1
|
Maris E. Internal sensory models allow for balance control using muscle spindle acceleration feedback. Neural Netw 2025; 189:107571. [PMID: 40412019 DOI: 10.1016/j.neunet.2025.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Motor control requires sensory feedback, and the nature of this feedback has implications for the tasks of the central nervous system (CNS): for an approximately linear mechanical system (e.g., a freely standing person, a rider on a bicycle), if the sensory feedback does not contain the state variables (i.e., joint position and velocity), then optimal control actions are based on an internal dynamical system that estimates these states from the available incomplete sensory feedback. Such a computational system can be implemented as a recurrent neural network (RNN), and it uses a sensory model to update the state estimates. This is highly relevant for muscle spindle primary afferents whose firing rates scale with acceleration: if fusimotor and skeletomotor control are perfectly coordinated, these firing rates scale with the exafferent joint acceleration component, and in the absence of fusimotor control, they scale with the total joint acceleration (exafferent plus reafferent). For both scenarios, a sensory model exists that expresses the exafferent joint acceleration as a function of the state variables, and for the second scenario, a sensory model exists that corrects for the reafferent joint acceleration. Simulations of standing and bicycle balance control under realistic conditions show that joint acceleration feedback is sufficient for balance control, but only if the reafferent acceleration component is either absent from the feedback or is corrected for in the computational system.
Collapse
Affiliation(s)
- Eric Maris
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, P.O. Box 9104, HE, Nijmegen, Netherlands.
| |
Collapse
|
2
|
da Silva VA, da Silva RL, Withers JW, Massenz KJV, Orselli MIV, Menegaldo LL, Manffra EF. Neuromusculoskeletal modeling of spasticity: A scoping review. PLoS One 2025; 20:e0320153. [PMID: 40367071 PMCID: PMC12077711 DOI: 10.1371/journal.pone.0320153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION This scoping review aimed to provide an overview of neuromusculoskeletal models used to investigate the mechanisms underlying spasticity and identify issues to be addressed in future models. MATERIALS AND METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines and searched four bibliographic databases (PubMed, Compendex Engineering Village, IEEE Xplore, and Science Direct). Inclusion criteria were original studies written in English that investigated the underlying mechanisms of spasticity in humans with no age restrictions. Two independent reviewers selected studies. RESULTS Eighteen studies met the inclusion criteria. Stroke was the neurological condition addressed by most studies, followed by cerebral palsy. The studies focused mainly on passive tasks with the knee joint as the primary target. All studies considered that spasticity was associated with alterations in the stretch reflex loop. Among the parameters tested by the studies, the reflex gains and thresholds were the parameters that could better represent levels of severity or effects of botulinum toxin type-A treatment. Recent studies proposed that stretching acceleration, muscle force, and force rate could be fed back into the feedback loop besides the muscle length and stretching velocity. However, no consensus was found among them. Finally, it has been that stiffness and viscosity of muscle-tendon-unit are also relevant for describing resistance to passive movement. CONCLUSION In order to provide relevant clinical and physiological information, future modeling should include supraspinal mechanisms in-depth, use image-based data to personalize non-neural parameters, specify models according to etiology and tasks, especially the active tasks of daily life activities.
Collapse
Affiliation(s)
| | - Rafael Lucio da Silva
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Joseana Wendling Withers
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Maria Isabel Veras Orselli
- Department of Biomedical Engineering, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Luciano Luporini Menegaldo
- Biomedical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Phillips DA, Burr B. Muscle length influences active joint position sense at the shoulder, but conditioning contractions do not. Exp Brain Res 2025; 243:113. [PMID: 40227442 DOI: 10.1007/s00221-025-07057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Active shoulder joint position sense (JPS) is more accurate at higher angles of humerothoracic elevation. During active JPS testing, the extensor/antagonist muscles of the shoulder undergo repeated passive lengthening and do not contract to bring about shoulder extension. This may alter muscle spindle sensitivity at different angles of humeral elevation leading to angle related reduction in repositioning error. The purpose of this study is to examine active shoulder JPS when shoulder extensor muscles when were exposed to either a low-level contraction or full range of motion movement in an active angle reproduction JPS protocol. Fifteen participants completed the study. Participants completed the shoulder JPS protocol using three target angles (30°, 60°, and 90°) under three conditions: standard, range of motion exposure (fROM) between trials, and antagonist contraction (aCON) between trials. There was a significant interaction between conditions and angles (p = 0.002). JPS error decreased at higher elevations in the standard condition (p = 0.014) and aCON conditions (p = 0.035). The effect was absent in the fROM condition, where error across all target angles was consistent with the higher error at 30°. The outcomes suggest that change in the antagonist's muscle length and muscle spindle slackness are significant contributors to shoulder JPS.
Collapse
Affiliation(s)
- David Alan Phillips
- Program in Kinesiology, College of Health, Oregon State University-Cascades, 1500 SW Chandler Ave Bend, Bend, OR, 97702 OR, USA.
| | - Bethany Burr
- Program in Kinesiology, College of Health, Oregon State University-Cascades, 1500 SW Chandler Ave Bend, Bend, OR, 97702 OR, USA
| |
Collapse
|
4
|
Torell F, Dimitriou M. Sensorimotor function: Muscle spindle macrophages in the loop. Curr Biol 2025; 35:R180-R182. [PMID: 40068612 DOI: 10.1016/j.cub.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Motor coordination relies on muscle spindles and the stretch reflexes they enable. A new study shows that spindle-resident macrophages can drive sensory signaling and muscle contraction. This implicates immune cells in a process considered the exclusive domain of neuromuscular systems.
