1
|
Fréville A, Moreira-Leite F, Roussel C, Russell MRG, Fricot A, Carret V, Sissoko A, Hayes MJ, Diallo AB, Kerkhoven NC, Ressurreição M, Dokmak S, Blackman MJ, Collinson LM, Buffet PA, Vaughan S, Ndour PA, van Ooij C. Malaria parasites undergo a rapid and extensive metamorphosis after invasion of the host erythrocyte. EMBO Rep 2025:10.1038/s44319-025-00435-3. [PMID: 40185976 DOI: 10.1038/s44319-025-00435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025] Open
Abstract
Within the human host, the symptoms of malaria are caused by the replication of malaria parasites within erythrocytes. Growth inside the erythrocyte exposes the parasites to the normal surveillance of erythrocytes by the host organism, in particular the clearance of erythrocytes in the spleen. Here we show that the malaria parasite Plasmodium falciparum undergoes a rapid, multi-step metamorphosis that transforms the invasive merozoite into an amoeboid-shaped cell within minutes after invading erythrocytes. This transformation involves an increase in the parasite surface area and is mediated by factors already present in the merozoite, including the parasite phospholipid transfer protein PV6. Parasites lacking PV6 do not assume an amoeboid form and instead are spherical and have a smaller surface area than amoeboid forms. Furthermore, erythrocytes infected with P. falciparum parasites lacking PV6 undergo a higher loss of surface area upon infection, which affects the traversal of infected erythrocytes through the spleen. This is the first evidence that after invasion, the parasite undergoes a rapid, complex metamorphosis within the host erythrocyte that promotes survival in the host.
Collapse
Affiliation(s)
- Aline Fréville
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1 7HT, UK
| | - Flavia Moreira-Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Camille Roussel
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Matthew R G Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Aurelie Fricot
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Valentine Carret
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Abdoulaye Sissoko
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Matthew J Hayes
- University College London, Institute of Ophthalmology, 15-43 Bath Street, London, EC1V 9EL, UK
| | - Aissatou Bailo Diallo
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | | | - Margarida Ressurreição
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1 7HT, UK
| | - Safi Dokmak
- Department of Hepatobiliary Surgery and Liver Transplantation, Hôpital Beaujon, AP-HP, Clichy, France
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1 7HT, UK
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Pierre A Buffet
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Papa Alioune Ndour
- INSERM-U1134, BIGR, Université Paris Cité and Université des Antilles, Paris, France
| | - Christiaan van Ooij
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1 7HT, UK.
- School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Frangos SM, Damrich S, Gueiber D, Sanchez CP, Wiedemann P, Schwarz US, Hamprecht FA, Lanzer M. Deep learning image analysis for continuous single-cell imaging of dynamic processes in Plasmodium falciparum-infected erythrocytes. Commun Biol 2025; 8:487. [PMID: 40133663 PMCID: PMC11937545 DOI: 10.1038/s42003-025-07894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Continuous high-resolution imaging of the disease-mediating blood stages of the human malaria parasite Plasmodium falciparum faces challenges due to photosensitivity, small parasite size, and the anisotropy and large refractive index of host erythrocytes. Previous studies often relied on snapshot galleries from multiple cells, limiting the investigation of dynamic cellular processes. We present a workflow enabling continuous, single-cell monitoring of live parasites throughout the 48-hour intraerythrocytic life cycle with high spatial and temporal resolution. This approach integrates label-free, three-dimensional differential interference contrast and fluorescence imaging using an Airyscan microscope, automated cell segmentation through pre-trained deep-learning algorithms, and 3D rendering for visualization and time-resolved analyses. As a proof of concept, we applied this workflow to study knob-associated histidine-rich protein (KAHRP) export into the erythrocyte compartment and its clustering beneath the plasma membrane. Our methodology opens avenues for in-depth exploration of dynamic cellular processes in malaria parasites, providing a valuable tool for further investigations.
