1
|
Kotikalapudi N, Ramachandran D, Vieira D, Rubio WB, Gipson GR, Troncone L, Vestal K, Maridas DE, Rosen V, Yu PB, Thompson TB, Banks AS. Acute regulation of murine adipose tissue lipolysis and insulin resistance by the TGFβ superfamily protein GDF3. Nat Commun 2025; 16:4432. [PMID: 40360531 PMCID: PMC12075709 DOI: 10.1038/s41467-025-59673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
TGFβ superfamily proteins can affect cellular differentiation, thermogenesis, and fibrosis in mammalian adipose tissue. Here we describe a role for Growth Differentiation Factor 3 (GDF3) on mature adipocyte biology. We find inducible GDF3 loss of function in obese adult mice leads to reduced lipolysis, improved glucose tolerance, and reduced glycemic variability. The effects on lipolysis are driven by lower levels of β3-adrenergic receptor, decreased cAMP and PKA signaling. GDF3 is an ALK5, ALK7, ACVR2A and ACVR2B agonist and also a BMPR2 antagonist. Unlike ALK7 or activin E knockouts, acute GDF3 loss of function does not affect body weight or energy balance but significantly improves metabolic health. These results suggest that blocking GDF3 can improve metabolic health independent of body weight and food intake, an intriguing new model for developing anti-diabetic therapies. Together these results provide much-needed clarity to both the molecular pathways involved in GDF3 signaling and its physiological effects.
Collapse
Affiliation(s)
- Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Deepti Ramachandran
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Vieira
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - William B Rubio
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gregory R Gipson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Luca Troncone
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kylie Vestal
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Maridas
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Paul B Yu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas B Thompson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Park SY, Cho Y, Son SM, Hur JH, Kim Y, Oh H, Lee HY, Jung S, Park S, Kim IY, Lee SJ, Choi CS. Activin E is a new guardian protecting against hepatic steatosis via inhibiting lipolysis in white adipose tissue. Exp Mol Med 2025; 57:466-477. [PMID: 39948368 PMCID: PMC11873131 DOI: 10.1038/s12276-025-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is implicated in the development of steatosis and its progression to nonalcoholic steatohepatitis (NASH). The ER in the liver can sustain metabolic function by activating defense mechanisms that delay or prevent the progression of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanisms by which the ER stress response protects against NAFLD remain largely unknown. Recently, activin E has been linked to metabolic diseases such as insulin resistance and NAFLD. However, the physiological conditions and regulatory mechanisms driving hepatic Inhbe expression (which encodes activin E) as well as the metabolic role of activin E in NAFLD require further investigation. Here we found that hepatic Inhbe expression increased under prolonged fasting and ER stress conditions, which was mediated by ATF4, as determined by promoter analysis in a mouse model. Consistently, a positive correlation between INHBE and ATF4 expression levels in relation to NAFLD status was confirmed using public human NAFLD datasets. To investigate the role of activin E in hepatic steatosis, we assessed the fluxes of the lipid metabolism in an Inhbe-knockout mouse model. These mice displayed a lean phenotype but developed severe hepatic steatosis under a high-fat diet. The deficiency of Inhbe resulted in increased lipolysis in adipose tissue, leading to increased fatty acid influx into the liver. Conversely, hepatic overexpression of Inhbe ameliorated hepatic steatosis by suppressing lipolysis in adipose tissue through ALK7-Smad signaling. In conclusion, activin E serves as a regulatory hepatokine that prevents fatty acid influx into the liver, thereby protecting against NAFLD.
Collapse
Affiliation(s)
- Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sae-Mi Son
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Jang Ho Hur
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyunhee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hui-Young Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sanghee Park
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea.
