1
|
Chen Z, Wu Y, Qin L, Wang C, Li Z, Luo X, Wei W, Zhao J. A systematic study of regulating inorganic polyphosphates production in Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:816-826. [PMID: 40291979 PMCID: PMC12032877 DOI: 10.1016/j.synbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Inorganic polyphosphate (polyP), a linear polymer of orthophosphate residues, plays critical roles in diverse biological processes spanning blood coagulation, immunomodulation, and post-translational protein modifications in eukaryotes. Notably, long-chain polyP (>100 phosphate units) exhibits distinct biological functionalities compared to shorter-chain counterparts. While Saccharomyces cerevisiae serves as a promising microbial platform for polyP biosynthesis, the genetic regulatory mechanisms underlying polyP metabolism remain poorly elucidated. Here, we systematically investigated the genetic determinants governing intracellular polyP levels and chain length dynamics in yeast. Through screening a library of 55 single-gene knockout strains, we identified six mutants (Δddp1, Δvip1, Δppn1, Δppn2, Δecm33, and Δccr4) exhibiting elevated polyP accumulation, whereas deletions of vtc1, kcs1, vma22, vma5, pho85, vtc4, vma2, vma3, ecm14, and vph2 resulted in near-complete polyP depletion. Subsequent combinatorial deletions in the Δppn1 background revealed that the Δppn1Δvip1 double mutant achieved synergistic enhancement in both polyP concentration (53.01 mg-P/g-DCW) and chain length, attributable to increased ATP availability and reduced polyphosphatase activity. Leveraging CRISPR/Cas9-mediated overexpression in Δppn1Δvip1, we engineered strain PP2 (vtc4 overexpression), which demonstrated a 2-fold increase in polyP yield (62.6 mg-P/g-DCW) relative to wild-type BY4741, with predominant synthesis of long-chain species. Mechanistically, qRT-PCR analysis confirmed that PP2 exhibited 46-fold up-regulation of vtc4 coupled with down-regulation of polyphosphatases encoding genes, ppn2, ddp1, and ppx1. This study performed a systematic study of regulating inorganic polyphosphates production in yeast and provides a synthetic biology strategy to engineer high-yield polyP-producing strains, advancing both fundamental understanding and biotechnological applications.
Collapse
Affiliation(s)
- Zipeng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yanling Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lingfeng Qin
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Zhixin Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, 214101, PR China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, 214101, PR China
| |
Collapse
|
2
|
Kim GD, Liu G, Qiu D, De Leo MG, Gopaldass N, Hermes J, Timmer J, Saiardi A, Mayer A, Jessen HJ. Pools of Independently Cycling Inositol Phosphates Revealed by Pulse Labeling with 18O-Water. J Am Chem Soc 2025; 147:17626-17641. [PMID: 40372010 PMCID: PMC12123611 DOI: 10.1021/jacs.4c16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Inositol phosphates control many central processes in eukaryotic cells including nutrient availability, growth, and motility. Kinetic resolution of a key modulator of their signaling functions, the turnover of the phosphate groups on the inositol ring, has been hampered by slow uptake, high dilution, and constraining growth conditions in radioactive pulse-labeling approaches. Here, we demonstrate a rapid (seconds to minutes) and nonradioactive labeling strategy of inositol polyphosphates through 18O-water in yeast, human cells, and amoeba, which can be applied in any media. In combination with capillary electrophoresis and mass spectrometry, 18O-water labeling simultaneously dissects the in vivo phosphate group dynamics of a broad spectrum of even rare inositol phosphates. The good temporal resolution allowed us to discover vigorous phosphate group exchanges in some inositol polyphosphates and pyrophosphates, whereas others remain remarkably inert. We propose a model in which the biosynthetic pathway of inositol polyphosphates and pyrophosphates is organized in distinct, kinetically separated pools. While transfer of compounds between those pools is slow, each pool undergoes rapid internal phosphate cycling. This might enable the pools to perform distinct signaling functions while being metabolically connected.
