1
|
Alhnaity HM, Shraim AS, Abumsimir B, Hattab D, Ghazzy AM, Abdelhalim M, Abdel Majeed BA, Daoud E, Jarrar Y. Genetic variants in QRICH2 gene among Jordanians with sperm motility disorders. Libyan J Med 2025; 20:2481741. [PMID: 40107860 PMCID: PMC11924270 DOI: 10.1080/19932820.2025.2481741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025] Open
Abstract
Sperm motility, a key determinant of male fertility, is often impaired by genetic variations affecting flagellar formation. The glutamine-rich protein 2 (QRICH2) gene encodes a protein essential for sperm flagella biogenesis and structural integrity. This study investigates genetic variations within exon 3 of the QRICH2 gene, identifying novel heterozygous variants associated with sperm tail-specific abnormalities and motility impairments. Among 34 individuals diagnosed with asthenozoospermia (ASZ) and 26 individuals with normal sperm parameters (NZ) from Jordan, eight unique heterozygous variants (c.123 G>T, c.133 G>C, c.138A>G, c.170A>C, c.189C>G, c.190T>C, c.195A>T, and c.204A>T) were exclusive to the ASZ group, while four variants (c.136 G>A, c.145A>C, c.179T>G, and c.180T>G) were found only in NZ. These variants were absent from major genetic databases, suggesting their potential novelty, while two variants (c.206C>T and c.189C>T) were linked to known SNP cluster IDs rs73996306 and rs1567790525, respectively. Four non-synonymous SNPs (c.136 G>A, c.145A>C, c.170A>C, and c.204A>T) were predicted to be functionally and structurally damaging, underscoring their significance. Additionally, five variants overlapped with previously reported mutation sites, indicating potential mutation hotspots. Statistical analysis revealed a significant association between QRICH2 mutations and tail defects (p < 0.021). These findings highlight the critical role of heterozygous QRICH2 mutations in mild-to-moderate ASZ, even in NZ individuals. Despite some carriers meeting WHO criteria for NZ, notable morphological abnormalities suggest the need for refined diagnostic benchmarks. Screening for QRICH2 mutations is essential for accurate molecular diagnosis and should be integrated into genetic counseling, particularly in regions like Jordan. Further research into the cumulative effects of heterozygous mutations and their environmental interactions is needed to expand our understanding of idiopathic male infertility and to enhance diagnostic and therapeutic strategies for male infertility.
Collapse
Affiliation(s)
- Haneen M. Alhnaity
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ala’a S. Shraim
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Berjas Abumsimir
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Dima Hattab
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Asma M. Ghazzy
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - May Abdelhalim
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Bayan A. Abdel Majeed
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Enas Daoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
2
|
Wanjari UR, Gopalakrishnan AV. Exploring the therapeutic effect of melatonin targeting common biomarkers in testicular germ cell tumor, prostate adenocarcinoma, and male infertility: an integrated biology approach. Mamm Genome 2025:10.1007/s00335-025-10119-x. [PMID: 40056207 DOI: 10.1007/s00335-025-10119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Globally, male infertility (MI) is a major concern. Several other comorbidities related to MI are testicular germ cell tumor (TGCT) and prostate adenocarcinoma (PRAD). This study focuses on finding the common biomarkers among these diseases and their interaction with Melatonin (MLT). The differential expressed genes were retrieved using the GEPIA2 database for TGCT and PRAD, whereas the DISGENET database for MI-related genes. InteractiVenn was performed in response to identify the common genes. The STAG3, RNF212, DDX3Y, DPY19L2, TPCN1, KLK3, GNRH1, DMD, CCDC146, and DNAH1 are found to be involved in all these diseases. The gene ontologies and pathway enrichment analysis were done for these significant genes in response to identifying and accessing the involvement of these genes in other processes. MLT is a neuroendocrine hormone with high therapeutic properties. MLT showed the best binding energy with DDX3Y among all the proteins. Molecular dynamic simulation (MDS) of MLT with DDX3Y was performed and found to be -52.382 ± 13.110 kJ/mol binding energy. The RMSD, RMSF, SASA, RG, H-bond, FEL, PCA, and MM-PBSA analysis confirm the stability and compactness of the DDX3Y-MLT complex. The MDS results indicate that MLT is a promising therapeutic option for enhancing DDX3Y expression, which will support spermatogenesis. Additionally, the hub genes were identified based on MCC parameters from the merged interactive network of common genes in response to finding significant genes that can be a potential biomarker for the diagnosis of diseases.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Muroňová J, Lambert E, Thamwan C, Wehbe Z, Court M, Chevalier G, Escoffier J, Kherraf ZE, Coutton C, Nef S, Ray PF, Loeuillet C, Martinez G, Arnoult C. A comprehensive study of the sperm head defects in MMAF condition and their impact on embryo development in mice. Mol Hum Reprod 2025; 31:gaaf006. [PMID: 40070084 DOI: 10.1093/molehr/gaaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Indexed: 03/30/2025] Open
