1
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
2
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Stiassny MLJ, Alter SE, Borowsky R, Hendrickson DA, Arcila D, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. Proc Biol Sci 2024; 291:20232847. [PMID: 38864338 DOI: 10.1098/rspb.2023.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Erin Gilbertson
- Department of Epidemiology and Biostatistics, University of San Francisco, University of California, San Francisco, CA, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - S Elizabeth Alter
- Biology and Chemistry Department, California State University Monterey Bay, Chapman Academic Science Center, Seaside, CA, USA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY 10003, USA
| | - Dean A Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, USA
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| |
Collapse
|
3
|
Abcouwer SF, Miglioranza Scavuzzi B, Kish PE, Kong D, Shanmugam S, Le XA, Yao J, Hager H, Zacks DN. The mouse retinal pigment epithelium mounts an innate immune defense response following retinal detachment. J Neuroinflammation 2024; 21:74. [PMID: 38528525 PMCID: PMC10964713 DOI: 10.1186/s12974-024-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Xuan An Le
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| |
Collapse
|
4
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Arcila D, Alter SE, Borowsky R, Hendrickson D, Stiassny M, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571336. [PMID: 38168154 PMCID: PMC10760033 DOI: 10.1101/2023.12.12.571336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Erin Gilbertson
- University of San Francisco, Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Dahiana Arcila
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - S Elizabeth Alter
- California State University Monterey Bay, Biology and Chemistry Department, Chapman Academic Science Center, Seaside, CA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY, 10003, USA
| | - Dean Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, United States
| | - Melanie Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| |
Collapse
|
5
|
Pinto B, Valente R, Caramelo F, Ruivo R, Castro LFC. Decay of Skin-Specific Gene Modules in Pangolins. J Mol Evol 2023:10.1007/s00239-023-10118-z. [PMID: 37249590 DOI: 10.1007/s00239-023-10118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.
Collapse
Affiliation(s)
- Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Filipe Caramelo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, et alKirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Show More Authors] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guo X, Cui Y, Irwin DM, Liu Y. Accelerated evolution of dim-light vision-related arrestin in deep-diving amniotes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1069088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrestins are key molecules involved in the signaling of light-sensation initiated by visual pigments in retinal photoreceptor cells. Vertebrate photoreceptor cells have two types of arrestins, rod arrestin, which is encoded by SAG and is expressed in both rods and cones, and cone arrestin, encoded by ARR3 in cones. The arrestins can bind to visual pigments, and thus regulate either dim-light vision via interactions with rhodopsin or bright-light vision together with cone visual pigments. After adapting to terrestrial life, several amniote lineages independently went back to the sea and evolved deep-diving habits. Interestingly, the rhodopsins in these species exhibit specialized phenotypes responding to rapidly changing dim-light environments. However, little is known about whether their rod arrestin also experienced adaptive evolution associated with rhodopsin. Here, we collected SAG coding sequences from >250 amniote species, and examined changes in selective pressure experienced by the sequences from deep-diving taxa. Divergent patterns of evolution of SAG were observed in the penguin, pinniped and cetacean clades, suggesting possible co-adaptation with rhodopsin. After verifying pseudogenes, the same analyses were performed for cone arrestin (ARR3) in deep-diving species and only sequences from cetacean species, and not pinnipeds or penguins, have experienced changed selection pressure compared to other species. Taken together, this evidence for changes in selective pressures acting upon arrestin genes strengthens the suggestion that rapid dim-light adaptation for deep-diving amniotes require SAG, but not ARR3.
Collapse
|
8
|
Abstract
Comparing the genomes of mammals which evolved to have poor vision identifies an important gene for eyesight.
Collapse
Affiliation(s)
- Tathagata Biswas
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, United States
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|