Collapse
Affiliation(s)
- Geun-Don Kim
- Département
d’immunobiologie, Université
de Lausanne, CH-1066Epalinges, Switzerland
| | - Guizhen Liu
- Institute
of Organic Chemistry, University of Freiburg, 79104Freiburg, Germany
- CIBSSCentre
for Integrative Biological Signaling Studies, University of Freiburg, 79104Freiburg, Germany
| | - Danye Qiu
- Institute
of Organic Chemistry, University of Freiburg, 79104Freiburg, Germany
| | | | - Navin Gopaldass
- Département
d’immunobiologie, Université
de Lausanne, CH-1066Epalinges, Switzerland
| | - Jacques Hermes
- CIBSSCentre
for Integrative Biological Signaling Studies, University of Freiburg, 79104Freiburg, Germany
- Institute
of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Jens Timmer
- CIBSSCentre
for Integrative Biological Signaling Studies, University of Freiburg, 79104Freiburg, Germany
- Institute
of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Adolfo Saiardi
- Medical
Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, U.K.
| | - Andreas Mayer
- Département
d’immunobiologie, Université
de Lausanne, CH-1066Epalinges, Switzerland
| | - Henning Jacob Jessen
- Institute
of Organic Chemistry, University of Freiburg, 79104Freiburg, Germany
- CIBSSCentre
for Integrative Biological Signaling Studies, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
3
|
Sanchez AM, Kyaw AK, Violante SN, Garg A, Cross JR, Shuman S. Fission yeast metabolome dynamics during phosphate starvation and replenishment. mBio 2025; 16:e0024125. [PMID: 39998228 PMCID: PMC11980565 DOI: 10.1128/mbio.00241-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Inorganic phosphate is an essential nutrient acquired by cells from their environment and assimilated into myriad intracellular metabolites and macromolecules. Here, we characterize the metabolic responses of fission yeast to a 24 h interval of phosphate starvation, during which cells enter a state of G0 quiescence. Time-resolved profiling revealed that many key phosphometabolites were progressively depleted, including (i) NTPs, NDPs, and dNTPs; (ii) coenzyme A, NAD+, NADP+, NADH, and ADP-ribose; (iii) glycolysis pathway intermediates upstream of pyruvate; (iv) pentose phosphate pathway intermediates from 6-phosphogluconate to sedoheptulose-7-phosphate; (v) nucleotide sugars GDP-hexose, UDP-glucose/galactose, and UDP-GalNAc/GlcNAc; and (vi) phospholipid precursors glycerol-3-phosphate, CDP-choline, and glycerophosphocholine. By contrast, early Krebs cycle intermediates accumulated during phosphate starvation. Other metabolic changes included the following: (i) interdiction of de novo pyrimidine synthesis; (ii) depletion of S-adenosylmethionine and S-adenosylhomocysteine; (iii) transient accumulation of polyamine biosynthetic intermediates putrescine and 5-methylthioadenosine; (iv) accumulation of betaine (correlating with an increase in expression of atd1 mRNA encoding aldehyde dehydrogenase); and (v) depletion of aminoadipate pathway intermediates 2-oxoadipate, 2-aminoadipate, and saccharopine. Replenishing phosphate after 24 h of starvation resulted in restoration of the pre-starvation metabolome (over 2 to 12 h) as cells exited quiescence and resumed growth. IMPORTANCE Fission yeast Schizosaccharomyces pombe is a valuable model system to study cellular phosphate homeostasis and the adaptive responses to chronic phosphate starvation. Previous analyses focused on changes in the fission yeast transcriptome and proteome during phosphate starvation-induced durable G0 quiescence. Here, we deployed metabolomics to survey the scope and temporal order of metabolite changes during 24 h of phosphate starvation and the kinetics of metabolic recovery after cells starved for 24 h are replenished with phosphate. These results contribute to a multi-omics understanding of how phosphate status impacts cell cycle, gene expression, metabolism, and chronological lifespan.