Collapse
Affiliation(s)
- Sophia M Frangos
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Infectious Diseases, Parasitology, Im Neuenheimer Feld 324, Heidelberg, Germany
| | - Sebastian Damrich
- Heidelberg University, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, Heidelberg, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Otfried-Müller-Straße 25, Tübingen, Germany
| | - Daniele Gueiber
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Infectious Diseases, Parasitology, Im Neuenheimer Feld 324, Heidelberg, Germany
- University of Applied Sciences Mannheim, Institute of Molecular and Cell Biology, Paul-Wittsack-Strasse 10, Mannheim, Germany
| | - Cecilia P Sanchez
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Infectious Diseases, Parasitology, Im Neuenheimer Feld 324, Heidelberg, Germany
| | - Philipp Wiedemann
- University of Applied Sciences Mannheim, Institute of Molecular and Cell Biology, Paul-Wittsack-Strasse 10, Mannheim, Germany
| | - Ulrich S Schwarz
- Heidelberg University, BioQuant and Institute for Theoretical Physics, Philosophenweg 19, Heidelberg, Germany
| | - Fred A Hamprecht
- Heidelberg University, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Michael Lanzer
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Infectious Diseases, Parasitology, Im Neuenheimer Feld 324, Heidelberg, Germany.
| |
Collapse
|
3
|
Sreenivasamurthy SK, Baptista CG, West CM, Blader IJ, Dvorin JD. PfFBXO1 is essential for inner membrane complex formation in Plasmodium falciparum during both asexual and transmission stages. Commun Biol 2025; 8:190. [PMID: 39915671 PMCID: PMC11802861 DOI: 10.1038/s42003-025-07619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Plasmodium species replicate via schizogony, which involves asynchronous nuclear divisions followed by semi-synchronous segmentation and cytokinesis. Successful segmentation requires a double-membranous structure known as the inner membrane complex (IMC). Here we demonstrate that PfFBXO1 (PF3D7_0619700) is critical for both asexual segmentation and gametocyte maturation. In Toxoplasma gondii, the FBXO1 homolog, TgFBXO1, is essential for the development of the daughter cell scaffold and a component of the daughter cell IMC. We demonstrate PfFBXO1 forming a similar IMC initiation scaffold near the apical region of developing merozoites and unilaterally positioned in gametocytes of P. falciparum. While PfFBXO1 initially localizes to the apical region of dividing parasites, it displays an IMC-like localization as segmentation progresses. Similarly, PfFBXO1 localizes to the IMC region in gametocytes. Following inducible knockout of PfFBXO1, parasites undergo abnormal segmentation and karyokinesis, generating inviable daughters. PfFBXO1-deficient gametocytes are abnormally shaped and fail to fully mature. Proteomic analysis identified PfSKP1 as one of PfBXO1's stable interacting partners, while other major proteins included multiple IMC pellicle and membrane proteins. We hypothesize that PfFBXO1 is necessary for IMC biogenesis, chromosomal maintenance, vesicular transport, and ubiquitin-mediated translational regulation of proteins in both sexual and asexual stages of P. falciparum.
Collapse
Affiliation(s)
- Sreelakshmi K Sreenivasamurthy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Morano AA, Xu W, Navarro FM, Shadija N, Dvorin JD, Ke H. The dynamin-related protein PfDyn2 is essential for both apicoplast and mitochondrial fission in Plasmodium falciparum. mBio 2025; 16:e0303624. [PMID: 39611847 PMCID: PMC11708027 DOI: 10.1128/mbio.03036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Dynamins, or dynamin-related proteins (DRPs), are large mechano-sensitive GTPases that mediate membrane dynamics or organellar fission/fusion events. Plasmodium falciparum encodes three dynamin-like proteins whose functions are poorly understood. Here, we demonstrate that one of these dynamin-related proteins, PfDyn2, is required to divide both the apicoplast and the mitochondrion, a striking divergence from the biology of related parasites. Using super-resolution and ultrastructure expansion microscopy (U-ExM), we show that PfDyn2 is expressed in dividing schizonts, and that it localizes to both the apicoplast and the mitochondrion. Our use of long-term, live-cell microscopy allows for the visualization of apicoplast and mitochondrial division in live parasites at super resolution for the first time, and demonstrates that in PfDyn2-deficient parasites, while the apicoplast and mitochondrion increase in size and complexity, they do not undergo fission. We also show that these organellar fission defects prevent successful individualization of the schizont mass and the formation of new daughter cells, or merozoites because the basal complex, the cytokinetic ring of Plasmodium, cannot fully contract in PfDyn2-deficient parasites, a phenotype secondary to physical blockage by undivided organelles occluding the ring. PfDyn2's singular role in mediating both apicoplast and mitochondrial fission has not been observed in other organisms possessing two endosymbiotic organelles, including other Apicomplexans, thus reflecting a unique, potentially exploitable method of organellar division in P. falciparum.IMPORTANCEPlasmodium falciparum remains a significant global pathogen, causing over 200 million infections and over 600,000 deaths per year. One significant obstacle to the control of malaria is increasing resistance to first-line artemisinin-based antimalarials. Another is a lack of basic knowledge about the cell biology of the parasite. Along with the mitochondrion, Plasmodium contains a second organelle descended from an endosymbiotic event, the apicoplast. Both organelles are common targets for antimalarials, but because many proteins involved in organellar fission are not conserved in Plasmodium, until now, the mechanisms underlying apicoplast and mitochondrial division have been unknown. In this study, we demonstrate that PfDyn2, a dynamin-related protein (DRP), is required for the division of both organelles. We also show that defects in organellar division hinder segmentation of the schizont and formation of invasive merozoites by preventing full contraction of the basal complex. By demonstrating its necessity for the proper division of both the apicoplast and the mitochondria, this study highlights PfDyn2 as a potential target for new antimalarials.