Abstract
Among rare cases of teratozoospermia, MMAF (multiple morphological abnormalities of the flagellum) syndrome is a complex genetic disorder involving at least 70 different genes. As the name suggests, patients with MMAF syndrome produce spermatozoa with multiple flagellar defects, rendering them immobile and non-fertilizing, leading to complete infertility in affected men. The only viable treatment option is ICSI. What is less understood is the presence of the various types of head defects in the spermatozoa, which are consistently present. Due to the involvement of numerous genes and the limited number of patients with MMAF syndrome, research on head defects and their impact on embryonic development remains insufficiently explored. To address these questions, a comparative study was conducted under controlled experimental conditions using four knockout (KO) mouse lines targeting Cfap43, Cfap44, Armc2, and Ccdc146 genes, all associated with MMAF syndrome in humans and mice. Each KO line underwent a detailed examination of nuclear defects, including morphology, DNA compaction, chromosomal architecture, and ploidy. The study revealed significant heterogeneity among the four lineages, with the extent of defects varying depending on the lineage, ranked as Ccdc146-/- > Cfap43-/- > Armc2-/- ≈ Cfap44-/-. The developmental potential of sperm from males in each lineage was assessed by injecting them into wild-type oocytes, and embryo development was monitored up to the blastocyst stage. Sperm from all KO lines exhibited a marked decrease in supporting embryo development compared to the wild-type, with developmental failure rates ranked as follows: Ccdc146 > Cfap43 > Armc2 > Cfap44-deficient sperm. The degree of developmental failure thus correlated with the severity of nuclear defects, and zygotes produced with sperm from Ccdc146-/- and Cfap43-/- mice showed the highest rates of developmental impairment. These findings from preclinical models highlight the heterogeneous nature of MMAF syndrome, both in terms of sperm nuclear defects and developmental potentials. Genetic characterization in humans is therefore crucial for improving therapeutic counselling in affected individuals.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Chanyuth Thamwan
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zeina Wehbe
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| |
Collapse
|
4
|
Podgrajsek R, Hodzic A, Stimpfel M, Kunej T, Peterlin B. Insight into the complexity of male infertility: a multi-omics review. Syst Biol Reprod Med 2024; 70:73-90. [PMID: 38517373 DOI: 10.1080/19396368.2024.2317804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Male infertility is a reproductive disorder, accounting for 40-50% of infertility. Currently, in about 70% of infertile men, the cause remains unknown. With the introduction of novel omics and advancement in high-throughput technology, potential biomarkers are emerging. The main purpose of our work was to overview different aspects of omics approaches in association with idiopathic male infertility and highlight potential genes, transcripts, non-coding RNA, proteins, and metabolites worth further exploring. Using the Gene Ontology (GO) analysis, we aimed to compare enriched GO terms from each omics approach and determine their overlapping. A PubMed database screening for the literature published between February 2014 and June 2022 was performed using the keywords: male infertility in association with different omics approaches: genomics, epigenomics, transcriptomics, ncRNAomics, proteomics, and metabolomics. A GO enrichment analysis was performed using the Enrichr tool. We retrieved 281 global studies: 171 genomics (DNA level), 21 epigenomics (19 of methylation and two histone residue modifications), 15 transcriptomics, 31 non-coding RNA, 29 proteomics, two protein posttranslational modification, and 19 metabolomics studies. Gene ontology comparison showed that different omics approaches lead to the identification of different molecular factors and that the corresponding GO terms, obtained from different omics approaches, do not overlap to a larger extent. With the integration of novel omics levels into the research of idiopathic causes of male infertility, using multi-omic systems biology approaches, we will be closer to finding the potential biomarkers and consequently becoming aware of the entire spectrum of male infertility, their cause, prognosis, and potential treatment.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alenka Hodzic
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Novo mesto, Novo Mesto, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Monrose M, Holota H, Martinez G, Damon-Soubeyrand C, Thirouard L, Martinot E, Battistelli E, de Haze A, Bravard S, Tamisier C, Caira F, Coutton C, Barbotin AL, Boursier A, Lakhal L, Beaudoin C, Volle DH. Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402082. [PMID: 39318179 DOI: 10.1002/advs.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 09/26/2024]