Collapse
Affiliation(s)
- Frida Torell
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Michael Dimitriou
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
5
|
Chacon PFS, Hammer M, Wochner I, Walter JR, Schmitt S. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. Comput Methods Biomech Biomed Engin 2025; 28:430-449. [PMID: 38126259 DOI: 10.1080/10255842.2023.2293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The muscle spindle is an essential proprioceptor, significantly involved in sensing limb position and movement. Although biological spindle models exist for years, the gold-standard for motor control in biomechanics are still sensors built of homogenized spindle output models due to their simpler combination with neuro-musculoskeletal models. Aiming to improve biomechanical simulations, this work establishes a more physiological model of the muscle spindle, aligned to the advantage of easy integration into large-scale musculoskeletal models. We implemented four variations of a spindle model in Matlab/Simulink®: the Mileusnic et al. (2006) model, Mileusnic model without mass, our enhanced Hill-type model, and our enhanced Hill-type model with parallel damping element (PDE). Different stretches in the intrafusal fibers were simulated in all model variations following the spindle afferent recorded in previous experiments in feline soleus muscle. Additionally, the enhanced Hill-type models had their parameters extensively optimized to match the experimental conditions, and the resulting model was validated against data from rats' triceps surae muscle. As result, the Mileusnic models present a better overall performance generating the afferent firings compared to the common data evaluated. However, the enhanced Hill-type model with PDE exhibits a more stable performance than the original Mileusnic model, at the same time that presents a well-tuned Hill-type model as muscle spindle fibers, and also accounts for real sarcomere force-length and force-velocity aspects. Finally, our activation dynamics is similar to the one applied to Hill-type model for extrafusal fibers, making our proposed model more easily integrated in multi-body simulations.
Collapse
Affiliation(s)
- Pablo F S Chacon
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Maria Hammer
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Isabell Wochner
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
- Institute of Computer Engineering, University of Heidelberg, Heidelberg, Germany
| | - Johannes R Walter
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Akcora DS, Karacan E, Yapicier O, Sayilar E, Ogut E, Barut C. Evaluation of Muscle Spindle Density and Distribution of Certain Mimic Muscles: A Cadaveric Study. BRATISL MED J 2025; 126:328-336. [DOI: 10.1007/s44411-025-00083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 05/03/2025]
Abstract
Abstract
Background
Muscle spindles (MS) are mechanoreceptors in skeletal muscle tissues that play a crucial role in proprioception and muscle tension regulation. This study aimed to evaluate the density and distribution of MS within cadaver mimic muscles.
Method
Muscle tissues from the buccinator, zygomaticus major, orbicularis oris, and orbicularis oculi were extracted from 16 human cadavers. The samples were subjected to histological staining with hematoxylin–eosin and Masson’s trichrome for a detailed histomorphological assessment of MS. Statistical analyses were performed using paired samples t-tests and Chi-square tests to compare the density and distribution of MS between the left and right sides of the same muscle groups.
Results
There was a significant correlation between muscle mass and MS density. The buccinator muscle exhibited the highest density of MS, while the orbicularis oculi muscle demonstrated the lowest density. Notably, despite similar muscle masses, the orbicularis oris muscle had a higher density of MS compared to the orbicularis oculi muscle.
Conclusions
This study provides evidence of variability in MS density among different mimic muscles, with significant differences observed between muscle types. The findings suggest a potential relationship between muscle function and MS density, which warrants further investigation into the role of MS in muscle function and its implications for movement disorders.
Collapse
|
7
|
Shokri N, Yazdanpanah K, Ashtiani MN. Control Mechanisms of Sensorimotor System on Manipulation of Proprioceptive Inputs During Balance Maintenance. J Mot Behav 2025:1-9. [PMID: 39884666 DOI: 10.1080/00222895.2025.2458503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Proprioceptive inputs have crucial roles in control of the posture. The aim of the present study was to assess the effect of interfering with these signals on postural stability by ice-induced anaesthesia and local calf muscle fatigue. Seventeen healthy young individuals participated in this study to stand quietly and on an unstable platform under normal, anaesthesia, and fatigue conditions. A force platform calculated excursions of centre of pressure. Stabilogram-diffusion analysis was utilised to evaluate how body controls the posture with and without proprioceptive inputs. Time intervals of using the sensory feedback is significantly increased by anaesthesia in quiet standing (430 ms, p = 0.034) to note more delayed use of sensory information in a closed-loop. Additionally, fatigue significantly increased the time intervals of using sensory feedback during standing on the unstable platform (290 ms, p = 0.016). Interestingly, sensory interventions had no effect on the stability of the open-loop control of posture (short-term control), but they significantly influenced the closed-loop control (long-term control) (p < 0.004). Specifically, fatigue led to increased instabilities when the body used sensory inputs during both quiet standing (p = 0.021) and standing on the unstable platform (p = 0.041). These findings highlight the importance of proprioception in balance control for healthy individuals. Interfering with proprioceptive inputs, either through anaesthesia or fatigue, resulted in instabilities during balance maintenance. Our study provides new insights into the mechanisms underlying postural control, emphasising the significance of proprioceptive inputs. Understanding how proprioception affects balance maintenance may have implications for rehabilitation strategies, injury prevention, and the development of interventions to improve postural stability.