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Loh NY, Rosoff DB, Richmond R, Noordam R, Smith GD, Ray D, Karpe F, Lohoff FW, Christodoulides C. Bidirectional Mendelian Randomization Highlights Causal Relationships Between Circulating INHBC and Multiple Cardiometabolic Diseases and Traits. Diabetes 2024; 73:2084-2094. [PMID: 39283655 PMCID: PMC11579406 DOI: 10.2337/db24-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 11/22/2024]
Abstract
Human genetic and transgenic mouse studies have highlighted a potential liver-adipose tissue endocrine axis, involving activin C (Act-C) and/or Act-E and ALK7, influencing fat distribution and systemic metabolism. We investigated the bidirectional effects between circulating INHBC, which homodimerizes into Act-C, and adiposity traits, insulin resistance, inflammation, and cardiometabolic disease risk. Additionally, we examined whether Act-C is an ALK7 ligand in human adipocytes. We used Mendelian randomization and in vitro studies in immortalized human abdominal and gluteal adipocytes. Circulating INHBC was causally linked to reduced lower-body fat, dyslipidemia, and increased risks of coronary artery disease (CAD) and nonalcoholic fatty liver disease (NAFLD). Conversely, upper-body fat distribution, obesity, hypertriglyceridemia, subclinical inflammation, and type 2 diabetes positively impacted plasma INHBC levels. Mechanistically, an atherogenic lipid profile may partly explain the INHBC-CAD link, while inflammation and hypertriglyceridemia may partly explain how adiposity traits affect circulating INHBC. Phenome-wide Mendelian randomization showed weak causal relationships between higher plasma INHBC and impaired kidney function and higher gout risk. In human adipocytes, recombinant Act-C activated SMAD2/3 signaling via ALK7 and suppressed lipolysis. In summary, INHBC influences systemic metabolism by activating ALK7 in adipose tissue and may serve as a drug target for atherogenic dyslipidemia, CAD, and NAFLD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Daniel B. Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - Rebecca Richmond
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| | - Falk W. Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| |
Collapse
|
4
|
Jiang BC, Ling YJ, Xu ML, Gu J, Wu XB, Sha WL, Tian T, Bai XH, Li N, Jiang CY, Chen O, Ma LJ, Zhang ZJ, Qin YB, Zhu M, Yuan HJ, Wu LJ, Ji RR, Gao YJ. Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons. Sci Transl Med 2024; 16:eadi1564. [PMID: 39413164 DOI: 10.1126/scitranslmed.adi1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor-β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor-1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yue-Juan Ling
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Tian Tian
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xue-Hui Bai
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Chang-Yu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Ouyang Chen
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yi-Bin Qin
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meixuan Zhu
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jie Yuan
- Department of Pain Management, Nantong Hospital of Traditional Chinese Medicine, Jiangsu 226001, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| |
Collapse
|
5
|
Richman J, Phelps M. Activin Signaling Pathway Specialization During Embryonic and Skeletal Muscle Development in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:766-775. [PMID: 39052141 DOI: 10.1007/s10126-024-10345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Activin signaling is essential for proper embryonic, skeletal muscle, and reproductive development. Duplication of the pathway in teleost fish has enabled diversification of gene function across the pathway but how gene duplication influences the function of activin signaling in non-mammalian species is poorly understood. Full characterization of activin receptor signaling pathway expression was performed across embryonic development and during early skeletal muscle growth in rainbow trout (RBT, Oncorhynchus mykiss). Rainbow trout are a model salmonid species that have undergone two additional rounds of whole genome duplication. A small number of genes were expressed early in development and most genes increased expression throughout development. There was limited expression of activin Ab in RBT embryos despite these genes exhibiting significantly elevated expression in post-hatch skeletal muscle. CRISPR editing of the activin Aa1 ohnolog and subsequent production of meiotic gynogenetic offspring revealed that biallelic disruption of activin Aa1 did not result in developmental defects, as occurs with knockout of activin A in mammals. The majority of gynogenetic offspring exhibited homozygous activin Aa1 genotypes (wild type, in-frame, or frameshift) derived from the mosaic founder female. The research identifies mechanisms of specialization among the duplicated activin ohnologs across embryonic development and during periods of high muscle growth in larval and juvenile fish. The knowledge gained provides insights into potential viable gene-targeting approaches for engineering the activin receptor signaling pathway and establishes the feasibility of employing meiotic gynogenesis as a tool for producing homozygous F1 genome-edited fish for species with long-generation times, such as salmonids.
