1
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
3
|
Biswas A, Choudhuri I, Arnold E, Lyumkis D, Haldane A, Levy RM. Kinetic coevolutionary models predict the temporal emergence of HIV-1 resistance mutations under drug selection pressure. Proc Natl Acad Sci U S A 2024; 121:e2316662121. [PMID: 38557187 PMCID: PMC11009627 DOI: 10.1073/pnas.2316662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.
Collapse
Affiliation(s)
- Avik Biswas
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Indrani Choudhuri
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ08854
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Graduate School of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Allan Haldane
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Physics, Temple University, Philadelphia, PA19122
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| |
Collapse
|
4
|
Meng S, Gao Y, Qiang G, Hu Z, Shan Q, Wang J, Wang Y, Mou J. Rational design, synthesis and biological evaluation of novel HIV-1 protease inhibitors containing 2-phenylacetamide derivatives as P2 ligands with potent activity against DRV-Resistant HIV-1 variants. Bioorg Med Chem Lett 2024; 101:129651. [PMID: 38342391 DOI: 10.1016/j.bmcl.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.
Collapse
Affiliation(s)
- Sihan Meng
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guowei Qiang
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China
| | - Zhiwei Hu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou 221006, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
5
|
Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate. Viruses 2024; 16:236. [PMID: 38400012 PMCID: PMC10892587 DOI: 10.3390/v16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse
Affiliation(s)
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Abdullahi A, Diaz AG, Fopoussi OM, Beloukas A, Fokom Defo V, Kouanfack C, Torimiro J, Geretti AM. A detailed characterization of drug resistance during darunavir/ritonavir monotherapy highlights a high barrier to the emergence of resistance mutations in protease but identifies alternative pathways of resistance. J Antimicrob Chemother 2024; 79:339-348. [PMID: 38153241 PMCID: PMC10832591 DOI: 10.1093/jac/dkad386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Maintenance monotherapy with ritonavir-boosted darunavir has yielded variable outcomes and is not recommended. Trial samples offer valuable opportunities for detailed studies. We analysed samples from a 48 week trial in Cameroon to obtain a detailed characterization of drug resistance. METHODS Following failure of NNRTI-based therapy and virological suppression on PI-based therapy, participants were randomized to ritonavir-boosted darunavir (n = 81) or tenofovir disoproxil fumarate/lamivudine +ritonavir-boosted lopinavir (n = 39). At study entry, PBMC-derived HIV-1 DNA underwent bulk Protease and Reverse Transcriptase (RT) sequencing. At virological rebound (confirmed or last available HIV-1 RNA ≥ 60 copies/mL), plasma HIV-1 RNA underwent ultradeep Protease and RT sequencing and bulk Gag-Protease sequencing. The site-directed mutant T375A (p2/p7) was characterized phenotypically using a single-cycle assay. RESULTS NRTI and NNRTI resistance-associated mutations (RAMs) were detected in 52/90 (57.8%) and 53/90 (58.9%) HIV-1 DNA samples, respectively. Prevalence in rebound HIV-1 RNA (ritonavir-boosted darunavir, n = 21; ritonavir-boosted lopinavir, n = 2) was 9/23 (39.1%) and 10/23 (43.5%), respectively, with most RAMs detected at frequencies ≥15%. The resistance patterns of paired HIV-1 DNA and RNA sequences were partially consistent. No darunavir RAMs were found. Among eight participants experiencing virological rebound on ritonavir-boosted darunavir (n = 12 samples), all had Gag mutations associated with PI exposure, including T375N, T375A (p2/p7), K436R (p7/p1) and substitutions in p17, p24, p2 and p6. T375A conferred 10-fold darunavir resistance and increased replication capacity. CONCLUSIONS The study highlights the high resistance barrier of ritonavir-boosted darunavir while identifying alternative pathways of resistance through Gag substitutions. During virological suppression, resistance patterns in HIV-1 DNA reflect treatment history, but due to technical and biological considerations, cautious interpretation is warranted.
Collapse
Affiliation(s)
- Adam Abdullahi
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, UK
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ana Garcia Diaz
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Olga Mafotsing Fopoussi
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Apostolos Beloukas
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, Athens, Greece
| | - Victoire Fokom Defo
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Charles Kouanfack
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Judith Torimiro
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Anna Maria Geretti
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Rome, Italy
- Department of Infection, North Middlesex University Hospital, London, UK
- School of Immunity and Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
7
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Lockbaum GJ, Rusere LN, Henes M, Kosovrasti K, Rao DN, Spielvogel E, Lee SK, Nalivaika EA, Swanstrom R, Yilmaz NK, Schiffer CA, Ali A. HIV-1 protease inhibitors with a P1 phosphonate modification maintain potency against drug-resistant variants by increased interactions with flap residues. Eur J Med Chem 2023; 257:115501. [PMID: 37244161 PMCID: PMC10332405 DOI: 10.1016/j.ejmech.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Protease inhibitors are the most potent antivirals against HIV-1, but they still lose efficacy against resistant variants. Improving the resistance profile is key to developing more robust inhibitors, which may be promising candidates for simplified next-generation antiretroviral therapies. In this study, we explored analogs of darunavir with a P1 phosphonate modification in combination with increasing size of the P1' hydrophobic group and various P2' moieties to improve potency against resistant variants. The phosphonate moiety substantially improved potency against highly mutated and resistant HIV-1 protease variants, but only when combined with more hydrophobic moieties at the P1' and P2' positions. Phosphonate analogs with a larger hydrophobic P1' moiety maintained excellent antiviral potency against a panel of highly resistant HIV-1 variants, with significantly improved resistance profiles. The cocrystal structures indicate that the phosphonate moiety makes extensive hydrophobic interactions with the protease, especially with the flap residues. Many residues involved in these protease-inhibitor interactions are conserved, enabling the inhibitors to maintain potency against highly resistant variants. These results highlight the need to balance inhibitor physicochemical properties by simultaneous modification of chemical groups to further improve resistance profiles.
Collapse
Affiliation(s)
- Gordon J Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Linah N Rusere
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States.
| | - Akbar Ali
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
9
|
Spielvogel E, Lee SK, Zhou S, Lockbaum GJ, Henes M, Sondgeroth A, Kosovrasti K, Nalivaika EA, Ali A, Yilmaz NK, Schiffer CA, Swanstrom R. Selection of HIV-1 for resistance to fifth-generation protease inhibitors reveals two independent pathways to high-level resistance. eLife 2023; 12:e80328. [PMID: 36920025 PMCID: PMC10065791 DOI: 10.7554/elife.80328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Darunavir (DRV) is exceptional among potent HIV-1 protease inhibitors (PIs) in high drug concentrations that are achieved in vivo. Little is known about the de novo resistance pathway for DRV. We selected for resistance to high drug concentrations against 10 PIs and their structural precursor DRV. Mutations accumulated through two pathways (anchored by protease mutations I50V or I84V). Small changes in the inhibitor P1'-equivalent position led to preferential use of one pathway over the other. Changes in the inhibitor P2'-equivalent position determined differences in potency that were retained in the resistant viruses and that impacted the selected mutations. Viral variants from the two pathways showed differential selection of compensatory mutations in Gag cleavage sites. These results reveal the high level of selective pressure that is attainable with fifth-generation PIs and how features of the inhibitor affect both the resistance pathway and the residual potency in the face of resistance.
Collapse
Affiliation(s)
- Ean Spielvogel
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Mina Henes
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Amy Sondgeroth
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Akbar Ali
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|