Collapse
Affiliation(s)
- Nasim Shokri
- Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
8
|
O’Reilly D, Shaw W, Hilt P, de Castro Aguiar R, Astill SL, Delis I. Quantifying the diverse contributions of hierarchical muscle interactions to motor function. iScience 2025; 28:111613. [PMID: 39834869 PMCID: PMC11742840 DOI: 10.1016/j.isci.2024.111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
The muscle synergy concept suggests that the human motor system is organized into functional modules composed of muscles "working together" toward common task goals. This study offers a nuanced computational perspective to muscle synergies, where muscles interacting across multiple scales have functionally similar, complementary, and independent roles. Making this viewpoint implicit to a methodological approach applying Partial Information Decomposition to large-scale muscle activations, we unveiled nested networks of functionally diverse inter- and intramuscular interactions with distinct functional consequences on task performance. The effectiveness of this approach is demonstrated using simulations and by extracting generalizable muscle networks from benchmark datasets of muscle activity. Specific network components are shown to correlate with (1) balance performance and (2) differences in motor variability between young and older adults. By aligning muscle synergy analysis with leading theoretical insights on movement modularity, the mechanistic insights presented here suggest the proposed methodology offers enhanced research opportunities toward health and engineering applications.
Collapse
Affiliation(s)
- David O’Reilly
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - William Shaw
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Pauline Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences Du Sport, F-21000 Dijon, France
| | | | - Sarah L. Astill
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Zhang L, Schöner G. Estimating descending activation patterns from EMG in fast and slow movements using a model of the stretch reflex. J Neurophysiol 2025; 133:162-176. [PMID: 39641919 DOI: 10.1152/jn.00449.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Due to spinal reflex loops, descending activation from the brain is not the only source of muscle activation that ultimately generates movement. This study directly estimates descending activation patterns from measured patterns of muscle activation (electromyographic; EMG) during human arm movements. A simple model of the spinal stretch reflex is calibrated in a postural unloading task and then used to estimate descending activation patterns from muscle EMG patterns and kinematics during voluntary arm motion performed at different speeds. We observed three key features of the estimated descending activation patterns: 1) Within about the first 15% of movement duration, descending and muscle activations are temporally aligned. Thereafter, they diverge and develop qualitatively different temporal profiles. 2) The time course of descending activation is monotonic for slow movements, nonmonotonic for fast movements. 3) Varying model parameters such as the spinal reflex gain or the level of cocontraction do not qualitatively change the temporal pattern of estimated descending activation. Our findings highlight the substantial contribution of spinal reflex loops to movement generation, while at the same time providing evidence that the brain must generate qualitatively different descending activation patterns for movements that vary in their mechanical dynamics.NEW & NOTEWORTHY We propose a new method that directly estimates descending activation from measured electromyographic (EMG) signals and arm kinematics by inverting a model of the spinal stretch reflex, without the need for muscle models or an arm dynamics model. This approach identifies key features of the time structure of descending activation as movement speed is varied, while also revealing the significant contribution of the spinal stretch reflex to movement generation.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Neural Computation, Ruhr-University, Bochum, Germany
| | - Gregor Schöner
- Institute for Neural Computation, Ruhr-University, Bochum, Germany
| |
Collapse
|
10
|
Senn W, Dold D, Kungl AF, Ellenberger B, Jordan J, Bengio Y, Sacramento J, Petrovici MA. A neuronal least-action principle for real-time learning in cortical circuits. eLife 2024; 12:RP89674. [PMID: 39704647 DOI: 10.7554/elife.89674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
Collapse
Affiliation(s)
- Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Dominik Dold
- Department of Physiology, University of Bern, Bern, Switzerland
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
- European Space Research and Technology Centre, European Space Agency, Noordwijk, Netherlands
| | - Akos F Kungl
- Department of Physiology, University of Bern, Bern, Switzerland
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Benjamin Ellenberger
- Department of Physiology, University of Bern, Bern, Switzerland
- Insel Data Science Center, University Hospital Bern, Bern, Switzerland
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
- Electrical Engineering, Yale University, New Haven, United States
| | | | - João Sacramento
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Mihai A Petrovici
- Department of Physiology, University of Bern, Bern, Switzerland
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Nichols TR. Neuromechanical Circuits of the Spinal Motor Apparatus. Compr Physiol 2024; 14:5789-5838. [PMID: 39699088 DOI: 10.1002/cphy.c240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances. These pathways include both monosynaptic and polysynaptic components. Autogenic, monosynaptic pathways serve to control the spring-like properties of muscles preserving the nonlinear relationship between stiffness and force. Intermuscular monosynaptic pathways compensate for inertial disparities between the inertial properties of limb segments and help to control inertial coupling between joints and axes of rotation. Reciprocal inhibition controls joint stiffness in conjunction with feedforward cocontraction commands. Excitatory force feedback becomes operational during locomotion and increases muscular stiffness to accommodate the higher inertial loads. Inhibitory force feedback is widely distributed among muscles. It is integrated with excitatory pathways from muscle spindles and Golgi tendon organs to determine limb stiffness and interjoint coordination during interactions with the environment. The intermuscular distribution of force feedback is variable and serves to modulate limb stiffness to meet the physical demands of different motor tasks. © 2024 American Physiological Society. Compr Physiol 14:5789-5838, 2024.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Olson WP, Chokshi VB, Kim JJ, Cowan NJ, O'Connor DH. Muscle spindles provide flexible sensory feedback for movement sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612899. [PMID: 39345532 PMCID: PMC11429703 DOI: 10.1101/2024.09.13.612899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sensory feedback is essential for motor performance and must adapt to task demands. Muscle spindle afferents (MSAs) are a major primary source of feedback about movement, and their responses are readily modulated online by gain-controller fusimotor neurons and other mechanisms. They are therefore a powerful site for implementing flexible sensorimotor control. We recorded from MSAs innervating the jaw musculature during performance of a directed lick sequence task. Jaw MSAs encoded complex jaw-tongue kinematics. However, kinematic encoding alone accounted for less than half of MSA spiking variability. MSA coding of kinematics changed based on sequence progression (beginning, middle, or end of the sequence, or reward consumption), suggesting that MSAs are flexibly tuned across the task. Dynamic control of incoming feedback signals from MSAs may be a strategy for adaptable sensorimotor control during performance of complex behaviors.