Collapse
Affiliation(s)
- Alexander A. Morano
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Francesca M. Navarro
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Neeta Shadija
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Blauwkamp J, Ambekar SV, Hussain T, Mair GR, Beck JR, Absalon S. Nuclear pore complexes undergo Nup221 exchange during blood-stage asexual replication of Plasmodium parasites. mSphere 2024; 9:e0075024. [PMID: 39526784 DOI: 10.1128/msphere.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Plasmodium parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, Plasmodium berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here, we utilize ultrastructure expansion microscopy to investigate P. berghei nucleoporins at the single nucleus level throughout the 24-hour blood-stage replication cycle. Our findings reveal that these nucleoporins are distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, responsible for intranuclear microtubule nucleation during mitosis. By adapting the recombination-induced tag exchange system to P. berghei through a single plasmid tagging system, which includes the tagging plasmid as well as the Cre recombinase, we provide evidence of NPC formation dynamics, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. IMPORTANCE Malaria, caused by Plasmodium species, remains a critical global health challenge, with an estimated 249 million cases and over 600,000 deaths in 2022, primarily affecting children under five. Understanding the nuclear dynamics of Plasmodium parasites, particularly during their unique mitotic processes, is crucial for developing novel therapeutic strategies. Our study leverages advanced microscopy techniques, such as ultrastructure expansion microscopy, to reveal the organization and turnover of nuclear pore complexes (NPCs) during the parasite's asexual replication. By elucidating these previously unknown aspects of NPC distribution and homeostasis, we provide valuable insights into the molecular mechanisms governing parasite mitosis. These findings deepen our understanding of parasite biology and may inform future research aimed at identifying new targets for anti-malarial drug development.
Collapse
Affiliation(s)
- James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sushma V Ambekar
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. Cytoskeleton (Hoboken) 2024; 81:618-638. [PMID: 38715433 PMCID: PMC11540979 DOI: 10.1002/cm.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Pongpratch Puapatanakul
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachel Pudlowski
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey H Miner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, Missouri, USA
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jennifer T Wang
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hani Y Suleiman
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Moe R Mahjoub
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Bondarenko K, Limoge F, Pedram K, Gissot M, Young JC. Enzymatically enhanced ultrastructure expansion microscopy unlocks expansion of in vitro Toxoplasma gondii cysts. mSphere 2024; 9:e0032224. [PMID: 39189782 PMCID: PMC11423595 DOI: 10.1128/msphere.00322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked the detail of super-resolution images for a broader scientific circle, lowering the cost and entry skill requirements for the field. One of its branches, ultrastructure expansion microscopy (U-ExM), has become popular among research groups studying apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. Here, we show that the chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localization. We then solve the in vitro cyst's resistance to denaturation required for successful U-ExM. As the cyst's main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without disrupting immunofluorescence analysis of parasite proteins. Using StcE-enhanced U-ExM, we clarified the localization of the GRA2 protein, which is important for establishing a normal cyst, observing GRA2 granules spanning across the CST1 cyst wall. The StcE-U-ExM protocol allows accurate pinpointing of proteins in the bradyzoite cyst, which will greatly facilitate investigation of the underlying biology of cyst formation and its vulnerabilities. IMPORTANCE Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate to form cysts predominantly in neurons and skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites, leaving a reservoir of infection. The cyst is critical for disease transmission and pathology, yet it is harder to study, with the function of many chronic-stage proteins still unknown. Ultrastructure expansion microscopy, a new method to overcome the light microscopy's diffraction limit by physically expanding the sample, allowed in-depth studies of acute Toxoplasma infection. We show that Toxoplasma cysts resist expansion using standard protocol, but an additional enzymatic digestion with the mucinase StcE allows full expansion. This protocol offers new avenues for examining the chronic stage, including precise spatial organization of cyst-specific proteins, linking these locations to morphological structures, and detailed investigations of components of the durable cyst wall.
