1
|
Hang Q, Li W, Guo J, Zuo S, Yang Y, Wu C, Yong W, Li C, Gu J, Hou S. Inhibitory effects of β-galactoside α2,6-sialyltransferase 1 on the Hippo pathway in breast cancer cells. J Biol Chem 2025:110266. [PMID: 40409546 DOI: 10.1016/j.jbc.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
The Hippo signaling pathway is crucial in pathological functions such as tumors. Yes-associated protein (YAP), a well-known downstream effector of the Hippo pathway, has been intensively studied; emerging evidence suggests that multiple cell membrane receptors can regulate the Hippo pathway. However, the mechanistic roles of these upstream pathways remain largely unknown. Here, we identified the β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) catalyzed α2,6-sialylation as a pivotal upstream modulator of Hippo pathway by a glycosyltransferases (GTs) overexpression sub-library screening. Depletion of ST6GAL1 results in increased phosphorylation of LATS1 and YAP, which induces YAP's nuclear localization, transcriptional activity, and multiple biological functions in breast cancer cells, including cell adhesion, spreading, growth, migration, and metastasis. These phenotypes were majorly due to the altered signal transduction of cell surface receptors, as deletion of ST6GAL1 exhibited attenuated GPCR, EGFR, and Integrins response and suppression of dephosphorylation of YAP. Mechanistically, these representative membrane receptors are α2,6-sialylated proteins, and their α2,6-sialylation could be inhibited by β-galactoside α2,3-sialyltransferase 4 (ST3GAL4) via substrate competition. In addition, the α2,6-sialylation is essential for Integrin β1-EGFR/LPAR4 complex formation. Altogether, our findings demonstrate ST6GAL1 is an upstream negative regulator of the Hippo pathway in breast cancer cells, providing a new insight into the regulation between N-glycosylation and Hippo signaling.
Collapse
Affiliation(s)
- Qinglei Hang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining, Jiangsu 221200, China; Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jingya Guo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shiying Zuo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yawen Yang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Can Wu
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wen Yong
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Caimin Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
2
|
Salmerón C, Tomás Bort E, Sriram K, Javadi-Paydar M, Smitham JE, Pham K, Grose RP, McCormick PJ, DiNardo A, Weitz J, Tiriac H, Lowy AM, Insel PA. Histamine H1 Receptor: A potential therapeutic target for pancreatic ductal adenocarcinoma. J Pharmacol Exp Ther 2025; 392:103573. [PMID: 40288207 DOI: 10.1016/j.jpet.2025.103573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5-year survival (∼13%). Thus, new, effective, and ideally, less toxic therapies are desperately needed. Epidemiologic studies have found that patients with PDAC prescribed H1-antihistamines have improved survival. Expression of the histamine H1 receptor (HRH1), a G protein-coupled receptor which is blocked by approved H1-antihistamines, is increased by ∼20-fold in PDAC tumors compared with normal pancreas. Here, we used bioinformatic and molecular biological techniques to identify the cellular localization of HRH1 in the PDAC tumor microenvironment, assess functional responses to HRH1 activation, and define its potential biological roles in PDAC. We found that HRH1 is primarily expressed in cancer cells of PDAC tumors in humans and KPC mice (mice engineered to develop PDAC) and signals via G protein q/11 to increase intracellular Ca2+. HRH1 activation increases migration and invasion by PDAC cancer cells. Orally administered fexofenadine, an H1-antihistamine, was bioavailable in the tumors of KPC mice and yielded smaller pancreatic tumor tissue weights and lower expression of immunomodulatory (interleukin 6 and PD-1) and fibrotic (Col1A1) genes than in vehicle-control KPC mice. Thus, PDAC cancer cells express HRH1, which is functional in vitro and in vivo, suggesting that the repurposing of approved H1-antihistamines may be an efficacious and safe therapeutic approach for patients with PDAC. SIGNIFICANCE STATEMENT: Pancreatic ductal adenocarcinoma (PDAC) has a ∼13% 5-year survival rate, highlighting the need for new therapies. The HRH1 (histamine) receptor, associated with poorer survival, is upregulated in PDAC tumors. This study found that HRH1 is functional in PDAC cells, increasing intracellular Ca2+ via Gq/11 and promoting tumorigenic responses. KPC mice treated with an H1-antihistamine have reduced pancreas weight and lower proinflammatory and fibrotic markers in PDAC tumors. Thus, HRH1 may be a potential target for repurposing approved H1-antihistamines to treat PDAC.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Elena Tomás Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jane E Smitham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Kimberly Pham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Anna DiNardo
- Department of Dermatology, University of California San Diego, La Jolla, California
| | - Jonathan Weitz
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
3
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2025; 69:427-448. [PMID: 38565403 PMCID: PMC11954808 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
5
|