Abstract
Male sexual function can be disrupted by exposure to exogenous compounds that cause testicular physiological alterations. The constitutive androstane receptor (Car) is a receptor for both endobiotics and xenobiotics involved in detoxification. However, its role in male fertility, particularly in regard to the reprotoxic effects of environmental pollutants, remains unclear. This study aims to investigate the role of the Car signaling pathway in male fertility. In vivo, in vitro, and pharmacological approaches are utilized in wild-type and Car-deficient mouse models. The results indicate that Car inhibition impaired male fertility due to altered sperm quality, specifically histone retention, which is correlated with an increased percentage of dying offspring in utero. The data highlighted interactions among Car, Akt, Foxo1, and histone acetylation. This study demonstrates that Car is crucial in germ cell homeostasis and male fertility. Further research on the Car signaling pathway is necessary to reveal unidentified causes of altered fertility and understand the harmful impact of environmental molecules on male fertility and offspring health.
Collapse
Affiliation(s)
- Mélusine Monrose
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Guillaume Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Christelle Damon-Soubeyrand
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Edwige Battistelli
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Stéphanie Bravard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Christelle Tamisier
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Charles Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Laila Lakhal
- INRAe UMR1331, ToxAlim, University of Toulouse, Toulouse, F-31027, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| |
Collapse
|
6
|
Arora M, Mehta P, Sethi S, Anifandis G, Samara M, Singh R. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 2024; 41:2877-2929. [PMID: 39417902 PMCID: PMC11621285 DOI: 10.1007/s10815-024-03274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia. METHODS We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout. RESULTS Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF). CONCLUSIONS Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.
Collapse
Affiliation(s)
- Manvi Arora
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Mary Samara
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
7
|
Wehbe Z, Barbotin AL, Boursier A, Cazin C, Hograindleur JP, Bidart M, Fontaine E, Plouvier P, Puch F, Satre V, Arnoult C, Mustapha SFB, Zouari R, Thierry-Mieg N, Ray PF, Kherraf ZE, Coutton C, Martinez G. Phenotypic continuum and poor intracytoplasmic sperm injection intracytoplasmic sperm injection prognosis in patients harboring HENMT1 variants. Andrology 2024. [PMID: 39120570 DOI: 10.1111/andr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Small RNAs interacting with PIWI (piRNAs) play a crucial role in regulating transposable elements and translation during spermatogenesis and are essential in male germ cell development. Disruptions in the piRNA pathway typically lead to severe spermatogenic defects and thus male infertility. The HENMT1 gene is a key player in piRNAs primary biogenesis and dysfunction of HENMT1 protein in meiotic and haploid germ cells resulted in the loss of piRNA methylation, piRNA instability, and TE de-repression. Henmt1-knockout mice exhibit a severe oligo-astheno-teratozoospermia (OAT) phenotype, whereas patients with HENMT1 variants display more severe azoospermia phenotypes, ranging from meiotic arrest to hypospermatogenesis. Through whole-exome sequencing (WES) of infertile patient cohorts, we identified two new patients with variants in the HENMT1 gene presenting spermatozoa in their ejcaulate, providing us the opportunity to study spermatozoa from these patients. OBJECTIVES Investigate the spermatozoa of two patients harboring an HENMT1 variant to determine whether or not these scarce spermatozoa could be used with assisted reproductive technologies. MATERIALS AND METHODS HENMT1 variants identified by WES were validated through Sanger sequencing. Comprehensive semen analysis was conducted, and sperm cells were subjected to transmission electron microscopy for structural examination, in situ hybridization for aneuploidy assessment, and aniline blue staining for DNA compaction status. Subsequently, we assessed their suitability for in vitro fertilization using intracytoplasmic sperm injection (IVF-ICSI). RESULTS Our investigations revealed a severe OAT phenotype similar to knockout mice, revealing altered sperm concentration, mobility, morphology, aneuploidy and nuclear compaction defects. Multiple IVF-ICSI attempts were also performed, but no live births were achieved. DISCUSSION We confirm the crucial role of HENMT1 in spermatogenesis and highlight a phenotypic continuum associated with HENMT1 variants. Unfortunately, the clinical outcome of these genetic predispositions remains unfavorable, regardless of the patient's phenotype. CONCLUSION The presence of spermatozoa is insufficient to anticipate ICSI pregnancy success in HENMT1 patients.