Collapse
|
13
|
Stratmann P, Schmidt A, Höppner H, van der Smagt P, Meindl T, Franklin DW, Albu-Schäffer A. Human short-latency reflexes show precise short-term gain adaptation after prior motion. J Neurophysiol 2024; 132:1680-1692. [PMID: 39475493 DOI: 10.1152/jn.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The central nervous system adapts the gain of short-latency reflex loops to changing conditions. Experiments on biomimetic robots showed that reflex modulation could substantially increase energy efficiency and stability of periodic motions if, unlike known mechanisms, the reflex modulation both acted precisely on the muscles involved and lasted after the motion. This study tests the presence of such a mechanism by having participants repeatedly rotate either their right elbow or shoulder joint before perturbing either joint. The results demonstrate a mechanism that modulates short-latency reflex gains after prior motion with joint-specific precision. Enhanced gains were observed hundreds of milliseconds after movement cessation, a timescale well suited to quickly adapt overall periodic motion cycles. A serotonin antagonist significantly decreased these postmovement gains diffusely across joints. But blocking serotonin did not affect the joint specificity of the gain scaling more than a placebo, suggesting that serotonin sets the overall reflex gain across joints after movement by an effect that is modulated in a joint-specific manner by an unidentified neural circuit. These results confirm the existence of a new, joint-specific, fast, persistent adaptation of short-latency reflex loops induced by motion in human arms.NEW & NOTEWORTHY Our results expose a new spinal cord mechanism that modulates motoneuron gains, uniquely equipped to adapt movement in changing environments: it acts with joint-specific precision, reacts quickly to mechanical changes, and still persists long enough to accumulate information across movement cycles. The overall motoneuron gain across joints can be scaled down by an antagonist to serotonergic neuromodulation, whereas its joint specificity is unaffected by the antagonist and thus due to a complementary, unknown spinal mechanism.
Collapse
Affiliation(s)
- Philipp Stratmann
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
| | - Annika Schmidt
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | | | | | - Tobias Meindl
- Department of Neurology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - David W Franklin
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Alin Albu-Schäffer
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Maurus P, Mahdi G, Cluff T. Increased muscle coactivation is linked with fast feedback control when reaching in unpredictable visual environments. iScience 2024; 27:111174. [PMID: 39524350 PMCID: PMC11550142 DOI: 10.1016/j.isci.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Humans encounter unpredictable disturbances in daily activities and sports. When encountering unpredictable physical disturbances, healthy participants increase the peak velocity of their reaching movements, muscle coactivation, and responses to sensory feedback. Emerging evidence suggests that muscle coactivation may facilitate responses to sensory feedback and may not solely increase stiffness to resist displacements. We tested this idea by examining how healthy participants alter the control of reaching movements and responses to sensory feedback when encountering variable visuomotor rotations. The rotations changed amplitude and direction between movements, creating unpredictable errors that required fast online corrections. Participants increased the peak velocity of their movements, muscle coactivation, and responses to visual and proprioceptive feedback with the variability of the visuomotor rotations. The findings highlight an increase in neural responsiveness to sensory feedback and suggest that muscle coactivation may prime the nervous system for fast responses to sensory feedback that accommodate properties of unpredictable visual environments.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ghadeer Mahdi
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Mollazehi N, Mohamadi M, Rezaeian S, Razeghi M. How effective is proprioception exercise on pain, grip force, dexterity and proprioception of elbow joint in patients with tennis elbow? A randomized controlled trial. J Bodyw Mov Ther 2024; 40:1821-1827. [PMID: 39593530 DOI: 10.1016/j.jbmt.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 07/21/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Patients with tennis elbow (TE) disorder suffer from proprioception deficits alongside other symptoms, which usually is neglected to be targeted in different physiotherapy protocols. This study aimed to investigate the effects of proprioception exercises on treatment outcomes. METHODS In this RCT, 14 males and 30 females TE volunteered patients were randomly divided into two intervention (IG) and control (CG) groups, in which CG received routine physiotherapy, while IG underwent further proprioception exercises for 18 sessions within six weeks. Pain, function, grip force, dexterity, and proprioception of elbow joint were evaluated using Patient-Rated Elbow Evaluation (PREE) questionnaire, handheld dynamometer, Purdue Pegboard, and isokinetic dynamometer, respectively. RESULTS A significant within group improvement was observed in terms of pain (IG: 49.93%, CG: 42.75%), function (IG: 61.9%, CG: 48.95%), grip force (IG: 22.1% CG: 16.9%), dexterity (IG: 18.96% CG: 11.82%), active joint position error (IG: 32.99, CG: 7.33 %), and the threshold to detection of passive motion (TTDPM) for both groups (IG: 24.35, CG: 24.86%) in both groups after treatment as compared to before treatment (p < .0001), with no statistically significant differences between the groups for these variables except for active joint position error, which showed a significant reduction in the IG (p < .02). CONCLUSION It could be concluded that proprioception exercises has a limited added value on routine physiotherapy it terms of pain, function, grip force, and dexterity. However, adding proprioception exercises found to be beneficial for improving variables determining joint position sense.