Collapse
Affiliation(s)
- Kseniia Bondarenko
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Floriane Limoge
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Mathieu Gissot
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joanna C. Young
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Wyss M, Thommen BT, Kofler J, Carrington E, Brancucci NMB, Voss TS. The three Plasmodium falciparum Aurora-related kinases display distinct temporal and spatial associations with mitotic structures in asexual blood stage parasites and gametocytes. mSphere 2024; 9:e0046524. [PMID: 39235260 PMCID: PMC11423587 DOI: 10.1128/msphere.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Aurora kinases are crucial regulators of mitotic cell cycle progression in eukaryotes. The protozoan malaria parasite Plasmodium falciparum replicates via schizogony, a specialized mode of cell division characterized by consecutive asynchronous rounds of nuclear division by closed mitosis followed by a single cytokinesis event producing dozens of daughter cells. P. falciparum encodes three Aurora-related kinases (PfARKs) that have been reported essential for parasite proliferation, but their roles in regulating schizogony have not yet been explored in great detail. Here, we engineered transgenic parasite lines expressing GFP-tagged PfARK1-3 to provide a systematic analysis of their expression timing and subcellular localization throughout schizogony as well as in the non-dividing gametocyte stages, which are essential for malaria transmission. We demonstrate that all three PfARKs display distinct and highly specific and exclusive spatiotemporal associations with the mitotic machinery. In gametocytes, PfARK3 is undetectable, and PfARK1 and PfARK2 show male-specific expression in late-stage gametocytes, consistent with their requirement for endomitosis during male gametogenesis in the mosquito vector. Our combined data suggest that PfARK1 and PfARK2 have non-overlapping roles in centriolar plaque maturation, assembly of the mitotic spindle, kinetochore-spindle attachment and chromosome segregation, while PfARK3 seems to be exquisitely involved in daughter cell cytoskeleton assembly and cytokinesis. These important new insights provide a reliable foundation for future research aiming at the functional investigation of these divergent and possibly drug-targetable Aurora-related kinases in mitotic cell division of P. falciparum and related apicomplexan parasites.IMPORTANCEMalaria parasites replicate via non-conventional modes of mitotic cell division, such as schizogony, employed by the disease-causing stages in the human blood or endomitosis during male gametogenesis in the mosquito vector. Understanding the molecular mechanisms regulating cell division in these divergent unicellular eukaryotes is not only of scientific interest but also relevant to identify potential new antimalarial drug targets. Here, we carefully examined the subcellular localization of all three Plasmodium falciparum Aurora-related kinases (ARKs), distantly related homologs of Aurora kinases that coordinate mitosis in model eukaryotes. Detailed fluorescence microscopy-based analyses revealed distinct, specific, and exclusive spatial associations for each parasite ARK with different components of the mitotic machinery and at different phases of the cell cycle during schizogony and gametocytogenesis. This comprehensive set of results closes important gaps in our fragmentary knowledge on this important group of kinases and offers a valuable source of information for future functional studies.