Collapse
Affiliation(s)
- Zeina Wehbe
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Marie Bidart
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Grenoble, France
| | - Emeline Fontaine
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | - Pauline Plouvier
- CHU Lille, Service d'Assistance Médicale à la Procréation et Préservation de la Fertilité, Lille, France
| | - Florence Puch
- CHU Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | | | - Raoudha Zouari
- Centre d'Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis, Tunisia
| | | | - Pierre F Ray
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
8
|
Xu Q, Ye M, Su Y, Feng L, Zhou L, Xu J, Wang D. Hypogonadotropic hypogonadism in male tilapia lacking a functional rln3b gene. Int J Biol Macromol 2024; 270:132165. [PMID: 38729472 DOI: 10.1016/j.ijbiomac.2024.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Relaxin 3 is a neuropeptide that plays a crucial role in reproductive functions of mammals. Previous studies have confirmed that rln3a plays an important role in the male reproduction of tilapia. To further understand the significance of its paralogous gene rln3b in male fertility, we generated a homozygous mutant line of rln3b in Nile tilapia. Our findings indicated that rln3b mutation delayed spermatogenesis and led to abnormal testes structure. Knocking out rln3b gene resulted in a decrease in sperm count, sperm motility and male fish fertility. TUNEL detection revealed a small amount of apoptosis in the testes of rln3b-/- male fish at 390 days after hatching (dah). RT-qPCR analysis demonstrated that mutation of rln3b gene caused a significant downregulation of steroid synthesis-related genes such as cyp17a1, cyp11b2, germ cell marker gene, Vasa, and gonadal somatic cell marker genes of amh and amhr2. Furthermore, we found a significant down-regulation of hypothalamic-pituitary-gonadal (HPG) axis-related genes, while a significantly up-regulation of the dopamine synthetase gene in the rln3b-/- male fish. Taken together, our data strongly suggested that Rln3b played a crucial role in the fertility of XY tilapia by regulating HPG axis genes.
Collapse
Affiliation(s)
- Qinglei Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Olszewska M, Malcher A, Stokowy T, Pollock N, Berman AJ, Budkiewicz S, Kamieniczna M, Jackowiak H, Suszynska-Zajczyk J, Jedrzejczak P, Yatsenko AN, Kurpisz M. Effects of Tcte1 knockout on energy chain transportation and spermatogenesis: implications for male infertility. Hum Reprod Open 2024; 2024:hoae020. [PMID: 38650655 PMCID: PMC11035007 DOI: 10.1093/hropen/hoae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
STUDY QUESTION Is the Tcte1 mutation causative for male infertility? SUMMARY ANSWER Our collected data underline the complex and devastating effect of the single-gene mutation on the testicular molecular network, leading to male reproductive failure. WHAT IS KNOWN ALREADY Recent data have revealed mutations in genes related to axonemal dynein arms as causative for morphology and motility abnormalities in spermatozoa of infertile males, including dysplasia of fibrous sheath (DFS) and multiple morphological abnormalities in the sperm flagella (MMAF). The nexin-dynein regulatory complex (N-DRC) coordinates the dynein arm activity and is built from the DRC1-DRC7 proteins. DRC5 (TCTE1), one of the N-DRC elements, has already been reported as a candidate for abnormal sperm flagella beating; however, only in a restricted manner with no clear explanation of respective observations. STUDY DESIGN SIZE DURATION Using the CRISPR/Cas9 genome editing technique, a mouse Tcte1 gene knockout line was created on the basis of the C57Bl/6J strain. The mouse reproductive potential, semen characteristics, testicular gene expression levels, sperm ATP, and testis apoptosis level measurements were then assessed, followed by visualization of N-DRC proteins in sperm, and protein modeling in silico. Also, a pilot genomic sequencing study of samples from human infertile males (n = 248) was applied for screening of TCTE1 variants. PARTICIPANTS/MATERIALS SETTING METHODS To check the reproductive potential of KO mice, adult animals were crossed for delivery of three litters per caged pair, but for no longer than for 6 months, in various combinations of zygosity. All experiments were performed for wild-type (WT, control group), heterozygous Tcte1+/- and homozygous Tcte1-/- male mice. Gross anatomy was performed on testis and epididymis samples, followed by semen analysis. Sequencing of RNA (RNAseq; Illumina) was done for mice testis tissues. STRING interactions were checked for protein-protein interactions, based on changed expression levels of corresponding genes identified in the mouse