Collapse
Affiliation(s)
- Ana M. Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Aye K. Kyaw
- Donald B. and Catherine C. Marron Cancer Metabolism Center, MSKCC, New York, New York, USA
| | - Sara Nunes Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, MSKCC, New York, New York, USA
| | - Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, MSKCC, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Zhu Q, Yaggi MF, Jork N, Jessen HJ, Diver MM. Transport and InsP 8 gating mechanisms of the human inorganic phosphate exporter XPR1. Nat Commun 2025; 16:2770. [PMID: 40113814 PMCID: PMC11926068 DOI: 10.1038/s41467-025-58076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Inorganic phosphate (Pi) has essential metabolic and structural roles in living organisms. The Pi exporter, XPR1/SLC53A1, is critical for cellular Pi homeostasis. When intercellular Pi is high, cells accumulate inositol pyrophosphate (1,5-InsP8), a signaling molecule required for XPR1 function. Inactivating XPR1 mutations lead to brain calcifications, causing neurological symptoms including movement disorders, psychosis, and dementia. Here, cryo-electron microscopy structures of dimeric XPR1 and functional characterization delineate the substrate translocation pathway and how InsP8 initiates Pi transport. Binding of InsP8 to XPR1, but not the related inositol polyphosphate InsP6, rigidifies the intracellular SPX domains, with InsP8 bridging the dimers and SPX and transmembrane domains. Locked in this state, the C-terminal tail is sequestered, revealing the entrance to the transport pathway, thus explaining the obligate roles of the SPX domain and InsP8. Together, these findings advance our understanding of XPR1 transport activity and expand opportunities for rationalizing disease mechanisms and therapeutic intervention.
Collapse
Affiliation(s)
- Qinyu Zhu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Madeleine F Yaggi
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Nikolaus Jork
- Department of Chemistry and Pharmacy, Institute for Organic Chemistry, and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Institute for Organic Chemistry, and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Melinda M Diver
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
5
|
Chalak K, Yadav R, Liu G, Rana P, Jessen HJ, Laha D. Functional Conservation of the DDP1-type Inositol Pyrophosphate Phosphohydrolases in Land Plant. Biochemistry 2024; 63:2723-2728. [PMID: 39404446 DOI: 10.1021/acs.biochem.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are eukaryote-specific second messengers that regulate diverse cellular processes, including immunity, nutrient sensing, and hormone signaling pathways in plants. These energy-rich messengers exhibit high sensitivity to the cellular phosphate status, suggesting that the synthesis and degradation of PP-InsPs are tightly controlled within the cells. Notably, the molecular basis of PP-InsP hydrolysis in plants remains largely unexplored. In this study, we report the functional characterization of MpDDP1, a diadenosine and diphosphoinositol polyphosphate phosphohydrolase encoded by the genome of the liverwort, Marchantia polymorpha. We show that MpDDP1 functions as a PP-InsP phosphohydrolase in different heterologous organisms. Consistent with this finding, M. polymorpha plants defective in MpDDP1 exhibit elevated levels of 1/3-InsP7 and 1/3,5-InsP8, highlighting the contribution of MpDDP1 in regulating PP-InsP homeostasis in planta. Furthermore, our study reveals that MpDDP1 controls thallus development and vegetative reproduction in M. polymorpha. Collectively, this study provides insights into the regulation of specific PP-InsP messengers by DDP1-type phosphohydrolases in land plants.