Collapse
Affiliation(s)
- Jasmine Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Michael Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
6
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
7
|
Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome. Genome Med 2024; 16:84. [PMID: 38898508 PMCID: PMC11186236 DOI: 10.1186/s13073-024-01356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease for which there is no effective cure. We aimed to identify potential drug targets for CKD and kidney function by integrating plasma proteome and transcriptome. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian randomization (MR) (for proteins), summary-based MR (SMR) (for mRNA), and colocalization (for coding genes) to identify potential multi-omics biomarkers for CKD and combined the protein-protein interaction, Gene Ontology (GO), and single-cell annotation to explore the potential biological roles. The outcomes included CKD, extensive kidney function phenotypes, and different CKD clinical types (IgA nephropathy, chronic glomerulonephritis, chronic tubulointerstitial nephritis, membranous nephropathy, nephrotic syndrome, and diabetic nephropathy). RESULTS Leveraging pQTLs of 3032 proteins from 3 large-scale GWASs and corresponding blood- and tissue-specific eQTLs, we identified 32 proteins associated with CKD, which were validated across diverse CKD datasets, kidney function indicators, and clinical types. Notably, 12 proteins with prior MR support, including fibroblast growth factor 5 (FGF5), isopentenyl-diphosphate delta-isomerase 2 (IDI2), inhibin beta C chain (INHBC), butyrophilin subfamily 3 member A2 (BTN3A2), BTN3A3, uromodulin (UMOD), complement component 4A (C4a), C4b, centrosomal protein of 170 kDa (CEP170), serologically defined colon cancer antigen 8 (SDCCAG8), MHC class I polypeptide-related sequence B (MICB), and liver-expressed antimicrobial peptide 2 (LEAP2), were confirmed. To our knowledge, 20 novel causal proteins have not been previously reported. Five novel proteins, namely, GCKR (OR 1.17, 95% CI 1.10-1.24), IGFBP-5 (OR 0.43, 95% CI 0.29-0.62), sRAGE (OR 1.14, 95% CI 1.07-1.22), GNPTG (OR 0.90, 95% CI 0.86-0.95), and YOD1 (OR 1.39, 95% CI 1.18-1.64,) passed the MR, SMR, and colocalization analysis. The other 15 proteins were also candidate targets (GATM, AIF1L, DQA2, PFKFB2, NFATC1, activin AC, Apo A-IV, MFAP4, DJC10, C2CD2L, TCEA2, HLA-E, PLD3, AIF1, and GMPR1). These proteins interact with each other, and their coding genes were mainly enrichment in immunity-related pathways or presented specificity across tissues, kidney-related tissue cells, and kidney single cells. CONCLUSIONS Our integrated analysis of plasma proteome and transcriptome data identifies 32 potential therapeutic targets for CKD, kidney function, and specific CKD clinical types, offering potential targets for the development of novel immunotherapies, combination therapies, or targeted interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Liu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Siyan Zhan
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
9
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton AM, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a transforming growth factor β ligand that signals specifically through activin receptor-like kinase 7. Biochem J 2024; 481:547-564. [PMID: 38533769 PMCID: PMC11088876 DOI: 10.1042/bcj20230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming growth factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.
