1
|
Wankowicz SA, Fraser JS. Advances in uncovering the mechanisms of macromolecular conformational entropy. Nat Chem Biol 2025; 21:623-634. [PMID: 40275100 PMCID: PMC12103944 DOI: 10.1038/s41589-025-01879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/10/2025] [Indexed: 04/26/2025]
Abstract
During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Dokas S, Taylor DK, Good LL, Mohanaraj S, Maillard RA. Identifying Allosteric Hotspots in Mycobacterium tuberculosis cAMP Receptor Protein through Structural Homology. Biochemistry 2025; 64:801-811. [PMID: 39887300 PMCID: PMC11840924 DOI: 10.1021/acs.biochem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Understanding the mechanisms of allosteric regulation in response to second messengers is crucial for advancing basic and applied research. This study focuses on the differential allosteric regulation by the ubiquitous signaling molecule, cAMP, in the cAMP receptor protein from Escherichia coli (CRPEcoli) and from Mycobacterium tuberculosis (CRPMTB). By introducing structurally homologous mutations from allosteric hotspots previously identified in CRPEcoli into CRPMTB and examining their effects on protein solution structure, stability and function, we aimed to determine the factors contributing to their differential allosteric regulation. Our results demonstrate that the mutations did not significantly alter the overall fold, assembly and thermodynamic stability of CRPMTB, but had varying effects on cAMP binding affinity and cooperativity. Interestingly, the mutations had minimal impact on the specific binding of CRPMTB to DNA promoter sites. However, we found that cAMP primarily reduces nonspecific CRPMTB-DNA complexes and that the mutants largely lose this ability. Furthermore, our experiments revealed that CRPMTB-DNA complexes serve as a nucleation point for additional binding of CRPMTB proteins to form high-order oligomers with the DNA. Overall, our findings highlight the importance of both cAMP and DNA interactions in modulating the allosteric regulation of CRPMTB and provide insights into the differential responses of CRPEcoli and CRPMTB to cAMP.
Collapse
Affiliation(s)
- Stephen
P. Dokas
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Daniel K. Taylor
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Lydia L. Good
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Sanuja Mohanaraj
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Rodrigo A. Maillard
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
- Institute
of Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
3
|
Gampp O, Kadavath H, Riek R. NMR tools to detect protein allostery. Curr Opin Struct Biol 2024; 86:102792. [PMID: 38428364 DOI: 10.1016/j.sbi.2024.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Allostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities. A major challenge in structural and molecular biology today is unraveling allosteric sites in proteins, to elucidate the detailed mechanism of allostery and the development of allosteric drugs. Here we summarize the recently developed tools and approaches which enable the elucidation of regulatory hotspots and correlated motion in biomolecules, focusing primarily on solution-state nuclear magnetic resonance spectroscopy (NMR). These tools open an avenue towards a rational understanding of the mechanism of allostery and provide essential information for the design of allosteric drugs.
Collapse
Affiliation(s)
- Olivia Gampp
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Harindranath Kadavath
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland; St. Jude Children's Research Hospital, 262 Danny Thomas Place, 38105 Memphis, Tennessee, USA. https://twitter.com/harijik
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Acton OJ, Sheppard D, Kunzelmann S, Caswell SJ, Nans A, Burgess AJO, Kelly G, Morris ER, Rosenthal PB, Taylor IA. Platform-directed allostery and quaternary structure dynamics of SAMHD1 catalysis. Nat Commun 2024; 15:3775. [PMID: 38710701 PMCID: PMC11074143 DOI: 10.1038/s41467-024-48237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.
Collapse
Affiliation(s)
- Oliver J Acton
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ailidh J O Burgess
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Roy M, Horovitz A. Distinguishing between concerted, sequential and barrierless conformational changes: Folding versus allostery. Curr Opin Struct Biol 2023; 83:102721. [PMID: 37922762 DOI: 10.1016/j.sbi.2023.102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Sapienza PJ, Bonin JP, Jinasena HD, Li K, Dieckhaus H, Popov KI, Aubé J, Lee AL. Mixed, nonclassical behavior in a classic allosteric protein. Proc Natl Acad Sci U S A 2023; 120:e2308338120. [PMID: 37695919 PMCID: PMC10515163 DOI: 10.1073/pnas.2308338120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Allostery is a major driver of biological processes requiring coordination. Thus, it is one of the most fundamental and remarkable phenomena in nature, and there is motivation to understand and manipulate it to a multitude of ends. Today, it is often described in terms of two phenomenological models proposed more than a half-century ago involving only T(tense) or R(relaxed) conformations. Here, methyl-based NMR provides extensive detail on a dynamic T to R switch in the classical dimeric allosteric protein, yeast chorismate mutase (CM), that occurs in the absence of substrate, but only with the activator bound. Switching of individual subunits is uncoupled based on direct observation of mixed TR states in the dimer. This unique finding excludes both classic models and solves the paradox of a coexisting hyperbolic binding curve and highly skewed substrate-free T-R equilibrium. Surprisingly, structures of the activator-bound and effector-free forms of CM appear the same by NMR, providing another example of the need to account for dynamic ensembles. The apo enzyme, which has a sigmoidal activity profile, is shown to switch, not to R, but to a related high-energy state. Thus, the conformational repertoire of CM does not just change as a matter of degree depending on the allosteric input, be it effector and/or substrate. Rather, the allosteric model appears to completely change in different contexts, which is only consistent with modern ensemble-based frameworks.
Collapse
Affiliation(s)
- Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jeffrey P. Bonin
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - H.P. Dinusha Jinasena
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Henry Dieckhaus
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Konstantin I. Popov
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
7
|
Gianni S, Jemth P. Allostery Frustrates the Experimentalist. J Mol Biol 2023; 435:167934. [PMID: 36586463 DOI: 10.1016/j.jmb.2022.167934] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Proteins interact with other proteins, with nucleic acids, lipids, carbohydrates and various small molecules in the living cell. These interactions have been quantified and structurally characterized in numerous studies such that we today have a comprehensive picture of protein structure and function. However, proteins are dynamic and even folded proteins are likely more heterogeneous than they appear in most descriptions. One property of proteins that relies on dynamics and heterogeneity is allostery, the ability of a protein to change structure and function upon ligand binding to an allosteric site. Over the last decades the concept of allostery was broadened to embrace all types of long-range interactions across a protein including purely entropic changes without a conformational change in single protein domains. But with this re-definition came a problem: How do we measure allostery? In this opinion, we discuss some caveats arising from the quantitative description of single-domain allostery from an experimental perspective and how the limitations cannot be separated from the definition of allostery per se. Furthermore, we attempt to tie together allostery with the concept of frustration in an effort to investigate the links between these two complex, and yet general, properties of proteins. We arrive at the conclusion that the sensitivity to perturbation of allosteric networks in single protein domains is too large for the networks to be of significant biological relevance.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|