overlapping use among commonly reported commercial serological tests. We also consider reports of geographical variation in assay sensitivity and areas for refinement including applications to congenital diagnosis, treatment monitoring, and lineage-specific antigens.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
5
|
Cruz-Saavedra L, Ospina C, Gutiérrez SA, Jaimes-Dueñez J, Cantillo-Barraza O, Hernández C, Álvarez F, Blanco M, Leal B, Martínez L, Medina M, Medina M, Valdivieso S, Ramirez Celis LN, Patiño LH, Ramírez JD. Exploring Trypanosoma cruzi transmission dynamics in an acute Chagas disease outbreak using next-generation sequencing. Parasit Vectors 2024; 17:395. [PMID: 39294719 PMCID: PMC11409604 DOI: 10.1186/s13071-024-06445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Chagas disease (CD), caused by Trypanosoma cruzi, poses a major global public health challenge. Although vector-borne transmission is the primary mode of infection, oral transmission is increasingly concerning. METHODS This study utilized long-amplicon-based sequencing (long-ABS), focusing on the 18S rRNA gene, to explore T. cruzi's genetic diversity and transmission dynamics during an acute CD outbreak in Colombia, an area without domestic infestation. RESULTS Analyzing samples from five patients and five T. cruzi-positive marsupial samples, we identified coinfections between T. cruzi and Trypanosoma rangeli, mixed T. cruzi DTUs, suggesting possible links between human and marsupial T. cruzi infections. Coexistence of TcI, TcIV and T. rangeli suggests marsupial secretions as the possible source of T. cruzi transmission. Our investigation revealed diversity loss in DTUs TcIV and T. rangeli in humans after infection and in marsupial samples after culture. CONCLUSION These findings provide significant insights into T. cruzi dynamics, crucial for implementing control and prevention strategies.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Ospina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Stivenn A Gutiérrez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jeiczon Jaimes-Dueñez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Francisco Álvarez
- Programa de Control de ETV, Secretaría de Salud de Boyacá, Tunja, Colombia
| | - María Blanco
- Secretaría Departamental de Salud de Arauca, Arauca, Colombia
| | - Bernardo Leal
- Programa de Control de ETV, Secretaría de Salud de Boyacá, Tunja, Colombia
| | - Lida Martínez
- Grupo de Vigilancia en Salud Pública, Secretaría de Salud de Boyacá, Tunja, Colombia
| | - Manuel Medina
- Programa de Control de ETV, Secretaría de Salud de Boyacá, Tunja, Colombia
| | - Mabel Medina
- Secretaría Departamental de Salud de Arauca, Arauca, Colombia
| | | | | | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Barnabé C, Brenière SF, Santillán-Guayasamín S, Douzery EJP, Waleckx E. Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105504. [PMID: 37739149 DOI: 10.1016/j.meegid.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Collapse
Affiliation(s)
- Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France.
| | - Simone Frédérique Brenière
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Soledad Santillán-Guayasamín
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
| | - Etienne Waleckx
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C, Orizaba, Mexico.
| |
Collapse
|
7
|
Hakim JMC, Waltmann A, Tinajeros F, Kharabora O, Machaca EM, Calderon M, del Carmen Menduiña M, Wang J, Rueda D, Zimic M, Verástegui M, Juliano JJ, Gilman RH, Mugnier MR, Bowman NM. Amplicon Sequencing Reveals Complex Infection in Infants Congenitally Infected With Trypanosoma Cruzi and Informs the Dynamics of Parasite Transmission. J Infect Dis 2023; 228:769-776. [PMID: 37119236 PMCID: PMC10503952 DOI: 10.1093/infdis/jiad125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Congenital transmission of Trypanosoma cruzi is an important source of new Chagas infections worldwide. The mechanisms of congenital transmission remain poorly understood, but there is evidence that parasite factors are involved. Investigating changes in parasite strain diversity during transmission could provide insight into the parasite factors that influence the process. Here we use amplicon sequencing of a single copy T. cruzi gene to evaluate the diversity of infection in clinical samples from Chagas positive mothers and their infected infants. Several infants and mothers were infected with multiple parasite strains, mostly of the same TcV lineage, and parasite strain diversity was higher in infants than mothers. Two parasite haplotypes were detected exclusively in infant samples, while one haplotype was never found in infants. Together, these data suggest multiple parasites initiate a congenital infection and that parasite factors influence the probability of vertical transmission.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andreea Waltmann
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Oksana Kharabora
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edith Málaga Machaca
- Asociación Benéfica PRISMA, Lima, Peru
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maritza Calderon
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Jeremy Wang
- University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Daniel Rueda