Collapse
Affiliation(s)
- Kylie A. Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | | | | | - Aditi Dubey
- Alnylam Pharmaceuticals, Cambridge, MA, U.S.A
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
10
|
Du R, Wen L, Niu M, Zhao L, Guan X, Yang J, Zhang C, Liu H. Activin receptors in human cancer: Functions, mechanisms, and potential clinical applications. Biochem Pharmacol 2024; 222:116061. [PMID: 38369212 DOI: 10.1016/j.bcp.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Activins are members of the transforming growth factor-β (TGF-β) superfamily and act as key regulators in various physiological processes, such as follicle and embryonic development, as well as in multiple human diseases, including cancer. They have been established to signal through three type I and two type II serine/threonine kinase receptors, which, upon ligand binding, form a final signal-transducing receptor complex that activates downstream signaling and governs gene expression. Recent research highlighted the dysregulation of the expression or activity of activin receptors in multiple human cancers and their critical involvement in cancer progression. Furthermore, expression levels of activin receptors have been associated with clinicopathological features and patient outcomes across different cancers. However, there is currently a paucity of comprehensive systematic reviews of activin receptors in cancer. Thus, this review aimed to consolidate existing knowledge concerning activin receptors, with a primary emphasis on their signaling cascade and emerging biological functions, regulatory mechanisms, and potential clinical applications in human cancers in order to provide novel perspectives on cancer prognosis and targeted therapy.
Collapse
Affiliation(s)
- Ruochen Du
- First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liqi Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jiao Yang
- Department of Anatomy, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
11
|
Tangseefa P, Jin H, Zhang H, Xie M, Ibáñez CF. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. Mol Metab 2024; 81:101890. [PMID: 38307384 PMCID: PMC10863331 DOI: 10.1016/j.molmet.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND & AIMS Genome-wide studies have identified three missense variants in the human gene ACVR1C, encoding the TGF-β superfamily receptor ALK7, that correlate with altered waist-to-hip ratio adjusted for body mass index (WHR/BMI), a measure of body fat distribution. METHODS To move from correlation to causation and understand the effects of these variants on fat accumulation and adipose tissue function, we introduced each of the variants in the mouse Acvr1c locus and investigated metabolic phenotypes in comparison with a null mutation. RESULTS Mice carrying the I195T variant showed resistance to high fat diet (HFD)-induced obesity, increased catecholamine-induced adipose tissue lipolysis and impaired ALK7 signaling, phenocopying the null mutants. Mice with the I482V variant displayed an intermediate phenotype, with partial resistance to HFD-induced obesity, reduction in subcutaneous, but not visceral, fat mass, decreased systemic lipolysis and reduced ALK7 signaling. Surprisingly, mice carrying the N150H variant were metabolically indistinguishable from wild type under HFD, although ALK7 signaling was reduced at low ligand concentrations. CONCLUSION Together, these results validate ALK7 as an attractive drug target in human obesity and suggest a lower threshold for ALK7 function in humans compared to mice.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hong Jin
- Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Psychological and Cognitive Sciences, 100871 Beijing, China
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking University School of Psychological and Cognitive Sciences, 100871 Beijing, China; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14157, Sweden
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
12
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Zheng Y, Lebid A, Chung L, Fu J, Wang X, Otrocol A, Zarif JC, Yu H, Llosa NJ, Pardoll DM. Targeting the activin receptor 1C on CD4+ T cells for cancer immunotherapy. Oncoimmunology 2024; 13:2297503. [PMID: 38235319 PMCID: PMC10793694 DOI: 10.1080/2162402x.2023.2297503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Activins, members of the TGF-beta superfamily, have been isolated and identified in the endocrine system, but have not been substantially investigated in the context of the immune system and endocrine-unrelated cancers. Here, we demonstrated that tumor-bearing mice had elevated systemic activin levels, which correlated directly with tumor burden. Likewise, cancer patients have elevated plasma activin levels compared to healthy controls. We observed that both tumor and immune cells could be sources of activins. Importantly, our in vitro studies suggest that activins promote differentiation of naïve CD4+ cells into Foxp3-expressing induced