Collapse
Affiliation(s)
- Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Basil T. Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Jacob Kofler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Winzeler E, Carolino K, De Souza ML, Chen D, Farre JC, Blauwkamp J, Absalon S, Ghidelli-Disse S, Morano A, Dvorin J, Lafuente-Monasterio MJ, Gamo FJ. Plasmodium SEY1 is a novel druggable target that contributes to imidazolopiperazine mechanism of action. RESEARCH SQUARE 2024:rs.3.rs-4892449. [PMID: 39399671 PMCID: PMC11469372 DOI: 10.21203/rs.3.rs-4892449/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The precise mode of action of ganaplacide (KAF156), a phase III antimalarial candidate, remains elusive. Here we employ omics-based methods with the closely related chemical analog, GNF179, to search for potential Plasmodium targets. Ranking potential targets derived from chemical genetics and proteomic affinity chromatography methodologies identifies SEY1, or Synthetic Enhancement of YOP1, which is predicted to encode an essential dynamin-like GTPase implicated in homotypic fusion of endoplasmic reticulum (ER) membranes. We demonstrate that GNF179 decreases Plasmodium SEY1 melting temperature. We further show that GNF179 binds to recombinant Plasmodium SEY1 and subsequently inhibits its GTPase activity, which is required for maintaining ER architecture. Using ultrastructure expansion microscopy, we find GNF179 treatment changes parasite ER and Golgi morphology. We also confirm that SEY1 is an essential gene in P. falciparum. These data suggest that SEY1 may contribute to the mechanism of action of imidazolopiperazines and is a new and attractive druggable target.
Collapse
|
10
|
Verhoef JM, Boshoven C, Evers F, Akkerman LJ, Gijsbrechts BC, van de Vegte-Bolmer M, van Gemert GJ, Vaidya AB, Kooij TW. Detailing organelle division and segregation in Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577899. [PMID: 38352445 PMCID: PMC10862848 DOI: 10.1101/2024.01.30.577899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The malaria causing parasite, Plasmodium falciparum, replicates through a tightly orchestrated process termed schizogony, where approximately 32 daughter parasites are formed in a single infected red blood cell and thousands of daughter cells in mosquito or liver stages. One-per-cell organelles, such as the mitochondrion and apicoplast, need to be properly divided and segregated to ensure a complete set of organelles per daughter parasites. Although this is highly essential, details about the processes and mechanisms involved remain unknown. We developed a new reporter parasite line that allows visualization of the mitochondrion in blood and mosquito stages. Using high-resolution 3D-imaging, we found that the mitochondrion orients in a cartwheel structure, prior to stepwise, non-geometric division during the last stage of schizogony. Analysis of focused ion beam scanning electron microscopy (FIB-SEM) data confirmed these mitochondrial division stages. Furthermore, these data allowed us to elucidate apicoplast division steps, highlighted its close association with the mitochondrion, and showed putative roles of the centriolar plaques (CPs) in apicoplast segregation. These observations form the foundation for a new detailed mechanistic model of mitochondrial and apicoplast division and segregation during P. falciparum schizogony and pave the way for future studies into the proteins and protein complexes involved in organelle division and segregation.
Collapse
Affiliation(s)
- Julie M.J. Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura J. Akkerman
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barend C.A. Gijsbrechts
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, USA
| | - Taco W.A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Gurung P, McGee JP, Dvorin JD. PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of Plasmodium falciparum. mBio 2024; 15:e0285023. [PMID: 38564676 PMCID: PMC11078010 DOI: 10.1128/mbio.02850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.
Collapse
Affiliation(s)
- Pratima Gurung
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - James P. McGee
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
13
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580708. [PMID: 38405695 PMCID: PMC10889020 DOI: 10.1101/2024.02.16.580708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
|
14
|
Anaguano D, Adewale-Fasoro O, Vick GS, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577654. [PMID: 38352500 PMCID: PMC10862748 DOI: 10.1101/2024.01.29.577654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBC) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs, begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from two specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains seven transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only one rhoptry each. The single rhoptry in RON11 deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11 deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11 deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Grace S. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| |
Collapse
|
15
|
Anaguano D, Dedkhad W, Brooks CF, Cobb DW, Muralidharan V. Time-resolved proximity biotinylation implicates a porin protein in export of transmembrane malaria parasite effectors. J Cell Sci 2023; 136:jcs260506. [PMID: 37772444 PMCID: PMC10651097 DOI: 10.1242/jcs.260506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID). Using time-resolved proximity biotinylation and label-free quantitative proteomics, we identified two groups of SBP1TbID interactors - early interactors (pre-export) and late interactors (post-export). Notably, two promising membrane-associated proteins were identified as pre-export interactors, one of which possesses a predicted translocon domain, that could facilitate the export of membrane proteins. Further investigation using conditional mutants of these candidate proteins showed that these proteins were essential for asexual growth and localize to the host-parasite interface during early stages of the intraerythrocytic cycle. These data suggest that they might play a role in ushering membrane proteins from the parasite plasma membrane for export to the host RBC.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Watcharatip Dedkhad
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Carrie F. Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - David W. Cobb
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|