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
| | - Mirko Zimic
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Manuela Verástegui
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
8
|
Cruz-Saavedra L, Caceres T, Ballesteros N, Posada-Forero B, Ramírez JD. Differential expression of meiosis and homologous recombination-related genes in the life cycle of Trypanosoma cruzi. Parasitol Res 2023:10.1007/s00436-023-07850-2. [PMID: 37272974 DOI: 10.1007/s00436-023-07850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
Trypanosoma cruzi has a complex life cycle consisting of four morphological and distinct biological stages. Although some authors suggest that T. cruzi primarily follows clonal reproduction, recent genomic and transcriptomic studies indicate an unorthodox capacity for recombination. We aimed to estimate the differential gene expression of 10 meiosis/homologous recombination-related genes during the T. cruzi life cycle, including epimastigotes, under two different types of stress (oxidative stress and pH changes). We performed RT-qPCR tests using novel-designed primers to estimate the differential gene expression (∆Ct and ∆∆Ct) of nine genes (SPO11, HAP2, RAD50, MRN complex, BRCA2, DMC1, MND1, and RPA1) and RAD51, which was previously reported. Our results show basal expression of all genes during the life cycle, indicating their hypothetical role in several cellular processes but with specific signatures of differential gene expression during the life cycle (HAP2, RPA, RAD50, BRCA2, MND1, and DMC1) and oxidative stress (RPA, MRE11, NBS1, BRCA2, MND1, and RAD51). Additionally, we found that the MRN complex has an independent level of expression in T. cruzi, with profiles of MRE11 and NBS1 upregulated in some stages. Recent studies on other trypanosomatids have highlighted the influence of HAP2 and RPA in recombination and hybridization. If T. cruzi uses the same repertoire of genes, our findings could suggest that metacyclogenesis may be the putative step that the parasite uses to undergo recombination. Likewise, our study reveals the differential profiles of genes expressed in response to oxidative and pH stress. Further studies are necessary to confirm our findings and understand the recombination mechanism in T. cruzi.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Caceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Black JA, Reis-Cunha JL, Cruz AK, Tosi LR. Life in plastic, it's fantastic! How Leishmania exploit genome instability to shape gene expression. Front Cell Infect Microbiol 2023; 13:1102462. [PMID: 36779182 PMCID: PMC9910336 DOI: 10.3389/fcimb.2023.1102462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.
Collapse
Affiliation(s)
- Jennifer A. Black
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,The Wellcome Centre for Integrative Parasitology, School of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| | | | - Angela. K. Cruz
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz. R.O. Tosi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| |
Collapse
|
10
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
11
|
Souza TKMD, Westphalen EVN, Westphalen SDR, Taniguchi HH, Elias CR, Motoie G, Gava R, Pereira-Chioccola VL, Novaes CTG, Carvalho NB, Bocchi EA, Cruz FDDD, Rocha MC, Shinjo SK, Shikanai-Yasuda MA, Ortiz PA, Teixeira MMG, Tolezano JE. Genetic diversity of Trypanosoma cruzi strains isolated from chronic chagasic patients and non-human hosts in the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 2022; 117:e220125. [PMID: 36383785 PMCID: PMC9651066 DOI: 10.1590/0074-02760220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi shows an exuberant genetic diversity. Currently, seven phylogenetic lineages, called discrete typing units (DTUs), are recognised: TcI-TcVI and Tcbat. Despite advances in studies on T. cruzi and its populations, there is no consensus regarding its heterogeneity. OBJECTIVES This study aimed to perform molecular characterisation of T. cruzi strains, isolated in the state of São Paulo, to identify the DTUs involved and evaluate their genetic diversity. METHODS T. cruzi strains were isolated from biological samples of chronic chagasic patients, marsupials and triatomines through culture techniques and subjected to molecular characterisation using the fluorescent fragment length barcoding (FFLB) technique. Subsequently, the results were correlated with complementary information to enable better discrimination between the identified DTUs. FINDINGS It was possible to identify TcI in two humans and two triatomines; TcII/VI in 19 humans, two marsupials and one triatomine; and TcIII in one human host, an individual that also presented a result for TcI, which indicated the possibility of a mixed infection. Regarding the strains characterised by the TcII/VI profile, the correlation with complementary information allowed to suggest that, in general, these parasite populations indeed correspond to the TcII genotype. MAIN CONCLUSIONS The TcII/VI profile, associated with domestic cycles and patients with chronic Chagas disease, was the most prevalent among the identified DTUs. Furthermore, the correlation of the study results with complementary information made it possible to suggest that TcII is the predominant lineage of this work.
Collapse
|