regulatory T cells (Tregs), particularly when TGF-beta was limited in the culture medium. Database and qRT-PCR analysis of sorted major immune cell subsets in mice revealed that activin receptor 1c (ActRIC) was uniquely expressed on Tregs and that both ActRIC and ActRIIB (activin receptor 2b) were highly upregulated during iTreg differentiation. ActRIC-deficient naïve CD4+ cells were found to be defective in iTreg generation both in vitro and in vivo. Treg suppression assays were also performed, and ActRIC deficiency did not change the function or stability of iTregs. Mice lacking ActRIC or mice treated with monoclonal anti-ActRIC antibody were more resistant to tumor progression than wild-type controls. This phenotype was correlated with reduced expression of Foxp3 in CD4+ cells in the tumor microenvironment. In light of the information presented above, blocking activin-ActRIC signaling is a promising and disease-specific strategy to impede the accumulation of immunosuppressive iTregs in cancer. Therefore, it is a potential candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zheng
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andriana Lebid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoxu Wang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Otrocol
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jelani C. Zarif
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Yu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolas J. Llosa
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M. Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Griffin JD, Buxton JM, Culver JA, Barnes R, Jordan EA, White AR, Flaherty SE, Bernardo B, Ross T, Bence KK, Birnbaum MJ. Hepatic Activin E mediates liver-adipose inter-organ communication, suppressing adipose lipolysis in response to elevated serum fatty acids. Mol Metab 2023; 78:101830. [PMID: 38787338 PMCID: PMC10656223 DOI: 10.1016/j.molmet.2023.101830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE The liver is a central regulator of energy metabolism exerting its influence both through intrinsic processing of substrates such as glucose and fatty acid as well as by secreting endocrine factors, known as hepatokines, which influence metabolism in peripheral tissues. Human genome wide association studies indicate that a predicted loss-of-function variant in the Inhibin βE gene (INHBE), encoding the putative hepatokine Activin E, is associated with reduced abdominal fat mass and cardiometabolic disease risk. However, the regulation of hepatic Activin E and the influence of Activin E on adiposity and metabolic disease are not well understood. Here, we examine the relationship between hepatic Activin E and adipose metabolism, testing the hypothesis that Activin E functions as part of a liver-adipose, inter-organ feedback loop to suppress adipose tissue lipolysis in response to elevated serum fatty acids and hepatic fatty acid exposure. METHODS The relationship between hepatic Activin E and non-esterified fatty acids (NEFA) released from adipose lipolysis was assessed in vivo using fasted CL 316,243 treated mice and in vitro using Huh7 hepatocytes treated with fatty acids. The influence of Activin E on adipose lipolysis was examined using a combination of Inhbe knockout mice, a mouse model of hepatocyte-specific overexpression of Activin E, and mouse brown adipocytes treated with Activin E enriched media. RESULTS Increasing hepatocyte NEFA exposure in vivo by inducing adipose lipolysis through fasting or CL 316,243 treatment increased hepatic Inhbe expression. Similarly, incubation of Huh7 human hepatocytes with fatty acids increased expression of INHBE. Genetic ablation of Inhbe in mice increased fasting circulating NEFA and hepatic triglyceride accumulation. Treatment of mouse brown adipocytes with Activin E conditioned media and overexpression of Activin E in mice suppressed adipose lipolysis and reduced serum FFA levels, respectively. The suppressive effects of Activin E on lipolysis were lost in CRISPR-mediated ALK7 deficient cells and ALK7 kinase deficient mice. Disruption of the Activin E-ALK7 signaling axis in Inhbe KO mice reduced adiposity upon HFD feeding, but caused hepatic steatosis and insulin resistance. CONCLUSIONS Taken together, our data suggest that Activin E functions as part of a liver-adipose feedback loop, such that in response to increased serum free fatty acids and elevated hepatic triglyceride, Activin E is released from hepatocytes and signals in adipose through ALK7 to suppress lipolysis, thereby reducing free fatty acid efflux to the liver and preventing excessive hepatic lipid accumulation. We find that disrupting this Activin E-ALK7 inter-organ communication network by ablation of Inhbe in mice increases lipolysis and reduces adiposity, but results in elevated hepatic triglyceride and impaired insulin sensitivity. These results highlight the liver-adipose, Activin E-ALK7 signaling axis as a critical regulator of metabolic homeostasis.
