1
|
Nguyen M, Bauda E, Boyat C, Laguri C, Freton C, Chouquet A, Gallet B, Baudoin M, Wong YS, Grangeasse C, Moriscot C, Durmort C, Zapun A, Morlot C. Teichoic acids in the periplasm and cell envelope of Streptococcus pneumoniae. eLife 2025; 14:RP105132. [PMID: 40265569 PMCID: PMC12017771 DOI: 10.7554/elife.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.
Collapse
Affiliation(s)
- Mai Nguyen
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Célia Boyat
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | | | | | | | | | | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRSLyonFrance
| | - Christine Moriscot
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRSLyonFrance
| | | | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | |
Collapse
|
2
|
Ramos-León F, Ramamurthi KS. How do spherical bacteria regulate cell division? Biochem Soc Trans 2025; 53:BST20240956. [PMID: 40259574 DOI: 10.1042/bst20240956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025]
Abstract
Many bacteria divide by binary fission, producing two identical daughter cells, which requires proper placement of the division machinery at mid-cell. Spherical bacteria (cocci) face unique challenges due to their lack of natural polarity. In this review, we compile current knowledge on how cocci regulate cell division, how they select the proper division plane, and ensure accurate Z-ring positioning at mid-cell. While Streptococcus pneumoniae and Staphylococcus aureus are the most well-studied models for cell division in cocci, we also cover other less-characterized cocci across different bacterial groups and discuss the conservation of known Z-ring positioning mechanisms in these understudied bacteria.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
3
|
García E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the "Suicidal Tendencies" of Streptococcus pneumoniae-A Review. Microorganisms 2025; 13:827. [PMID: 40284663 PMCID: PMC12029793 DOI: 10.3390/microorganisms13040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, vaccine coverage gaps, and antibiotic resistance. This review highlights the role of LytA, a key autolysin (N-acetylmuramoyl-l-alanine amidase), in pneumococcal biology. LytA regulates autolysis, contributes to inflammation, and biofilm formation, and impairs bacterial clearance. It also modulates complement activation, aiding immune evasion. LytA expression is influenced by environmental signals and genetic regulation and is tied to competence for genetic transformation, which is an important virulence trait, particularly in meningitis. With the increase in antibiotic resistance, LytA has emerged as a potential therapeutic target. Current research explores its use in bacteriolytic therapies, vaccine development, and synergistic antibiotic strategies. Various compounds, including synthetic peptides, plant extracts, and small molecules, have been investigated for their ability to trigger LytA-mediated bacterial lysis. Future directions include the development of novel anti-pneumococcal interventions leveraging LytA's properties while overcoming vaccine efficacy and resistance-related challenges. Human challenge models and animal studies continue to deepen our understanding of pneumococcal pathogenesis and potential treatment strategies.
Collapse
Affiliation(s)
- Ernesto García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| |
Collapse
|
4
|
Poncin K, McKeand SA, Lavender H, Kurzyp K, Harrison OB, Roberti A, Melia C, Johnson E, Maiden MCJ, Greaves DR, Exley R, Tang CM. Bacteriocin-like peptides encoded by a horizontally acquired island mediate Neisseria gonorrhoeae autolysis. PLoS Biol 2025; 23:e3003001. [PMID: 39908303 PMCID: PMC11798529 DOI: 10.1371/journal.pbio.3003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes the important sexually transmitted infection, gonorrhoea, an inflammatory condition of the genitourinary tract. The bacterium is closely related to the meningococcus, a leading cause of bacterial meningitis. Both these invasive bacterial species undergo autolysis when in the stationary phase of growth. Autolysis is a form of programmed cell death (PCD) which is part of the life cycle of remarkably few bacteria and poses an evolutionary conundrum as altruistic death provides no obvious benefit for single-celled organisms. Here, we searched for genes present in these 2 invasive species but not in other members of the Neisseria genus. We identified a ~3.4 kb horizontally acquired region, we termed the nap island, which is largely restricted to the gonococcus and meningococcus. The nap island in the gonococcus encodes 3 cationic, bacteriocin-like peptides which have no detectable antimicrobial activity. Instead, the gonococcal Neisseria autolysis peptides (Naps) promote autolytic cell death when bacteria enter the stationary phase of growth. Furthermore, strains lacking the Naps exhibit reduced autolysis in assays of PCD. Expression of Naps is likely to be phase variable, explaining how PCD could have arisen in these important human pathogens. NapC also induces lysis of human cells, so the peptides are likely to have multiple roles during colonisation and disease. The acquisition of the nap island contributed to the emergence of PCD in the gonococcus and meningococcus and potentially to the appearance of invasive disease in Neisseria spp.