testis RNAseq experiments. Immunofluorescence in situ staining was performed to detect the N-DRC complex proteins: Tcte1 (Drc5), Drc7, Fbxl13 (Drc6), and Eps8l1 (Drc3) in mouse spermatozoa. To determine the amount of ATP in spermatozoa, the luminescence level was measured. In addition, immunofluorescence in situ staining was performed to check the level of apoptosis via caspase 3 visualization on mouse testis samples. DNA from whole blood samples of infertile males (n = 137 with non-obstructive azoospermia or cryptozoospermia, n = 111 samples with a spectrum of oligoasthenoteratozoospermia, including n = 47 with asthenozoospermia) was extracted to perform genomic sequencing (WGS, WES, or Sanger). Protein prediction modeling of human-identified variants and the exon 3 structure deleted in the mouse knockout was also performed. MAIN RESULTS AND THE ROLE OF CHANCE No progeny at all was found for the homozygous males which were revealed to have oligoasthenoteratozoospermia, while heterozygous animals were fertile but manifested oligozoospermia, suggesting haploinsufficiency. RNA-sequencing of the testicular tissue showed the influence of Tcte1 mutations on the expression pattern of 21 genes responsible for mitochondrial ATP processing or linked with apoptosis or spermatogenesis. In Tcte1-/- males, the protein was revealed in only residual amounts in the sperm head nucleus and was not transported to the sperm flagella, as were other N-DRC components. Decreased ATP levels (2.4-fold lower) were found in the spermatozoa of homozygous mice, together with disturbed tail:midpiece ratios, leading to abnormal sperm tail beating. Casp3-positive signals (indicating apoptosis) were observed in spermatogonia only, at a similar level in all three mouse genotypes. Mutation screening of human infertile males revealed one novel and five ultra-rare heterogeneous variants (predicted as disease-causing) in 6.05% of the patients studied. Protein prediction modeling of identified variants revealed changes in the protein surface charge potential, leading to disruption in helix flexibility or its dynamics, thus suggesting disrupted interactions of TCTE1 with its binding partners located within the axoneme. LARGE SCALE DATA All data generated or analyzed during this study are included in this published article and its supplementary information files. RNAseq data are available in the GEO database (https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE207805. The results described in the publication are based on whole-genome or exome sequencing data which includes sensitive information in the form of patient-specific germline variants. Information regarding such variants must not be shared publicly following European Union legislation, therefore access to raw data that support the findings of this study are available from the corresponding author upon reasonable request. LIMITATIONS REASONS FOR CAUTION In the study, the in vitro fertilization performance of sperm from homozygous male mice was not checked. WIDER IMPLICATIONS OF THE FINDINGS This study contains novel and comprehensive data concerning the role of TCTE1 in male infertility. The TCTE1 gene is the next one that should be added to the 'male infertility list' because of its crucial role in spermatogenesis and proper sperm functioning. STUDY FUNDING/COMPETING INTERESTS This work was supported by National Science Centre in Poland, grants no.: 2015/17/B/NZ2/01157 and 2020/37/B/NZ5/00549 (to M.K.), 2017/26/D/NZ5/00789 (to A.M.), and HD096723, GM127569-03, NIH SAP #4100085736 PA DoH (to A.N.Y.). The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Stokowy
- Scientific Computing Group, IT Division, University of Bergen, Bergen, Norway
| | - Nijole Pollock
- Department of OB/GYN and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sylwia Budkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Hanna Jackowiak
- Department of Histology and Embryology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Alexander N Yatsenko
- Department of OB/GYN and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
11
|
Muroňová J, Kherraf ZE, Giordani E, Lambert E, Eckert S, Cazin C, Amiri-Yekta A, Court M, Chevalier G, Martinez G, Neirijnck Y, Kühne F, Wehrli L, Klena N, Hamel V, De Macedo L, Escoffier J, Guichard P, Coutton C, Mustapha SFB, Kharouf M, Bouin AP, Zouari R, Thierry-Mieg N, Nef S, Geimer S, Loeuillet C, Ray PF, Arnoult C. Lack of CCDC146, a ubiquitous centriole and microtubule-associated protein, leads to non-syndromic male infertility in human and mouse. eLife 2024; 12:RP86845. [PMID: 38441556 PMCID: PMC10942651 DOI: 10.7554/elife.86845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Elsa Giordani
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Simon Eckert