Collapse
Affiliation(s)
- Kuheli Chalak
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Ranjana Yadav
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Guizhen Liu
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79098, Germany
| | - Priyanshi Rana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Henning J Jessen
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79098, Germany
| | - Debabrata Laha
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| |
Collapse
|
6
|
Ghosh S, Sanchez AM, Schwer B, Prucker I, Jork N, Jessen HJ, Shuman S. Activities and genetic interactions of fission yeast Aps1, a Nudix-type inositol pyrophosphatase and inorganic polyphosphatase. mBio 2024; 15:e0108424. [PMID: 38940614 PMCID: PMC11323792 DOI: 10.1128/mbio.01084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
7
|
Schwer B, Innokentev A, Sanchez AM, Garg A, Shuman S. Suppression of inositol pyrophosphate toxicosis and hyper-repression of the fission yeast PHO regulon by loss-of-function mutations in chromatin remodelers Snf22 and Sol1. mBio 2024; 15:e0125224. [PMID: 38899862 PMCID: PMC11253589 DOI: 10.1128/mbio.01252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Aleksei Innokentev
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Desmarini D, Liu G, Jessen H, Bowring B, Connolly A, Crossett B, Djordjevic JT. Arg1 from Cryptococcus neoformans lacks PI3 kinase activity and conveys virulence roles via its IP 3-4 kinase activity. mBio 2024; 15:e0060824. [PMID: 38742909 PMCID: PMC11237472 DOI: 10.1128/mbio.00608-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Inositol tris/tetrakis phosphate kinases (IP3-4K) in the human fungal priority pathogens, Cryptococcus neoformans (CnArg1) and Candida albicans (CaIpk2), convey numerous virulence functions, yet it is not known whether the IP3-4K catalytic activity or a scaffolding role is responsible. We therefore generated a C. neoformans strain with a non-functional kinase, referred to as the dead-kinase (dk) CnArg1 strain (dkArg1). We verified that, although dkARG1 cDNA cloned from this strain produced a protein with the expected molecular weight, dkArg1 was catalytically inactive with no IP3-4K activity. Using recombinant CnArg1 and CaIpk2, we confirmed that, unlike the IP3-4K homologs in humans and Saccharomyces cerevisiae, CnArg1 and CaIpk2 do not phosphorylate the lipid-based substrate, phosphatidylinositol 4,5-bisphosphate, and therefore do not function as class I PI3Ks. Inositol polyphosphate profiling using capillary electrophoresis-electrospray ionization-mass spectrometry revealed that IP3 conversion is blocked in the dkArg1 and ARG1 deletion (Cnarg1Δ) strains and that 1-IP7 and a recently discovered isomer (4/6-IP7) are made by wild-type C. neoformans. Importantly, the dkArg1 and Cnarg1Δ strains had similar virulence defects, including suppressed growth at 37°C, melanization, capsule production, and phosphate starvation response, and were avirulent in an insect model, confirming that virulence is dependent on IP3-4K catalytic activity. Our data also implicate the dkArg1 scaffold in transcriptional regulation of arginine metabolism but via a different mechanism to S. cerevisiae since CnArg1 is dispensable for growth on different nitrogen sources. IP3-4K catalytic activity therefore plays a dominant role in fungal virulence, and IPK pathway function has diverged in fungal pathogens.IMPORTANCEThe World Health Organization has emphasized the urgent need for global action in tackling the high morbidity and mortality rates stemming from invasive fungal infections, which are exacerbated by the limited variety and compromised effectiveness of available drug classes. Fungal IP3-4K is a promising target for new therapy, as it is critical for promoting virulence of the human fungal priority pathogens, Cryptococcus neoformans and Candida albicans, and impacts numerous functions, including cell wall integrity. This contrasts to current therapies, which only target a single function. IP3-4K enzymes exert their effect through their inositol polyphosphate products or via the protein scaffold. Here, we confirm that the IP3-4K catalytic activity of CnArg1 promotes all virulence traits in C. neoformans that are attenuated by ARG1 deletion, reinforcing our ongoing efforts to find inositol polyphosphate effector proteins and to create inhibitors targeting the IP3-4K catalytic site, as a new antifungal drug class.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Guizhen Liu
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
9
|
Kim GD, Qiu D, Jessen HJ, Mayer A. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 2023; 14:e0010223. [PMID: 37074217 PMCID: PMC10294617 DOI: 10.1128/mbio.00102-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|