Collapse
Affiliation(s)
- John D Griffin
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA.
| | - Joanne M Buxton
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Jeffrey A Culver
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Robert Barnes
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Emily A Jordan
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Alexis R White
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Stephen E Flaherty
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Trenton Ross
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Perry AS, Zhao S, Gajjar P, Murthy VL, Lehallier B, Miller P, Nair S, Neill C, Carr JJ, Fearon W, Kapadia S, Kumbhani D, Gillam L, Lindenfeld J, Farrell L, Marron MM, Tian Q, Newman AB, Murabito J, Gerszten RE, Nayor M, Elmariah S, Lindman BR, Shah R. Proteomic architecture of frailty across the spectrum of cardiovascular disease. Aging Cell 2023; 22:e13978. [PMID: 37731195 PMCID: PMC10652351 DOI: 10.1111/acel.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | | | | | - Patricia Miller
- Department of Medicine, and Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sangeeta Nair
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Colin Neill
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - J. Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - William Fearon
- Department of Medicine, Division of CardiologyStanford Medical CenterPalo AltoCaliforniaUSA
| | - Samir Kapadia
- Department of Medicine, Division of CardiologyCleveland Clinic FoundationClevelandOhioUSA
| | - Dharam Kumbhani
- Department of Medicine, Division of CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Linda Gillam
- Department of Cardiovascular MedicineMorristown Medical CenterMorristownNew JerseyUSA
| | - JoAnn Lindenfeld
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Laurie Farrell
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Megan M. Marron
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qu Tian
- National Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Medicine and Clinical and Translational ScienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joanne Murabito
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Robert E. Gerszten
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Sammy Elmariah
- Department of Medicine, Division of CardiologyThe University of CaliforniaSan FranciscoCaliforniaUSA
| | - Brian R. Lindman
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
16
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton A, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a TGFβ ligand that signals specifically through activin receptor-like kinase 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559288. [PMID: 37808681 PMCID: PMC10557571 DOI: 10.1101/2023.09.25.559288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, similar to ActC. Collectively, our results establish ActE as an ALK7 ligand, thereby providing a link between genetic and in vivo studies of ActE as a regulator of adipose tissue.
Collapse
Affiliation(s)
- Kylie A Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
18
|
Zhao M, Okunishi K, Bu Y, Kikuchi O, Wang H, Kitamura T, Izumi T. Targeting activin receptor-like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight 2023; 8:161229. [PMID: 36626233 PMCID: PMC9977491 DOI: 10.1172/jci.insight.161229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Activin receptor-like kinase 7 (ALK7) is a type I receptor in the TGF-β superfamily preferentially expressed in adipose tissue and associated with lipid metabolism. Inactivation of ALK7 signaling in mice results in increased lipolysis and resistance to both genetic and diet-induced obesity. Human genetic studies have recently revealed an association between ALK7 variants and both reduced waist to hip ratios and resistance to development of diabetes. In the present study, treatment with a neutralizing mAb against ALK7 caused a substantial loss of adipose mass and improved glucose intolerance and insulin resistance in both genetic and diet-induced mouse obesity models. The enhanced lipolysis increased fatty acid supply from adipocytes to promote fatty acid oxidation in muscle and oxygen consumption at the whole-body level. The treatment temporarily increased hepatic triglyceride levels, which resolved with long-term Ab treatment. Blocking of ALK7 signals also decreased production of its ligand, growth differentiation factor 3, by downregulating S100A8/A9 release from adipocytes and, subsequently, IL-1β release from adipose tissue macrophages. These findings support the feasibility of potential therapeutics targeting ALK7 as a treatment for obesity and diabetes.