Collapse
Affiliation(s)
- N Mollazehi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Mohamadi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Orthopedic & Rehabilitation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Rezaeian
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Razeghi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Orthopedic & Rehabilitation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Torell F, Dimitriou M. Local muscle pressure stimulates the principal receptors for proprioception. Cell Rep 2024; 43:114699. [PMID: 39213153 DOI: 10.1016/j.celrep.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Proprioception plays a crucial role in motor coordination and self-perception. Muscle spindles are the principal receptors for proprioception. They are believed to encode muscle stretch and signal limb position and velocity. Here, we applied percutaneous pressure to a small area of extensor muscles at the forearm while recording spindle afferent responses, skeletal muscle activity, and hand kinematics. Three levels of sustained pressure were applied on the spindle-bearing muscle when the hand was relaxed and immobile ("isometric" condition) and when the participant's hand moved rhythmically at the wrist. As hypothesized to occur due to compression of the spindle capsule, we show that muscle pressure is an "adequate" stimulus for human spindles in isometric conditions and that pressure enhances spindle responses during stretch. Interestingly, release of sustained pressure in isometric conditions lowered spindle firing below baseline rates. Our findings urge a re-evaluation of muscle proprioception in sensorimotor function and various neuromuscular pathologies.
Collapse
Affiliation(s)
- Frida Torell
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Michael Dimitriou
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
17
|
Colard J, Jubeau M, Crouzier M, Duclay J, Cattagni T. Effect of muscle length on the modulation of H-reflex and inhibitory mechanisms of Ia afferent discharges during passive muscle lengthening. J Neurophysiol 2024; 132:890-905. [PMID: 39015079 DOI: 10.1152/jn.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
The effectiveness of activated Ia afferents to discharge α-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by 1) greater postactivation depression induced by homosynaptic postactivation depression (HPAD) and 2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or nonconditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and HF during passive shortening, static, and lengthening muscle conditions at short, intermediate, and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge α-motoneurons and increase of postactivation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased postactivation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in postactivation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.NEW & NOTEWORTHY Original results are that in response to passive muscle lengthening and increased muscle length, inhibition of the effectiveness of activated Ia afferents to discharge α-motoneurons increases, with primary afferent depolarization and homosynaptic postactivation depression mechanisms playing central roles in this regulatory process. Our findings highlight for the first time a cumulative inhibitory effect of muscle lengthening and increased muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons.
Collapse
Affiliation(s)
- Julian Colard
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marc Jubeau
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marion Crouzier
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| |
Collapse
|
18
|
Tulimieri DT, Semrau JA. Impaired proprioception and magnified scaling of proprioceptive error responses in chronic stroke. J Neuroeng Rehabil 2024; 21:51. [PMID: 38594762 PMCID: PMC11003069 DOI: 10.1186/s12984-024-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Previous work has shown that ~ 50-60% of individuals have impaired proprioception after stroke. Typically, these studies have identified proprioceptive impairments using a narrow range of reference movements. While this has been important for identifying the prevalence of proprioceptive impairments, it is unknown whether these error responses are consistent for a broad range of reference movements. The objective of this study was to characterize proprioceptive accuracy as function of movement speed and distance in stroke. METHODS Stroke (N = 25) and controls (N = 21) completed a robotic proprioception test that varied movement speed and distance. Participants mirror-matched various reference movement speeds (0.1-0.4 m/s) and distances (7.5-17.5 cm). Spatial and temporal parameters known to quantify proprioception were used to determine group differences in proprioceptive accuracy, and whether patterns of proprioceptive error were consistent across testing conditions within and across groups. RESULTS Overall, we found that stroke participants had impaired proprioception compared to controls. Proprioceptive errors related to tested reference movement scaled similarly to controls, but some errors showed amplified scaling (e.g., significantly overshooting or undershooting reference speed). Further, interaction effects were present for speed and distance reference combinations at the extremes of the testing distribution. CONCLUSIONS We found that stroke participants have impaired proprioception and that some proprioceptive errors were dependent on characteristics of the movement (e.g., speed) and that reference movements at the extremes of the testing distribution resulted in significantly larger proprioceptive errors for the stroke group. Understanding how sensory information is utilized across a broad spectrum of movements after stroke may aid design of rehabilitation programs.
Collapse
Affiliation(s)
- Duncan Thibodeau Tulimieri
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, USA
- Program in Biomechanics and Movement Science (BIOMS), University of Delaware, 100 Discovery Blvd, Tower at STAR, Rm 234, Newark, DE, 19713, USA
| | - Jennifer A Semrau
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, USA.
- Program in Biomechanics and Movement Science (BIOMS), University of Delaware, 100 Discovery Blvd, Tower at STAR, Rm 234, Newark, DE, 19713, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
19
|
Marin Vargas A, Bisi A, Chiappa AS, Versteeg C, Miller LE, Mathis A. Task-driven neural network models predict neural dynamics of proprioception. Cell 2024; 187:1745-1761.e19. [PMID: 38518772 DOI: 10.1016/j.cell.2024.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.
