1
|
Rao AM, DeHaan RD, Kahana MJ. Synchronous Theta Networks Characterize Successful Memory Retrieval. J Neurosci 2025; 45:e1332242025. [PMID: 40032520 PMCID: PMC12005240 DOI: 10.1523/jneurosci.1332-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Memory retrieval activates regions across the brain, including not only the hippocampus and medial temporal lobe (MTL), but also frontal, parietal, and lateral temporal cortical regions. What remains unclear, however, is how these regions communicate to organize retrieval-specific processing. Here, we elucidate the role of theta (3-8 Hz) synchronization, broadly implicated in memory function, during the spontaneous retrieval of episodic memories. Analyzing a dataset of 382 neurosurgical patients (213 males, 168 females, and 1 unknown) implanted with intracranial electrodes who completed a free-recall task, we find that synchronous networks of theta phase synchrony span the brain in the moments before spontaneous recall, in comparison to periods of deliberation and incorrect recalls. Hubs of the retrieval network, which systematically synchronize with other regions, appear throughout the prefrontal cortex and lateral and medial temporal lobes, as well as other areas. Theta synchrony increases appear more prominently for slow (3 Hz) theta than for fast (8 Hz) theta in the recall-deliberation contrast, but not in the encoding or recall-intrusion contrasts, and theta power and synchrony correlate positively throughout the theta band. These results implicate diffuse brain-wide synchronization of theta rhythms, especially slow theta, in episodic memory retrieval.
Collapse
Affiliation(s)
- Aditya M Rao
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
2
|
Yu D, Li X, Wang X, Huang W, Hu X, Jia Y. Community modularity structure promotes the evolution of phase clusters and chimeralike states. Phys Rev E 2025; 111:034311. [PMID: 40247565 DOI: 10.1103/physreve.111.034311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025]
Abstract
Community modularity structure is widely observed across various brain scales, reflecting a balance between information processing efficiency and neural wiring metabolic efficiency. Revealing the relationship between community structure and brain function facilitates our further understanding of the brain. Here, we construct an adaptive neural network (ANN) consisting of leaky integrate-and-fire neurons with adaptivity governed by spike-time-dependent plasticity rules. The ANN demonstrates diverse dynamic collective behaviors, including traveling waves dominated by initial states, phase-cluster formations, and chimeralike states. In addition to functional clustering, ANN spontaneously organizes into community structures characterized by densely interconnected modules with sparse interconnections. Neurons within modules synchronize, while those across modules remain asynchronous, forming phase-cluster states. By encoding neural rhythms, the ANN segments into asynchronous and synchronous structural modules, leading to chimeralike states. These findings provide further evidence supporting the perspective that function emerges from structure and that structure is influenced by function in complex dynamic processes.
Collapse
Affiliation(s)
- Dong Yu
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| | - Xuening Li
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| | - Xueqin Wang
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| | - Weifang Huang
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| | - Xueyan Hu
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| | - Ya Jia
- Central China Normal University, Department of Physics and Institute of Biophysics, Wuhan 430079, China
| |
Collapse
|
3
|
Michelmann S, Dugan P, Doyle W, Friedman D, Melloni L, Strauss CK, Devore S, Flinker A, Devinsky O, Hasson U, Norman KA. Fast-timescale hippocampal processes bridge between slowly unfurling neocortical states during memory search. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637471. [PMID: 39990462 PMCID: PMC11844493 DOI: 10.1101/2025.02.11.637471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Prior behavioral work showed that event structure plays a key role in our ability to mentally search through memories of continuous naturalistic experience. We hypothesized that, neurally, this memory search process involves a division of labor between slowly unfurling neocortical states representing event knowledge and fast hippocampal-neocortical communication that supports retrieval of new information at transitions between events. To test this, we tracked slow neural state-patterns in a sample of ten patients undergoing intracranial electroencephalography as they viewed a movie and then searched their memories in a structured naturalistic interview. As patients answered questions ("after X, when does Y happen next?"), state-patterns from movie-viewing were reinstated in neocortex; during memory-search, states unfurled in a forward direction. Moments of state-transition were marked by low-frequency power decreases in cortex and preceded by power decreases in hippocampus that correlated with reinstatement. Connectivity-analysis revealed information-flow from hippocampus to cortex underpinning state-transitions. Together, these results support our hypothesis that fast hippocampal processes bridge between slow neocortical states during memory search.