Collapse
Affiliation(s)
- Min Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Yun Bu
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, and
| |
Collapse
|
19
|
Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24043332. [PMID: 36834742 PMCID: PMC9963072 DOI: 10.3390/ijms24043332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advances in technology and biomedical knowledge have led to the effective diagnosis and treatment of an increasing number of rare diseases. Pulmonary arterial hypertension (PAH) is a rare disorder of the pulmonary vasculature that is associated with high mortality and morbidity rates. Although significant progress has been made in understanding PAH and its diagnosis and treatment, numerous unanswered questions remain regarding pulmonary vascular remodeling, a major factor contributing to the increase in pulmonary arterial pressure. Here, we discuss the role of activins and inhibins, both of which belong to the TGF-β superfamily, in PAH development. We examine how these relate to signaling pathways implicated in PAH pathogenesis. Furthermore, we discuss how activin/inhibin-targeting drugs, particularly sotatercep, affect pathophysiology, as these target the afore-mentioned specific pathway. We highlight activin/inhibin signaling as a critical mediator of PAH development that is to be targeted for therapeutic gain, potentially improving patient outcomes in the future.
Collapse
|
20
|
Zhang FM, Wang B, Hu H, Zhang YY, Chen HH, Jiang ZJ, Zeng MX, Liu XJ. Transcriptional profiles of TGF-β superfamily members in the lumbar DRGs and the effects of activins A and C on inflammatory pain in rats. J Physiol Biochem 2023:10.1007/s13105-022-00943-z. [PMID: 36696051 DOI: 10.1007/s13105-022-00943-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Bing Wang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Ying-Ying Zhang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
| | - Hao-Hao Chen
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Zuo-Jie Jiang
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Mei-Xing Zeng
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China.
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
21
|
Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers (Basel) 2022; 15:cancers15010147. [PMID: 36612143 PMCID: PMC9817897 DOI: 10.3390/cancers15010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Current prognostic and diagnostic tests for prostate cancer are not able to accurately distinguish between aggressive and latent cancer. Members of the transforming growth factor-β (TGFB) family are known to be important in regulating prostate cell growth and some have been shown to be dysregulated in prostate cancer. Therefore, the aims of this study were to examine expression of TGFB family members in primary prostate tumour tissue and the phenotypic effect of activins on prostate cell growth. Tissue cores of prostate adenocarcinoma and normal prostate were immuno-stained and protein expression was compared between samples with different Gleason grades. The effect of exogenous treatment with, or overexpression of, activins on prostate cell line growth and migration was examined. Activin B expression was increased in cores containing higher Gleason patterns and overexpression of activin B inhibited growth of PNT1A cells but increased growth and migration of the metastatic PC3 cells compared to empty vector controls. In contrast, activin C expression decreased in higher Gleason grades and overexpression increased growth of PNT1A cells and decreased growth of PC3 cells. In conclusion, increased activin B and decreased activin C expression is associated with increasing prostate tumor grade and therefore have potential as prognostic markers of aggressive prostate cancer.
Collapse
|
22
|
Newfeld SJ, O’Connor MB. New aspects of TGF-β superfamily signaling in development and disease (2022 FASEB meeting review). Fac Rev 2022; 11:36. [PMID: 36644295 PMCID: PMC9816873 DOI: 10.12703/r/11-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The 13th Federation of American Societies for Experimental Biology (FASEB) Summer Research Conference, "TGF-β superfamily signaling in development and disease" was convened at the Grand Hotel in Malahide, Ireland in July 2022. The Transforming Growth Factor-β (TGF-β) family of secreted proteins consists of agents of intercellular communication found in all multicellular animals. Attending the meeting was a diverse group of scholars with shared interests in understanding TGF-β signaling mechanisms, normal functions, and the diseases associated with misregulation and mutation. Despite intense study over the previous 35 years, new features of TGF-β activity continue to be discovered. This meeting report offers 21 investigator-provided summaries that illustrate the breadth of the thought-provoking presentations. An emerging theme of the meeting was the power of cross-disciplinary studies, such as one combining immunology, biochemistry, and structural biology, to unravel the secrets of parasitic TGF-β mimics. Please join us at the next meeting.