Collapse
Affiliation(s)
- Alessandro Marin Vargas
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Axel Bisi
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alberto S Chiappa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chris Versteeg
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA; Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Lee E Miller
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA; Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Alexander Mathis
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
21
|
Maas H, Noort W. Knee movements cause changes in the firing behaviour of muscle spindles located within the mono-articular ankle extensor soleus in the rat. Exp Physiol 2024; 109:125-134. [PMID: 36827200 PMCID: PMC10988709 DOI: 10.1113/ep090764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We recently showed that within an intact muscle compartment, changing the length of one muscle affects the firing behaviour of muscle spindles located within a neighbouring muscle. The conditions tested, however, involved muscle lengths and relative positions that were beyond physiological ranges. The aim of the present study was to investigate the effects of simulated knee movements on the firing behaviour of muscle spindles located within rat soleus (SO) muscle. Firing from single muscle spindle afferents in SO was measured intra-axonally for different lengths (static) and during lengthening (dynamic) of the lateral gastrocnemius and plantaris muscles. Also, the location of the spindle within the muscle was assessed. Changing the length of synergistic ankle plantar flexors (simulating different static knee positions, between 45 and 130°) affected the force threshold, but not the length threshold, of SO muscle spindles. The effects on type II afferents were substantially (four times) higher than those on type IA afferents. Triangular stretch-shortening of synergistic muscles (simulating dynamic knee joint rotations of 15°) caused sudden changes in the firing rate of SO type IA and II afferents. Lengthening decreased and shortening increased the firing rate, independent of spindle location. This supports our prediction that the major point of application of forces exerted by connections between adjacent muscles is at the distal end of SO. We conclude that muscle spindles provide the CNS with information about the condition of adjacent joints that the muscle does not span.
Collapse
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
22
|
Leib R, Howard IS, Millard M, Franklin DW. Behavioral Motor Performance. Compr Physiol 2023; 14:5179-5224. [PMID: 38158372 DOI: 10.1002/cphy.c220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The human sensorimotor control system has exceptional abilities to perform skillful actions. We easily switch between strenuous tasks that involve brute force, such as lifting a heavy sewing machine, and delicate movements such as threading a needle in the same machine. Using a structure with different control architectures, the motor system is capable of updating its ability to perform through our daily interaction with the fluctuating environment. However, there are issues that make this a difficult computational problem for the brain to solve. The brain needs to control a nonlinear, nonstationary neuromuscular system, with redundant and occasionally undesired degrees of freedom, in an uncertain environment using a body in which information transmission is subject to delays and noise. To gain insight into the mechanisms of motor control, here we survey movement laws and invariances that shape our everyday motion. We then examine the major solutions to each of these problems in the three parts of the sensorimotor control system, sensing, planning, and acting. We focus on how the sensory system, the control architectures, and the structure and operation of the muscles serve as complementary mechanisms to overcome deviations and disturbances to motor behavior and give rise to skillful motor performance. We conclude with possible future research directions based on suggested links between the operation of the sensorimotor system across the movement stages. © 2024 American Physiological Society. Compr Physiol 14:5179-5224, 2024.
Collapse
Affiliation(s)
- Raz Leib
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Ian S Howard
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Matthew Millard
- Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Goal-directed modulation of stretch reflex gains is reduced in the non-dominant upper limb. Eur J Neurosci 2023; 58:3981-4001. [PMID: 37727025 DOI: 10.1111/ejn.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Tomatsu S, Kim G, Kubota S, Seki K. Presynaptic gating of monkey proprioceptive signals for proper motor action. Nat Commun 2023; 14:6537. [PMID: 37880215 PMCID: PMC10600222 DOI: 10.1038/s41467-023-42077-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Our rich behavioural repertoire is supported by complicated synaptic connectivity in the central nervous system, which must be modulated to prevent behavioural control from being overwhelmed. For this modulation, presynaptic inhibition is an efficient mechanism because it can gate specific synaptic input without interfering with main circuit operations. Previously, we reported the task-dependent presynaptic inhibition of the cutaneous afferent input to the spinal cord in behaving monkeys. Here, we report presynaptic inhibition of the proprioceptive afferent input. We found that the input from shortened muscles is transiently facilitated, whereas that from lengthened muscles is persistently reduced. This presynaptic inhibition could be generated by cortical signals because it started before movement onset, and its size was correlated with the performance of stable motor output. Our findings demonstrate that presynaptic inhibition acts as a dynamic filter of proprioceptive signals, enabling the integration of task-relevant signals into spinal circuits.
Collapse
Affiliation(s)
- Saeka Tomatsu
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - GeeHee Kim
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Shinji Kubota
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuhiko Seki
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
25
|
Torell F. Evaluation of stretch reflex synergies in the upper limb using principal component analysis (PCA). PLoS One 2023; 18:e0292807. [PMID: 37824570 PMCID: PMC10569523 DOI: 10.1371/journal.pone.0292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The dynamic nature of movement and muscle activation emphasizes the importance of a sound experimental design. To ensure that an experiment determines what we intend, the design must be carefully evaluated. Before analyzing data, it is imperative to limit the number of outliers, biases, and skewness. In the present study, a simple center-out experiment was performed by 16 healthy volunteers. The experiment included three load conditions, two preparatory delays, two perturbations, and four targets placed along a diagonal path on a 2D plane. While the participants performed the tasks, the activity of seven arm muscles were monitored using surface electromyography (EMG). Principal component analysis (PCA) was used to evaluate the study design, identify muscle synergies, and assess the effects of individual quirks. With PCA, we can identify the trials that trigger stretch reflexes and pinpoint muscle synergies. The posterior deltoid, triceps long head, and brachioradialis were engaged when targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. Similarly, the pectoralis and anterior deltoid were engaged when the targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. The stretch reflexes were not triggered when the perturbation brought the hand in the direction of, or into the target, except if the muscle was pre-loaded. The use of PCA was also proven valuable when evaluating participant performance. While individual quirks are to be expected, failure to perform trials as expected can adversely affect the study results.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Monjo F, Allen T. What if muscle spindles were also involved in the sense of effort? J Physiol 2023; 601:3453-3459. [PMID: 37288474 DOI: 10.1113/jp284376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Effort perception is widely acknowledged to originate from central processes within the brain, mediated by the integration of an efference copy of motor commands in sensory areas. However, in this topical review, we aim to challenge this perspective by presenting evidence from neural mechanisms and empirical studies that suggest that reafferent signals from muscle spindles also play a significant role in effort perception. It is now imperative for future research (a) to investigate the precise mechanisms underlying the interactions between the efference copy and reafferent spindle signals in the generation of effort perception, and (b) to explore the potential for altering spindle sensitivity to affect perceived effort during ecological physical exercise and, subsequently, influence physical activity behaviours.