Collapse
Affiliation(s)
| | - Patricia Dugan
- School of Medicine, New York University, New York, NY, USA
| | - Werner Doyle
- School of Medicine, New York University, New York, NY, USA
| | | | - Lucia Melloni
- School of Medicine, New York University, New York, NY, USA
| | - Camilla K. Strauss
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sasha Devore
- School of Medicine, New York University, New York, NY, USA
| | - Adeen Flinker
- School of Medicine, New York University, New York, NY, USA
| | - Orrin Devinsky
- School of Medicine, New York University, New York, NY, USA
| | - Uri Hasson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kenneth A. Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Freelin A, Wolfe C, Lega B. Models of human hippocampal specialization: a look at the electrophysiological evidence. Trends Cogn Sci 2024:S1364-6613(24)00318-8. [PMID: 39668062 DOI: 10.1016/j.tics.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
From an anatomical perspective, the concept that the anterior and posterior hippocampus fulfill distinct cognitive roles may seem unsurprising. When compared with the posterior hippocampus, the anterior region is proportionally larger, with visible expansion of the CA1 subfield and intimate continuity with adjacent medial temporal lobe (MTL) structures such as the uncus and amygdala. However, the functional relevance emerging from these anatomical differences remains to be established in humans. Drawing on both rodent and human data, several models of hippocampal longitudinal specialization have been proposed. For the brevity and clarity of this review, we focus on human electrophysiological evidence supporting and contravening these models with limited inclusion of noninvasive data. We then synthesize these data to propose a novel longitudinal model based on the amount of contextual information, drawing on previous conceptions described within the past decade.
Collapse
Affiliation(s)
- Anne Freelin
- Department of Neuroscience, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Altafi M, Chen C, Korotkova T, Ponomarenko A. Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations. J Neurosci 2024; 44:e0518242024. [PMID: 39256049 PMCID: PMC11502232 DOI: 10.1523/jneurosci.0518-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors-social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30-60 and 60-90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.
Collapse
Affiliation(s)
- Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Changwan Chen
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Cologne 50931, Germany
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
6
|
Kern S, Nagel J, Gerchen MF, Gürsoy Ç, Meyer-Lindenberg A, Kirsch P, Dolan RJ, Gais S, Feld GB. Reactivation strength during cued recall is modulated by graph distance within cognitive maps. eLife 2024; 12:RP93357. [PMID: 38810249 PMCID: PMC11136493 DOI: 10.7554/elife.93357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Declarative memory retrieval is thought to involve reinstatement of neuronal activity patterns elicited and encoded during a prior learning episode. Furthermore, it is suggested that two mechanisms operate during reinstatement, dependent on task demands: individual memory items can be reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as temporally separate instances. In the current study, participants learned associations between images that were embedded in a directed graph network and retained this information over a brief 8 min consolidation period. During a subsequent cued recall session, participants retrieved the learned information while undergoing magnetoencephalographic recording. Using a trained stimulus decoder, we found evidence for clustered reactivation of learned material. Reactivation strength of individual items during clustered reactivation decreased as a function of increasing graph distance, an ordering present solely for successful retrieval but not for retrieval failure. In line with previous research, we found evidence that sequential replay was dependent on retrieval performance and was most evident in low performers. The results provide evidence for distinct performance-dependent retrieval mechanisms, with graded clustered reactivation emerging as a plausible mechanism to search within abstract cognitive maps.