Collapse
Affiliation(s)
- Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Michael B O’Connor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
24
|
Lee ES, Guo T, Srivastava RK, Shabbir A, Ibáñez CF. Activin receptor ALK4 promotes adipose tissue hyperplasia by suppressing differentiation of adipocyte precursors. J Biol Chem 2022; 299:102716. [PMID: 36403856 PMCID: PMC9758429 DOI: 10.1016/j.jbc.2022.102716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Adipocyte hyperplasia and hypertrophy are the two main processes contributing to adipose tissue expansion, yet the mechanisms that regulate and balance their involvement in obesity are incompletely understood. Activin B/GDF-3 receptor ALK7 is expressed in mature adipocytes and promotes adipocyte hypertrophy upon nutrient overload by suppressing adrenergic signaling and lipolysis. In contrast, the role of ALK4, the canonical pan-activin receptor, in adipose tissue is unknown. Here, we report that, unlike ALK7, ALK4 is preferentially expressed in adipocyte precursors, where it suppresses differentiation, allowing proliferation and adipose tissue expansion. ALK4 expression in adipose tissue increases upon nutrient overload and positively correlates with fat depot mass and body weight, suggesting a role in adipose tissue hyperplasia during obesity. Mechanistically, ALK4 signaling suppresses expression of CEBPα and PPARγ, two master regulators of adipocyte differentiation. Conversely, ALK4 deletion enhances CEBPα/PPARγ expression and induces premature adipocyte differentiation, which can be rescued by CEBPα knockdown. These results clarify the function of ALK4 in adipose tissue and highlight the contrasting roles of the two activin receptors in the regulation of adipocyte hyperplasia and hypertrophy during obesity.
Collapse
Affiliation(s)
- Ee-Soo Lee
- Department of Physiology and Life Sciences Institute, National University of, Singapore, Singapore
| | - Tingqing Guo
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Raj Kamal Srivastava
- Department of Physiology and Life Sciences Institute, National University of, Singapore, Singapore
| | - Assim Shabbir
- Division of General Surgery, University Surgical Cluster, National University, Health System, Singapore
| | - Carlos F Ibáñez
- Department of Physiology and Life Sciences Institute, National University of, Singapore, Singapore; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences, Beijing, China; Chinese Institute for Brain Research, Life Science Park, Beijing, China; Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
25
|
Deaton AM, Dubey A, Ward LD, Dornbos P, Flannick J, Yee E, Ticau S, Noetzli L, Parker MM, Hoffing RA, Willis C, Plekan ME, Holleman AM, Hinkle G, Fitzgerald K, Vaishnaw AK, Nioi P. Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity. Nat Commun 2022; 13:4319. [PMID: 35896531 PMCID: PMC9329324 DOI: 10.1038/s41467-022-31757-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Identifying genetic variants associated with lower waist-to-hip ratio can reveal new therapeutic targets for abdominal obesity. We use exome sequences from 362,679 individuals to identify genes associated with waist-to-hip ratio adjusted for BMI (WHRadjBMI), a surrogate for abdominal fat that is causally linked to type 2 diabetes and coronary heart disease. Predicted loss of function (pLOF) variants in INHBE associate with lower WHRadjBMI and this association replicates in data from AMP-T2D-GENES. INHBE encodes a secreted protein, the hepatokine activin E. In vitro characterization of the most common INHBE pLOF variant in our study, indicates an in-frame deletion resulting in a 90% reduction in secreted protein levels. We detect associations with lower WHRadjBMI for variants in ACVR1C, encoding an activin receptor, further highlighting the involvement of activins in regulating fat distribution. These findings highlight activin E as a potential therapeutic target for abdominal obesity, a phenotype linked to cardiometabolic disease.
Collapse
Affiliation(s)
| | | | | | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Elaine Yee
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | - Paul Nioi
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|