Collapse
Affiliation(s)
- Florian Monjo
- Interuniversity Laboratory of Human Movement Sciences, Université Savoie Mont-Blanc, Chambéry, France
| | - Trevor Allen
- Monash University Accident Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Kunugi S, Nakagoshi A, Kawabe K, Watanabe K. Influence of pedal characteristics on pedaling control and neural drive in older adults. Eur J Appl Physiol 2023; 123:1701-1707. [PMID: 37004566 DOI: 10.1007/s00421-023-05196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
This study was aimed to investigate whether pedal characteristics and age affect pedal position accuracy, fluctuation, and neural drive variability during a position control task. Twelve older (age: 72.8 ± 3.6 years) and twelve young (age: 23.8 ± 4.4 years) adults performed trapezoidal position control tasks involving holding plantar flexor contraction for 10 s with four pedal conditions (regular and pulley types × standard and low forces). Neural drive of the triceps surae muscle was estimated with high-density surface electromyograms and individual motor unit decomposition methods. The central 5 s of the sustained contraction phase was used for analysis. Variabilities of the angle and neural drive are presented by the coefficient of variation. We observed that the angle fluctuation was greater in older than young adults for four pedal conditions (p < 0.05). Regardless of age, using pulley pedals increased angle fluctuation more than regular pedals (p < 0.05). No significant interaction was found for pedal conditions and age in pedal position accuracy, angle fluctuation, or neural output. Our results suggest that older adults have poor control ability to maintain pedal angles, and pulley pedals make it difficult to adjust the pedal angles regardless of age. However, the neural output estimated by the continuously active motor units failed to explain these differences.
Collapse
Affiliation(s)
- Shun Kunugi
- Center for General Education, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota-shi, Toyota, Aichi, 470-0392, Japan.
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota-shi, Nagoya, Aichi, 470-0393, Japan.
| | - Akira Nakagoshi
- Toyota Motor Corporation, 1 Toyota-cho, Toyota-shi, Toyota, Aichi, 471-8571, Japan
| | - Kyosuke Kawabe
- Toyota Motor Corporation, 1 Toyota-cho, Toyota-shi, Toyota, Aichi, 471-8571, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota-shi, Nagoya, Aichi, 470-0393, Japan
| |
Collapse
|
28
|
Mirsalari R, Kordi Yoosefinejad A, Yazdani F, Haghighat F, Amiripanah AA, Parandavarfard S. Comparing position sense and isokinetic strength of the muscles of elbow joint between aikidokas and non-athlete people. BMC Sports Sci Med Rehabil 2023; 15:71. [PMID: 37312217 DOI: 10.1186/s13102-023-00677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aikido is a martial art comprises of locking techniques and falls. During the locking techniques, the elbow joint is forced into extended position. Moreover, the elbow hits the ground during the falling techniques. These might compromise joint position sense (JPS). The objectives of this study were to compare JPS and strength of the muscles of elbow joint between Aikidokas and a non-athlete group and to evaluate the correlation between JPS and muscle strength among Aikidokas. METHODS All male Jiyushinkai style Aikidokas and a healthy matched non-athlete group participated in this cross-sectional study. Passive JPS at a speed of 4°/s and the isokinetic strength of elbow flexors and extensors were assessed. RESULTS Evaluating the isokinetic parameters revealed no significantly difference between the groups in either flexion or extension at speeds of 60 (P-value range: 0.2-0.99) and 120 °/s (P-value range: 0.05-0.96). Also, the groups had no significant difference regarding different types of reconstruction error including constant error (P-value range: 0.38-0.91), variable error (P-value range: 0.09-0.87), and total variability (P-value range: 0.30-0.80). Moreover, very weak to weak correlation was observed between isokinetic parameters and passive JPS (r-value range: 0.01-0.39). CONCLUSIONS JPS was not impaired in Aikidokas in spite of the repetitive stress applied to the elbow joint during the performance of Aikido techniques. The lack of significant difference in isokinetic between Aikidokas and healthy non-athletes, and the absence of an acceptable correlation between IPS and muscle strength in Aikidokas, might be attributed to the soft nature of Aikido.