Collapse
Affiliation(s)
- Simon Kern
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Juliane Nagel
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Martin F Gerchen
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Department of Psychology, Ruprecht Karl University of HeidelbergHeidelbergGermany
- Bernstein Center for Computational Neuroscience Heidelberg/MannheimMannheimGermany
| | - Çağatay Gürsoy
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Andreas Meyer-Lindenberg
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Bernstein Center for Computational Neuroscience Heidelberg/MannheimMannheimGermany
| | - Peter Kirsch
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Department of Psychology, Ruprecht Karl University of HeidelbergHeidelbergGermany
- Bernstein Center for Computational Neuroscience Heidelberg/MannheimMannheimGermany
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-University TübingenTübingenGermany
| | - Gordon B Feld
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
- Department of Psychology, Ruprecht Karl University of HeidelbergHeidelbergGermany
| |
Collapse
|
7
|
Karvat G, Ofir N, Landau AN. Sensory Drive Modifies Brain Dynamics and the Temporal Integration Window. J Cogn Neurosci 2024; 36:614-631. [PMID: 38010294 DOI: 10.1162/jocn_a_02088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Perception is suggested to occur in discrete temporal windows, clocked by cycles of neural oscillations. An important testable prediction of this theory is that individuals' peak frequencies of oscillations should correlate with their ability to segregate the appearance of two successive stimuli. An influential study tested this prediction and showed that individual peak frequency of spontaneously occurring alpha (8-12 Hz) correlated with the temporal segregation threshold between two successive flashes of light [Samaha, J., & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25, 2985-2990, 2015]. However, these findings were recently challenged [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022]. To advance our understanding of the link between oscillations and temporal segregation, we devised a novel experimental approach. Rather than relying entirely on spontaneous brain dynamics, we presented a visual grating before the flash stimuli that is known to induce continuous oscillations in the gamma band (45-65 Hz). By manipulating the contrast of the grating, we found that high contrast induces a stronger gamma response and a shorter temporal segregation threshold, compared to low-contrast trials. In addition, we used a novel tool to characterize sustained oscillations and found that, for half of the participants, both the low- and high-contrast gratings were accompanied by a sustained and phase-locked alpha oscillation. These participants tended to have longer temporal segregation thresholds. Our results suggest that visual stimulus drive, reflected by oscillations in specific bands, is related to the temporal resolution of visual perception.
Collapse
|
8
|
Di Cesare Mannelli L, Ghelardini C. Commentary on "Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain". Neural Regen Res 2024; 19:728. [PMID: 37843205 PMCID: PMC10664135 DOI: 10.4103/1673-5374.382219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Schonhaut DR, Rao AM, Ramayya AG, Solomon EA, Herweg NA, Fried I, Kahana MJ. MTL neurons phase-lock to human hippocampal theta. eLife 2024; 13:e85753. [PMID: 38193826 PMCID: PMC10948143 DOI: 10.7554/elife.85753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Abstract
Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4 Hz) or fast (6-10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13-20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.
Collapse
Affiliation(s)
- Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aditya M Rao
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Ashwin G Ramayya
- Department of Neurosurgery, University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan A Solomon
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Nora A Herweg
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Itzhak Fried
- Department of Neurosurgery, Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos AngelesUnited States
- Faculty of Medicine, Tel-Aviv UniversityTel-AvivIsrael
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Wu R, Ma H, Hu J, Wang D, Wang F, Yu X, Li Y, Fu W, Lai M, Hu Z, Feng W, Shan C, Wang C. Electroacupuncture stimulation to modulate neural oscillations in promoting neurological rehabilitation. Brain Res 2024; 1822:148642. [PMID: 37884179 DOI: 10.1016/j.brainres.2023.148642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Electroacupuncture (EA) stimulation is a modern neuromodulation technique that integrates traditional Chinese acupuncture therapy with contemporary electrical stimulation. It involves the application of electrical currents to specific acupoints on the body following acupuncture. EA has been widely used in the treatment of various neurological disorders, including epilepsy, stroke, Parkinson's disease, and Alzheimer's disease. Recent research suggests that EA stimulation may modulate neural oscillations, correcting abnormal brain electrical activity, therefore promoting brain function and aiding in neurological rehabilitation. This paper conducted a comprehensive search in databases such as PubMed, Web of Science, and CNKI using keywords like "electroacupuncture," "neural oscillations," and "neurorehabilitation", covering the period from year 1980 to 2023. We provide a detailed overview of how electroacupuncture stimulation modulates neural oscillations, including maintaining neural activity homeostasis, influencing neurotransmitter release, improving cerebral hemodynamics, and enhancing specific neural functional networks. The paper also discusses the current state of research, limitations of electroacupuncture-induced neural oscillation techniques, and explores prospects for their combined application, aiming to offer broader insights for both basic and clinical research.