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Caroline Cazin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Amir Amiri-Yekta
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Francoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Nikolai Klena
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Lisa De Macedo
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | | | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Anne-Pacale Bouin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Nicolas Thierry-Mieg
- Laboratoire TIMC/MAGe, CNRS UMR 5525, Pavillon Taillefer, Faculté de MedecineLa TroncheFrance
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Stefan Geimer
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| |
Collapse
|
12
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
13
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
14
|
Cavarocchi E, Sayou C, Lorès P, Cazin C, Stouvenel L, El Khouri E, Coutton C, Kherraf ZE, Patrat C, Govin J, Thierry-Mieg N, Whitfield M, Ray PF, Dulioust E, Touré A. Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans. iScience 2023; 26:107354. [PMID: 37520705 PMCID: PMC10382937 DOI: 10.1016/j.isci.2023.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Sayou
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Patrick Lorès
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Laurence Stouvenel
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | | | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Jérôme Govin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre F. Ray
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
15
|
Kalyta K, Stelmaszczyk W, Szczęśniak D, Kotuła L, Dobosz P, Mroczek M. The Spectrum of the Heterozygous Effect in Biallelic Mendelian Diseases-The Symptomatic Heterozygote Issue. Genes (Basel) 2023; 14:1562. [PMID: 37628614 PMCID: PMC10454578 DOI: 10.3390/genes14081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.
Collapse
Affiliation(s)
- Kateryna Kalyta
- School of Life Sciences, FHNW—University of Applied Sciences, 4132 Muttenz, Switzerland;
| | - Weronika Stelmaszczyk
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Dominika Szczęśniak
- Institute of Psychiatry and Neurology in Warsaw, Genetics Department, 02-957 Warsaw, Poland;
| | - Lidia Kotuła
- Department of Genetics, Medical University, 20-080 Lublin, Poland;
| | - Paula Dobosz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland;
| | - Magdalena Mroczek
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
16
|
Garretson A, Dumont BL, Handel MA. Reproductive genomics of the mouse: implications for human fertility and infertility. Development 2023; 150:dev201313. [PMID: 36779988 PMCID: PMC10836652 DOI: 10.1242/dev.201313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization. As fertility is not a binary trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction. Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity similar to human populations and will be valuable resources for genetic discovery, helping to overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic, informing our concepts of human fertility and infertility, and improving assisted reproductive technologies.
Collapse
Affiliation(s)
- Alexis Garretson
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
17
|
Martinez G. First-line Evaluation of Sperm Parameters in Mice ( Mus musculus ). Bio Protoc 2022; 12:e4529. [PMID: 36353714 PMCID: PMC9606453 DOI: 10.21769/bioprotoc.4529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
Infertility has become a major public health problem, with a male factor involved in about half the cases. Mice are the most widely used animal model in reproductive biology research laboratories, but changes in sperm parameters in mice can be subtle and, in the absence of official guidelines, it is important that analyses are carried out in a strict and reproductive manner. This protocol successively details the different steps required to obtain spermatozoa under good conditions, the measurement of sperm motility using a Computer Assisted Sperm Analysis System (CASA) device, the calculation of sperm concentration in the epididymides using a sperm counting cell, and the examination of sperm morphology. The combination of these assays provides an overview of the basic sperm parameters in mice. This is both a diagnostic and a decision-making tool for researchers to orient their scientific strategy according to the observed abnormalities.
Collapse
Affiliation(s)
- Guillaume Martinez
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
,
Genetic Epigenetic and Therapies of Infertility team, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
,
*For correspondence:
| |
Collapse
|