Collapse
Affiliation(s)
- Katy Poncin
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Samantha A. McKeand
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Kacper Kurzyp
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Odile B. Harrison
- Infectious Disease Epidemiology Unit, Nuffield Department of Population Health, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Charlotte Melia
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Errin Johnson
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- Department of Biology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - David R. Greaves
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Rachel Exley
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Park S, Jeon WJ, Lee Y, Lim CL, Lee E, Oh HB, Lee GS, Kwon OH, Ryu B, Cho YJ, Kim CS, Yoon SI, Chung JM, Cho H. A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2418854122. [PMID: 39841140 PMCID: PMC11789061 DOI: 10.1073/pnas.2418854122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity. In Escherichia coli, the levels of major DD-endopeptidases, MepS and MepH, along with the lytic transglycosylase MltD, are controlled by the periplasmic protease Prc and its outer membrane adaptor NlpI. However, the mechanisms regulating the turnover of these PG hydrolases have remained unclear. In this study, we identified a periplasmic protein, BipP (formerly YhjJ), that negatively controls the NlpI-Prc system. Further analyses indicate that BipP exerts this control by interacting with NlpI and inhibiting its substrate recognition in response to low DD-endopeptidase activity, providing insight into the homeostatic control of PG hydrolysis and cell wall expansion.
Collapse
Affiliation(s)
- Sohee Park
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Wook-Jong Jeon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yeseul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Chae Lim Lim
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eunyeong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
6
|
Hernández-Ortiz N, Sánchez-Murcia PA, Gil-Campillo C, Domenech M, Lucena-Agell D, Hortigüela R, Velázquez S, Camarasa MJ, Bustamante N, de Castro S, Menéndez M. Design, synthesis and structure-activity relationship (SAR) studies of an unusual class of non-cationic fatty amine-tripeptide conjugates as novel synthetic antimicrobial agents. Front Pharmacol 2024; 15:1428409. [PMID: 39156106 PMCID: PMC11329928 DOI: 10.3389/fphar.2024.1428409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.
Collapse
Affiliation(s)
- Noelia Hernández-Ortiz
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Celia Gil-Campillo
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mirian Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Departamento Genética, Fisiología y Microbiología, Facultad Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María José Camarasa
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Bustamante
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia de Castro
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Brogan AP, Rudner DZ. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. Curr Opin Microbiol 2023; 72:102279. [PMID: 36812681 PMCID: PMC10031507 DOI: 10.1016/j.mib.2023.102279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
Most bacteria are surrounded by a cell wall composed of peptidoglycan (PG) that specifies shape and protects the cell from osmotic rupture. Growth, division, and morphogenesis are intimately linked to the synthesis of this exoskeleton but also its hydrolysis. The enzymes that cleave the PG meshwork require careful control to prevent aberrant hydrolysis and loss of envelope integrity. Bacteria employ diverse mechanisms to control the activity, localization, and abundance of these potentially autolytic enzymes. Here, we discuss four examples of how cells integrate these control mechanisms to finely tune cell wall hydrolysis. We highlight recent advances and exciting avenues for future investigation.
Collapse
Affiliation(s)
- Anna P Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
9
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|