Collapse
Affiliation(s)
- Ruiren Wu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongli Ma
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Wang
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoming Yu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Fu
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minghui Lai
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cong Wang
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
11
|
Li G, Lu C, Li S, Kang L, Li Q, Bai M, Xiong P. Correlation study of brain-derived neurotrophic factor, EEG γ activity and cognitive function in first-episode schizophrenia. Brain Res 2023; 1820:148561. [PMID: 37657750 DOI: 10.1016/j.brainres.2023.148561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Schizophrenia is characterised by neurotrophic, neuroelectrophysiological and cognitive dysfunction. However, there exists a paucity of research examining the association between serum brain-derived neurotrophic factor (BDNF) concentration, resting electroencephalogram (EEG) gamma activity, and cognitive impairment in individuals diagnosed with schizophrenia. METHODS In this study, 87 first-episode schizophrenia patients and 75 healthy controls were assessed. Measurements were conducted to determine the levels of BDNF, resting EEG γ-activity at left and right frontal pole EEG electrodes respectively (FP1/FP2) leads, and cognitive function as assessed by the Measurement and Treatment Research to Improve Cognition in Schizophrenia MATRICS Consensus Cognitive Battery (MCCB). Comparisons were made between the patient group and the control group, revealing lower BDNF levels, lower T-scores for 7 MCCB cognitive items, and higher EEG γ-activity among patients when compared to controls. RESULTS According to the correlation analysis, there were significant associations observed in the patient group. BDNF levels were found to be correlated with EEG γ activity as well as T-scores of speed of processing (SoP), verbal learning (VeL), and reasoning problem-solving (RPS). Moreover, EEG γ activity showed an association with both the total score of the Positive and Negative Syndrome Scale (PANSS) and T-score of SoP. These findings suggest a potential relationship between BDNF levels, EEG γ activity, cognitive domains, and clinical symptoms in individuals with first-episode schizophrenia. CONCLUSIONS In conclusion, our findings demonstrate the coexistence of neurobiochemical and electrophysiological abnormalities alongside cognitive dysfunction during the early stages of schizophrenia. These findings provide valuable insights into the mechanism of cognitive impairment in schizophrenia. By highlighting the simultaneous occurrence of these factors, our study contributes to a better understanding of the complex nature of schizophrenia and emphasizes the importance of studying its cognitive aspects.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China; Department of Psychiatry, Yunnan Psychiatric Hospital, No. 733, Chuanjin Road, Kunming, Yunnan 650225, China
| | - Cailian Lu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China
| | - Shan Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China
| | - Lin Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China
| | - Qianqian Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China
| | - Meiyan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China
| | - Peng Xiong
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, Yunnan 650032, China; Yunnan Clinical Research Center for Mental Health, No. 295, Xichang Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
12
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Wang D, Shapiro KL, Hanslmayr S. Altering stimulus timing via fast rhythmic sensory stimulation induces STDP-like recall performance in human episodic memory. Curr Biol 2023; 33:3279-3288.e7. [PMID: 37463586 DOI: 10.1016/j.cub.2023.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed "spike-timing-dependent plasticity" (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior.