Tan W, Chen G, Ci Q, Deng Z, Gu R, Yang D, Dai F, Liu H, Cheng Y. Elevated ITGA3 expression serves as a novel prognostic biomarker and regulates tumor progression in cervical cancer. Sci Rep 2024; 14:27063. [PMID: 39511266 PMCID: PMC11543847 DOI: 10.1038/s41598-024-75770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with advanced and recurrent cervical cancer often lack satisfactory treatment outcomes. Thus, it is necessary to seek reliable biomarkers that provide the ability to identify the disease at an early stage and predict the patient prognosis, providing new strategies for the treatment of cervical cancer. The sequencing data of ITGA3 were retrieved from public datasets. Immune infiltration and sensitivity of potential immunotherapy and chemotherapy have been analyzed between two subgroups. Functional analysis was applied to excavate the related pathways of ITGA3 in cervical cancer. Furthermore, the impact of ITGA3 in tumor progression has been verified in vitro. The results revealed that the level of ITGA3 was upregulated in cervical cancer, and was positively correlated with worse prognosis. The tumor microenvironment of patients in the high-risk group was immunosuppressed. Patients in high-risk group may not benefit from immunotherapy, but be may be sensitive to several chemotherapy drugs. Notably, the angiogenesis, epithelial mesenchymal transition, and PI3K pathway were increased in high-risk group. Collectively, ITGA3 is a marker of poor prognosis and promotes tumor progression by regulating PI3K/AKT pathway in cervical cancer. Our results provide new insights for potential molecular targeted therapy and prognostic prediction of cervical cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
6
|
Marcano-García LF, Zaza C, Dalby OPL, Joseph MD, Cappellari MV, Simoncelli S, Aramendía PF. Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy. NANO LETTERS 2024; 24:13834-13842. [PMID: 39432814 PMCID: PMC11528428 DOI: 10.1021/acs.nanolett.4c04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association (Ka) and dissociation (Kd) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Collapse
Affiliation(s)
- Luis F. Marcano-García
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Cecilia Zaza
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
| | - Olivia P. L. Dalby
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Megan D. Joseph
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - M. Victoria Cappellari
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Sabrina Simoncelli
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Pedro F. Aramendía
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
Raskov H, Orhan A, Agerbæk MØ, Gögenur I. The impact of platelets on the metastatic potential of tumour cells. Heliyon 2024; 10:e34361. [PMID: 39114075 PMCID: PMC11305202 DOI: 10.1016/j.heliyon.2024.e34361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In cancer, activation of platelets by tumor cells is critical to disease progression. Development of precise antiplatelet targeting may improve outcomes from anticancer therapy. Alongside a distinct shift in functionality such as pro-metastatic and pro-coagulant properties, platelet production is often accelerated significantly early in carcinogenesis and the cancer-associated thrombocytosis increases the risk of metastasis formation and thromboembolic events. Tumor-activated platelets facilitate the proliferation of migrating tumor cells and shield them from immune surveillance and physical stress during circulation. Additionally, platelet-tumor cell interactions promote tumor cell intravasation, intravascular arrest, and extravasation through a repertoire of adhesion molecules, growth factors and angiogenic factors. Particularly, the presence of circulating tumor cell (CTC) clusters in association with platelets is a negative prognostic indicator. The contribution of platelets to the metastatic process is an area of intense investigation and this review provides an overview of the advances in understanding platelet-tumor cell interactions and their contribution to disease progression. Also, we review the potential of targeting platelets to interfere with the metastatic process.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mette Ørskov Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Andersen LL, Huang Y, Urban C, Oubraham L, Winheim E, Stafford C, Nagl D, O'Duill F, Ebert T, Engleitner T, Paludan SR, Krug A, Rad R, Hornung V, Pichlmair A. Systematic P2Y receptor survey identifies P2Y11 as modulator of immune responses and virus replication in macrophages. EMBO J 2023; 42:e113279. [PMID: 37881155 PMCID: PMC10690470 DOI: 10.15252/embj.2022113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Yiqi Huang
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Christian Urban
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Lila Oubraham
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Elena Winheim
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Che Stafford
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Dennis Nagl
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Fionan O'Duill
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Ebert
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Søren Riis Paludan
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
| | - Anne Krug
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Veit Hornung
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Pichlmair
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
- German Center for Infection Research (DZIF), Munich Partner SiteMunichGermany
| |
Collapse
|