Collapse
Affiliation(s)
- Rezvan Mirsalari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kordi Yoosefinejad
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzaneh Yazdani
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Haghighat
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saeid Parandavarfard
- Head of Technical Committee, Jiyushinkai Aikido director, Head of Fajr Dojo, Shiraz, Iran
| |
Collapse
|
29
|
Hodgson DD, King JA, Darici O, Dalton BH, Cleworth TW, Cluff T, Peters RM. Visual feedback-dependent modulation of arousal, postural control, and muscle stretch reflexes assessed in real and virtual environments. Front Hum Neurosci 2023; 17:1128548. [PMID: 37082148 PMCID: PMC10110857 DOI: 10.3389/fnhum.2023.1128548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction The mechanisms regulating neuromuscular control of standing balance can be influenced by visual sensory feedback and arousal. Virtual reality (VR) is a cutting-edge tool for probing the neural control of balance and its dependence on visual feedback, but whether VR induces neuromodulation akin to that seen in real environments (eyes open vs. closed or ground level vs. height platform) remains unclear. Methods Here we monitored 20 healthy young adults (mean age 23.3 ± 3.2 years; 10 females) during four conditions of quiet standing. Two real world conditions (eyes open and eyes closed; REO and REC) preceded two eyes-open virtual 'low' (ground level; VRL) and 'high' (14 m height platform; VRH) conditions. We measured arousal via electrodermal activity and psychosocial questionnaires rating perceived fear and anxiety. We recorded surface electromyography over the right soleus, medial gastrocnemius, and tibialis anterior, and performed force plate posturography. As a proxy for modulations in neural control, we assessed lower limb reflexive muscle responses evoked by tendon vibration and electrical stimulation. Results Physiological and perceptual indicators of fear and anxiety increased in the VRH condition. Background soleus muscle activation was not different across conditions; however, significant increases in muscle activity were observed for medial gastrocnemius and tibialis anterior in VRH relative to REO. The mean power frequency of postural sway also increased in the VRH condition relative to REO. Finally, with a fixed stimulus level across conditions, mechanically evoked reflexes remained constant, while H-reflex amplitudes decreased in strength within virtual reality. Discussion Notably, H-reflexes were lower in the VRL condition than REO, suggesting that these ostensibly similar visual environments produce different states of reflexive balance control. In summary, we provide novel evidence that VR can be used to modulate upright postural control, but caution that standing balance in analogous real and virtual environments may involve different neural control states.
Collapse
Affiliation(s)
| | - Jordan A. King
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Osman Darici
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Brian H. Dalton
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryan M. Peters
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. eNeuro 2023; 10:ENEURO.0438-22.2023. [PMID: 36781230 PMCID: PMC9972504 DOI: 10.1523/eneuro.0438-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, D-80992 Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
31
|
Khan MN, Cherukuri P, Negro F, Rajput A, Fabrowski P, Bansal V, Lancelin C, Lee TI, Bian Y, Mayer WP, Akay T, Müller D, Bonn S, Farina D, Marquardt T. ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement control. PLoS Biol 2022; 20:e3001923. [PMID: 36542664 PMCID: PMC9815657 DOI: 10.1371/journal.pbio.3001923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/05/2023] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRβ, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.
Collapse
Affiliation(s)
- Mudassar N. Khan
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail: (MNK); (TM)
| | - Pitchaiah Cherukuri
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- SRM University Andhra Pradesh, Mangalagiri-Mandal, Neeru Konda, Amaravati, Andhra Pradesh, India
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Ashish Rajput
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Maximon AG, Zug, Switzerland
| | - Piotr Fabrowski
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Vikas Bansal
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Camille Lancelin
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Tsung-I Lee
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Yehan Bian
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - William P. Mayer
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Müller
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Stefan Bonn
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines, London, United Kingdom
| | - Till Marquardt
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- * E-mail: (MNK); (TM)
| |
Collapse
|
32
|
Kukić F, Mrdaković V, Stanković A, Ilić D. Effects of Knee Extension Joint Angle on Quadriceps Femoris Muscle Activation and Exerted Torque in Maximal Voluntary Isometric Contraction. BIOLOGY 2022; 11:biology11101490. [PMID: 36290394 PMCID: PMC9598811 DOI: 10.3390/biology11101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of knee joint angle on muscle activation, exerted torque, and whether the knee angle affects the muscle activation−torque ratio. Nine healthy adult male participants participated in the study. They performed maximal voluntary isometric contraction (MVIC) at six (80°, 90°, 100°, 110°, 120°, and 130°) different knee joint angles (i.e., angles between the thigh and shin bones). Their maximal torque was assessed utilizing an isokinetic chair, while their muscle activation (root mean square [RMS]) was assessed using an eight-channel single differential surface EMG sensor. For the purposes of the torque−knee angle relationship and muscle activation−knee angle relationship, the torque and RMS were normalized relative to the maximal value obtained by each participant. To evaluate the muscle activation−torque ratio in function of knee angle, RMS was normalized relative to the corresponding torque obtained at each knee angle. Repeated measure analysis of variance was used to investigate the effects of knee angle on muscle activation, torque, and muscle activation−torque ratio. There was a significant effect of knee joint angle on normalized torque (F = 27.521, p < 0.001), while the activation of vastus lateralis and vastus medialis remained unchanged. The changes in knee angle affected the muscle activation−torque ratio of vastus lateralis (Chi-square = 16.246, p = 0.006) but not the vastus medialis. These results suggest that knee joint angles from 80° to 130° provide a stable milieu for muscle electrification, while mechanical factor such as knee joint angle (i.e., lever arm length) affect the torque output when one needs to contract quadriceps maximally during the isometric contraction.
Collapse
Affiliation(s)
- Filip Kukić
- Police Sports Education Center, Abu Dhabi Police, Abu Dhabi 253, United Arab Emirates
- Correspondence:
| | - Vladimir Mrdaković
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia
| | - Aleksandar Stanković
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia
| | - Duško Ilić
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia
| |
Collapse
|