Collapse
Affiliation(s)
- Danying Wang
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kimron L Shapiro
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon Hanslmayr
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
Shlobin NA, Aru J, Vicente R, Zemmar A. What happens in the brain when we die? Deciphering the neurophysiology of the final moments in life. Front Aging Neurosci 2023; 15:1143848. [PMID: 37228251 PMCID: PMC10203241 DOI: 10.3389/fnagi.2023.1143848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
When do we die and what happens in the brain when we die? The mystery around these questions has engaged mankind for centuries. Despite the challenges to obtain recordings of the dying brain, recent studies have contributed to better understand the processes occurring during the last moments of life. In this review, we summarize the literature on neurophysiological changes around the time of death. Perhaps the only subjective description of death stems from survivors of near-death experiences (NDEs). Hallmarks of NDEs include memory recall, out-of-body experiences, dreaming, and meditative states. We survey the evidence investigating neurophysiological changes of these experiences in healthy subjects and attempt to incorporate this knowledge into the existing literature investigating the dying brain to provide valuations for the neurophysiological footprint and timeline of death. We aim to identify reasons explaining the variations of data between studies investigating this field and provide suggestions to standardize research and reduce data variability.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University School of Medicine, Zhengzhou, China
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Raul Vicente
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University School of Medicine, Zhengzhou, China
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
15
|
Wang D, Parish G, Shapiro KL, Hanslmayr S. Interaction between Theta Phase and Spike Timing-Dependent Plasticity Simulates Theta-Induced Memory Effects. eNeuro 2023; 10:ENEURO.0333-22.2023. [PMID: 36810147 PMCID: PMC10012328 DOI: 10.1523/eneuro.0333-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Rodent studies suggest that spike timing relative to hippocampal theta activity determines whether potentiation or depression of synapses arise. Such changes also depend on spike timing between presynaptic and postsynaptic neurons, known as spike timing-dependent plasticity (STDP). STDP, together with theta phase-dependent learning, has inspired several computational models of learning and memory. However, evidence to elucidate how these mechanisms directly link to human episodic memory is lacking. In a computational model, we modulate long-term potentiation (LTP) and long-term depression (LTD) of STDP, by opposing phases of a simulated theta rhythm. We fit parameters to a hippocampal cell culture study in which LTP and LTD were observed to occur in opposing phases of a theta rhythm. Further, we modulated two inputs by cosine waves with 0° and asynchronous phase offsets and replicate key findings in human episodic memory. Learning advantage was found for the in-phase condition, compared with the out-of-phase conditions, and was specific to theta-modulated inputs. Importantly, simulations with and without each mechanism suggest that both STDP and theta phase-dependent plasticity are necessary to replicate the findings. Together, the results indicate a role for circuit-level mechanisms, which bridge the gap between slice preparation studies and human memory.
Collapse
Affiliation(s)
- Danying Wang
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - George Parish
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kimron L Shapiro
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Simon Hanslmayr
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
16
|
Roux F, Parish G, Chelvarajah R, Rollings DT, Sawlani V, Hamer H, Gollwitzer S, Kreiselmeyer G, ter Wal MJ, Kolibius L, Staresina BP, Wimber M, Self MW, Hanslmayr S. Oscillations support short latency co-firing of neurons during human episodic memory formation. eLife 2022; 11:78109. [PMID: 36448671 PMCID: PMC9731574 DOI: 10.7554/elife.78109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here, we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.
Collapse
Affiliation(s)
- Frédéric Roux
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - George Parish
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Ramesh Chelvarajah
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - David T Rollings
- Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Vijay Sawlani
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Stephanie Gollwitzer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Gernot Kreiselmeyer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Marije J ter Wal
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Luca Kolibius
- School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Bernhard P Staresina
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Maria Wimber
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and SciencesAmsterdamNetherlands
| | - Simon Hanslmayr
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|